Skip to content

Commit abdaba5

Browse files
committed
Change constrained_layout=True to layout='constrained'
as the former is discouraged, see https://matplotlib.org/3.5.0/api/figure_api.html#matplotlib.figure.Figure
1 parent 2a62854 commit abdaba5

File tree

1 file changed

+11
-11
lines changed

1 file changed

+11
-11
lines changed

tutorials/introductory/usage.py

+11-11
Original file line numberDiff line numberDiff line change
@@ -120,7 +120,7 @@
120120
data['b'] = data['a'] + 10 * np.random.randn(50)
121121
data['d'] = np.abs(data['d']) * 100
122122

123-
fig, ax = plt.subplots(figsize=(5, 2.7), constrained_layout=True)
123+
fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')
124124
ax.scatter('a', 'b', c='c', s='d', data=data)
125125
ax.set_xlabel('entry a')
126126
ax.set_ylabel('entry b');
@@ -147,7 +147,7 @@
147147

148148
# Note that even in the explicit style, we use `.pyplot.figure` to create the
149149
# Figure.
150-
fig, ax = plt.subplots(figsize=(5, 2.7), constrained_layout=True)
150+
fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')
151151
ax.plot(x, x, label='linear') # Plot some data on the axes.
152152
ax.plot(x, x**2, label='quadratic') # Plot more data on the axes...
153153
ax.plot(x, x**3, label='cubic') # ... and some more.
@@ -161,7 +161,7 @@
161161

162162
x = np.linspace(0, 2, 100) # Sample data.
163163

164-
plt.figure(figsize=(5, 2.7), constrained_layout=True)
164+
plt.figure(figsize=(5, 2.7), layout='constrained')
165165
plt.plot(x, x, label='linear') # Plot some data on the (implicit) axes.
166166
plt.plot(x, x**2, label='quadratic') # etc.
167167
plt.plot(x, x**3, label='cubic')
@@ -284,7 +284,7 @@ def my_plotter(ax, data1, data2, param_dict):
284284

285285
mu, sigma = 115, 15
286286
x = mu + sigma * np.random.randn(10000)
287-
fig, ax = plt.subplots(figsize=(5, 2.7), constrained_layout=True)
287+
fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')
288288
# the histogram of the data
289289
n, bins, patches = ax.hist(x, 50, density=1, facecolor='C0', alpha=0.75)
290290

@@ -380,7 +380,7 @@ def my_plotter(ax, data1, data2, param_dict):
380380
# :doc:`/gallery/scales/scales` for other examples). Here we set the scale
381381
# manually:
382382

383-
fig, axs = plt.subplots(1, 2, figsize=(5, 2.7), constrained_layout=True)
383+
fig, axs = plt.subplots(1, 2, figsize=(5, 2.7), layout='constrained')
384384
xdata = np.arange(len(data1)) # make an ordinal for this
385385
data = 10**data1
386386
axs[0].plot(xdata, data)
@@ -401,7 +401,7 @@ def my_plotter(ax, data1, data2, param_dict):
401401
# Axis objects to put tick marks. A simple interface to this is
402402
# `~.Axes.set_xticks`:
403403

404-
fig, axs = plt.subplots(2, 1, constrained_layout=True)
404+
fig, axs = plt.subplots(2, 1, layout='constrained')
405405
axs[0].plot(xdata, data1)
406406
axs[0].set_title('Automatic ticks')
407407

@@ -424,7 +424,7 @@ def my_plotter(ax, data1, data2, param_dict):
424424
# well as floating point numbers. These get special locators and formatters
425425
# as appropriate. For dates:
426426

427-
fig, ax = plt.subplots(figsize=(5, 2.7), constrained_layout=True)
427+
fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')
428428
dates = np.arange(np.datetime64('2021-11-15'), np.datetime64('2021-12-25'),
429429
np.timedelta64(1, 'h'))
430430
data = np.cumsum(np.random.randn(len(dates)))
@@ -439,7 +439,7 @@ def my_plotter(ax, data1, data2, param_dict):
439439
# For strings, we get categorical plotting (see:
440440
# :doc:`/gallery/lines_bars_and_markers/categorical_variables`).
441441

442-
fig, ax = plt.subplots(figsize=(5, 2.7), constrained_layout=True)
442+
fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')
443443
categories = ['turnips', 'rutabaga', 'cucumber', 'pumpkins']
444444

445445
ax.bar(categories, np.random.rand(len(categories)));
@@ -464,7 +464,7 @@ def my_plotter(ax, data1, data2, param_dict):
464464
# represent the data in different scales or units.
465465

466466

467-
fig, (ax1, ax3) = plt.subplots(1, 2, figsize=(8, 2.7), constrained_layout=True)
467+
fig, (ax1, ax3) = plt.subplots(1, 2, figsize=(8, 2.7), layout='constrained')
468468
l1, = ax1.plot(t, s)
469469
ax2 = ax1.twinx()
470470
l2, = ax2.plot(t, range(len(t)), 'C1')
@@ -485,7 +485,7 @@ def my_plotter(ax, data1, data2, param_dict):
485485
X, Y = np.meshgrid(np.linspace(-3, 3, 128), np.linspace(-3, 3, 128))
486486
Z = (1 - X/2 + X**5 + Y**3) * np.exp(-X**2 - Y**2)
487487

488-
fig, axs = plt.subplots(2, 2, constrained_layout=True)
488+
fig, axs = plt.subplots(2, 2, layout='constrained')
489489
pc = axs[0, 0].pcolormesh(X, Y, Z, vmin=-1, vmax=1, cmap='RdBu_r')
490490
fig.colorbar(pc, ax=axs[0, 0])
491491
axs[0, 0].set_title('pcolormesh()')
@@ -551,7 +551,7 @@ def my_plotter(ax, data1, data2, param_dict):
551551
# with Axes objects spanning columns or rows, using `~.pyplot.subplot_mosaic`.
552552

553553
fig, axd = plt.subplot_mosaic([['upleft', 'right'],
554-
['lowleft', 'right']], constrained_layout=True)
554+
['lowleft', 'right']], layout='constrained')
555555
axd['upleft'].set_title('upleft')
556556
axd['lowleft'].set_title('lowleft')
557557
axd['right'].set_title('right');

0 commit comments

Comments
 (0)