@@ -4191,11 +4191,10 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
4191
4191
of the observations at (x[i],y[i]).
4192
4192
4193
4193
If *C* is specified, it specifies values at the coordinate
4194
- (x[i],y[i]). These values are accumulated for each hexagonal
4194
+ (x[i], y[i]). These values are accumulated for each hexagonal
4195
4195
bin and then reduced according to *reduce_C_function*, which
4196
- defaults to numpy's mean function (np.mean). (If *C* is
4197
- specified, it must also be a 1-D sequence of the same length
4198
- as *x* and *y*.)
4196
+ defaults to `numpy.mean`. (If *C* is specified, it must also
4197
+ be a 1-D sequence of the same length as *x* and *y*.)
4199
4198
4200
4199
Parameters
4201
4200
----------
@@ -4211,7 +4210,7 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
4211
4210
tuple with two elements specifying the number of hexagons
4212
4211
in the *x*-direction and the *y*-direction.
4213
4212
4214
- bins : { 'log'} or int or sequence, optional, default is *None*
4213
+ bins : 'log' or int or sequence, optional, default is *None*
4215
4214
If *None*, no binning is applied; the color of each hexagon
4216
4215
directly corresponds to its count value.
4217
4216
@@ -4287,11 +4286,9 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
4287
4286
4288
4287
Returns
4289
4288
-------
4290
- object
4291
- a :class:`~matplotlib.collections.PolyCollection` instance; use
4292
- :meth:`~matplotlib.collections.PolyCollection.get_array` on
4293
- this :class:`~matplotlib.collections.PolyCollection` to get
4294
- the counts in each hexagon.
4289
+ polycollection
4290
+ A `.PolyCollection` instance; use `.PolyCollection.get_array` on
4291
+ this to get the counts in each hexagon.
4295
4292
4296
4293
If *marginals* is *True*, horizontal
4297
4294
bar and vertical bar (both PolyCollections) will be attached
@@ -6058,11 +6055,11 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6058
6055
----------
6059
6056
x : (n,) array or sequence of (n,) arrays
6060
6057
Input values, this takes either a single array or a sequence of
6061
- arrays which are not required to be of the same length
6058
+ arrays which are not required to be of the same length.
6062
6059
6063
- bins : integer or sequence or 'auto' , optional
6060
+ bins : int or sequence or str , optional
6064
6061
If an integer is given, ``bins + 1`` bin edges are calculated and
6065
- returned, consistent with :func: `numpy.histogram`.
6062
+ returned, consistent with `numpy.histogram`.
6066
6063
6067
6064
If `bins` is a sequence, gives bin edges, including left edge of
6068
6065
first bin and right edge of last bin. In this case, `bins` is
@@ -6079,9 +6076,12 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6079
6076
6080
6077
Unequally spaced bins are supported if *bins* is a sequence.
6081
6078
6082
- If Numpy 1.11 is installed, may also be ``'auto'``.
6079
+ With Numpy 1.11 or newer, you can alternatively provide a string
6080
+ describing a binning strategy, such as 'auto', 'sturges', 'fd',
6081
+ 'doane', 'scott', 'rice', 'sturges' or 'sqrt', see
6082
+ `numpy.histogram`.
6083
6083
6084
- Default is taken from the rcParam `` hist.bins` `.
6084
+ The default is taken from :rc:` hist.bins`.
6085
6085
6086
6086
range : tuple or None, optional
6087
6087
The lower and upper range of the bins. Lower and upper outliers
@@ -6094,7 +6094,7 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6094
6094
6095
6095
Default is ``None``
6096
6096
6097
- density : boolean , optional
6097
+ density : bool , optional
6098
6098
If ``True``, the first element of the return tuple will
6099
6099
be the counts normalized to form a probability density, i.e.,
6100
6100
the area (or integral) under the histogram will sum to 1.
@@ -6118,7 +6118,7 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6118
6118
6119
6119
Default is ``None``
6120
6120
6121
- cumulative : boolean , optional
6121
+ cumulative : bool , optional
6122
6122
If ``True``, then a histogram is computed where each bin gives the
6123
6123
counts in that bin plus all bins for smaller values. The last bin
6124
6124
gives the total number of datapoints. If *normed* or *density*
@@ -6178,7 +6178,7 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6178
6178
6179
6179
Default is ``None``
6180
6180
6181
- log : boolean , optional
6181
+ log : bool , optional
6182
6182
If ``True``, the histogram axis will be set to a log scale. If
6183
6183
*log* is ``True`` and *x* is a 1D array, empty bins will be
6184
6184
filtered out and only the non-empty ``(n, bins, patches)``
@@ -6192,14 +6192,14 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6192
6192
6193
6193
Default is ``None``
6194
6194
6195
- label : string or None, optional
6195
+ label : str or None, optional
6196
6196
String, or sequence of strings to match multiple datasets. Bar
6197
6197
charts yield multiple patches per dataset, but only the first gets
6198
6198
the label, so that the legend command will work as expected.
6199
6199
6200
6200
default is ``None``
6201
6201
6202
- stacked : boolean , optional
6202
+ stacked : bool , optional
6203
6203
If ``True``, multiple data are stacked on top of each other If
6204
6204
``False`` multiple data are arranged side by side if histtype is
6205
6205
'bar' or on top of each other if histtype is 'step'
@@ -6553,10 +6553,10 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
6553
6553
6554
6554
Parameters
6555
6555
----------
6556
- x, y: array_like, shape (n, )
6556
+ x, y : array_like, shape (n, )
6557
6557
Input values
6558
6558
6559
- bins: [ None | int | [int, int] | array_like | [array, array] ]
6559
+ bins : None or int or [int, int] or array_like or [array, array]
6560
6560
6561
6561
The bin specification:
6562
6562
@@ -6580,7 +6580,7 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
6580
6580
xmax], [ymin, ymax]]. All values outside of this range will be
6581
6581
considered outliers and not tallied in the histogram.
6582
6582
6583
- normed : boolean , optional, default: False
6583
+ normed : bool , optional, default: False
6584
6584
Normalize histogram.
6585
6585
6586
6586
weights : array_like, shape (n, ), optional, default: None
@@ -6610,7 +6610,7 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
6610
6610
6611
6611
Other Parameters
6612
6612
----------------
6613
- cmap : { Colormap, string} , optional
6613
+ cmap : Colormap or str , optional
6614
6614
A :class:`matplotlib.colors.Colormap` instance. If not set, use rc
6615
6615
settings.
6616
6616
@@ -6619,7 +6619,7 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
6619
6619
scale luminance data to ``[0, 1]``. If not set, defaults to
6620
6620
``Normalize()``.
6621
6621
6622
- vmin/vmax : { None, scalar} , optional
6622
+ vmin/vmax : None or scalar, optional
6623
6623
Arguments passed to the `Normalize` instance.
6624
6624
6625
6625
alpha : ``0 <= scalar <= 1`` or ``None``, optional
0 commit comments