Skip to content

Commit c8191a8

Browse files
committed
TST: reduce and regenerate specgram tests
1 parent cd95077 commit c8191a8

13 files changed

+40
-32
lines changed

lib/matplotlib/tests/test_axes.py

Lines changed: 40 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -2969,16 +2969,17 @@ def test_subplot_key_hash():
29692969

29702970
@image_comparison(baseline_images=['specgram_freqs',
29712971
'specgram_freqs_linear'],
2972-
remove_text=True, extensions=['png'], tol=0.07)
2972+
remove_text=True, extensions=['png'], tol=0.07,
2973+
style='default')
29732974
def test_specgram_freqs():
29742975
'''test axes.specgram in default (psd) mode with sinusoidal stimuli'''
2975-
n = 10000
2976-
Fs = 100.
2976+
n = 1000
2977+
Fs = 10.
29772978

29782979
fstims1 = [Fs/4, Fs/5, Fs/11]
29792980
fstims2 = [Fs/4.7, Fs/5.6, Fs/11.9]
29802981

2981-
NFFT = int(1000 * Fs / min(fstims1 + fstims2))
2982+
NFFT = int(10 * Fs / min(fstims1 + fstims2))
29822983
noverlap = int(NFFT / 2)
29832984
pad_to = int(2 ** np.ceil(np.log2(NFFT)))
29842985

@@ -3022,15 +3023,16 @@ def test_specgram_freqs():
30223023

30233024
@image_comparison(baseline_images=['specgram_noise',
30243025
'specgram_noise_linear'],
3025-
remove_text=True, extensions=['png'], tol=0.01)
3026+
remove_text=True, extensions=['png'], tol=0.01,
3027+
style='default')
30263028
def test_specgram_noise():
30273029
'''test axes.specgram in default (psd) mode with noise stimuli'''
30283030
np.random.seed(0)
30293031

3030-
n = 10000
3031-
Fs = 100.
3032+
n = 1000
3033+
Fs = 10.
30323034

3033-
NFFT = int(1000 * Fs / 11)
3035+
NFFT = int(10 * Fs / 11)
30343036
noverlap = int(NFFT / 2)
30353037
pad_to = int(2 ** np.ceil(np.log2(NFFT)))
30363038

@@ -3069,16 +3071,17 @@ def test_specgram_noise():
30693071

30703072
@image_comparison(baseline_images=['specgram_magnitude_freqs',
30713073
'specgram_magnitude_freqs_linear'],
3072-
remove_text=True, extensions=['png'], tol=0.07)
3074+
remove_text=True, extensions=['png'], tol=0.07,
3075+
style='default')
30733076
def test_specgram_magnitude_freqs():
30743077
'''test axes.specgram in magnitude mode with sinusoidal stimuli'''
3075-
n = 10000
3076-
Fs = 100.
3078+
n = 1000
3079+
Fs = 10.
30773080

30783081
fstims1 = [Fs/4, Fs/5, Fs/11]
30793082
fstims2 = [Fs/4.7, Fs/5.6, Fs/11.9]
30803083

3081-
NFFT = int(1000 * Fs / min(fstims1 + fstims2))
3084+
NFFT = int(100 * Fs / min(fstims1 + fstims2))
30823085
noverlap = int(NFFT / 2)
30833086
pad_to = int(2 ** np.ceil(np.log2(NFFT)))
30843087

@@ -3124,15 +3127,16 @@ def test_specgram_magnitude_freqs():
31243127

31253128
@image_comparison(baseline_images=['specgram_magnitude_noise',
31263129
'specgram_magnitude_noise_linear'],
3127-
remove_text=True, extensions=['png'])
3130+
remove_text=True, extensions=['png'],
3131+
style='default')
31283132
def test_specgram_magnitude_noise():
31293133
'''test axes.specgram in magnitude mode with noise stimuli'''
31303134
np.random.seed(0)
31313135

3132-
n = 10000
3133-
Fs = 100.
3136+
n = 1000
3137+
Fs = 10.
31343138

3135-
NFFT = int(1000 * Fs / 11)
3139+
NFFT = int(10 * Fs / 11)
31363140
noverlap = int(NFFT / 2)
31373141
pad_to = int(2 ** np.ceil(np.log2(NFFT)))
31383142

@@ -3170,16 +3174,17 @@ def test_specgram_magnitude_noise():
31703174

31713175

31723176
@image_comparison(baseline_images=['specgram_angle_freqs'],
3173-
remove_text=True, extensions=['png'], tol=0.007)
3177+
remove_text=True, extensions=['png'], tol=0.007,
3178+
style='default')
31743179
def test_specgram_angle_freqs():
31753180
'''test axes.specgram in angle mode with sinusoidal stimuli'''
3176-
n = 10000
3177-
Fs = 100.
3181+
n = 1000
3182+
Fs = 10.
31783183

31793184
fstims1 = [Fs/4, Fs/5, Fs/11]
31803185
fstims2 = [Fs/4.7, Fs/5.6, Fs/11.9]
31813186

3182-
NFFT = int(1000 * Fs / min(fstims1 + fstims2))
3187+
NFFT = int(10 * Fs / min(fstims1 + fstims2))
31833188
noverlap = int(NFFT / 2)
31843189
pad_to = int(2 ** np.ceil(np.log2(NFFT)))
31853190

@@ -3225,15 +3230,16 @@ def test_specgram_angle_freqs():
32253230

32263231

32273232
@image_comparison(baseline_images=['specgram_angle_noise'],
3228-
remove_text=True, extensions=['png'])
3233+
remove_text=True, extensions=['png'],
3234+
style='default')
32293235
def test_specgram_noise_angle():
32303236
'''test axes.specgram in angle mode with noise stimuli'''
32313237
np.random.seed(0)
32323238

3233-
n = 10000
3234-
Fs = 100.
3239+
n = 1000
3240+
Fs = 10.
32353241

3236-
NFFT = int(1000 * Fs / 11)
3242+
NFFT = int(10 * Fs / 11)
32373243
noverlap = int(NFFT / 2)
32383244
pad_to = int(2 ** np.ceil(np.log2(NFFT)))
32393245

@@ -3272,16 +3278,17 @@ def test_specgram_noise_angle():
32723278

32733279

32743280
@image_comparison(baseline_images=['specgram_phase_freqs'],
3275-
remove_text=True, extensions=['png'])
3281+
remove_text=True, extensions=['png'],
3282+
style='default')
32763283
def test_specgram_freqs_phase():
32773284
'''test axes.specgram in phase mode with sinusoidal stimuli'''
3278-
n = 10000
3279-
Fs = 100.
3285+
n = 1000
3286+
Fs = 10.
32803287

32813288
fstims1 = [Fs/4, Fs/5, Fs/11]
32823289
fstims2 = [Fs/4.7, Fs/5.6, Fs/11.9]
32833290

3284-
NFFT = int(1000 * Fs / min(fstims1 + fstims2))
3291+
NFFT = int(10 * Fs / min(fstims1 + fstims2))
32853292
noverlap = int(NFFT / 2)
32863293
pad_to = int(2 ** np.ceil(np.log2(NFFT)))
32873294

@@ -3327,15 +3334,16 @@ def test_specgram_freqs_phase():
33273334

33283335

33293336
@image_comparison(baseline_images=['specgram_phase_noise'],
3330-
remove_text=True, extensions=['png'])
3337+
remove_text=True, extensions=['png'],
3338+
style='default')
33313339
def test_specgram_noise_phase():
33323340
'''test axes.specgram in phase mode with noise stimuli'''
33333341
np.random.seed(0)
33343342

3335-
n = 10000
3336-
Fs = 100.
3343+
n = 1000
3344+
Fs = 10.
33373345

3338-
NFFT = int(1000 * Fs / 11)
3346+
NFFT = int(10 * Fs / 11)
33393347
noverlap = int(NFFT / 2)
33403348
pad_to = int(2 ** np.ceil(np.log2(NFFT)))
33413349

0 commit comments

Comments
 (0)