Skip to content

Commit f1a1d60

Browse files
committed
finally got docs compiling
1 parent 3394535 commit f1a1d60

File tree

1 file changed

+17
-11
lines changed

1 file changed

+17
-11
lines changed

lib/matplotlib/bezier.py

+17-11
Original file line numberDiff line numberDiff line change
@@ -290,37 +290,43 @@ def arc_area(self):
290290
&\hspace{1em}- \left( \sum_{j=0}^n P_j^{(1)} b_{j,n} \right)
291291
\left( n \sum_{k=0}^{n-1} (P_{k+1}^{(0)} -
292292
P_{k}^{(0)}) b_{j,n} \right)
293-
dt
293+
dt,
294294
295-
Where :math:`b_{\nu, n}(t) = {n \choose \nu} t^\nu {(1 - t)}^{n-\nu}`
295+
where :math:`b_{\nu, n}(t) = {n \choose \nu} t^\nu {(1 - t)}^{n-\nu}`
296296
is the :math:`\nu`'th Bernstein polynomial of degree :math:`n`.
297297
298298
Grouping :math:`t^l(1-t)^m` terms together for each :math:`l`,
299299
:math:`m`, we get that the integrand becomes
300300
301301
.. math::
302302
303-
&\sum_{j=0}^n \sum_{k=0}^{n-1}
303+
\sum_{j=0}^n \sum_{k=0}^{n-1}
304304
{n \choose j} {{n - 1} \choose k}
305-
[P_j^{(0)} (P_{k+1}^{(1)} - P_{k}^{(1)})
306-
- P_j^{(1)} (P_{k+1}^{(0)} - P_{k}^{(0)})]
307-
t^{j + k} {(1 - t)}^{2n - 1 - j - k}
308-
\\
309-
&= \sum_{j=0}^n \sum_{k=0}^{n-1}
305+
&\left[P_j^{(0)} (P_{k+1}^{(1)} - P_{k}^{(1)})
306+
- P_j^{(1)} (P_{k+1}^{(0)} - P_{k}^{(0)})\right] \\
307+
&\hspace{1em}\times{}t^{j + k} {(1 - t)}^{2n - 1 - j - k}
308+
309+
or just
310+
311+
.. math::
312+
313+
\sum_{j=0}^n \sum_{k=0}^{n-1}
310314
\frac{{n \choose j} {{n - 1} \choose k}}
311315
{{{2n - 1} \choose {j+k}}}
312316
[P_j^{(0)} (P_{k+1}^{(1)} - P_{k}^{(1)})
313317
- P_j^{(1)} (P_{k+1}^{(0)} - P_{k}^{(0)})]
314-
b_{j+k,2n-1}(t)
318+
b_{j+k,2n-1}(t).
315319
316320
Interchanging sum and integral, and using the fact that :math:`\int_0^1
317321
b_{\nu, n}(t) dt = \frac{1}{n + 1}`, we conclude that the
318-
original integral (:math:`\frac{1}{2}\int_0^1 B(t) \cdot n(t) dt`) can
322+
original integral can
319323
simply be written as
320324
321325
.. math::
322326
323-
\frac{1}{4}\sum_{j=0}^n \sum_{k=0}^{n-1}
327+
\frac{1}{2}&\int_0^1 B(t) \cdot n(t) dt
328+
\\
329+
&= \frac{1}{4}\sum_{j=0}^n \sum_{k=0}^{n-1}
324330
\frac{{n \choose j} {{n - 1} \choose k}}
325331
{{{2n - 1} \choose {j+k}}}
326332
[P_j^{(0)} (P_{k+1}^{(1)} - P_{k}^{(1)})

0 commit comments

Comments
 (0)