diff --git a/examples/pylab_examples/axes_demo.py b/examples/pylab_examples/axes_demo.py index fc3ec16227a7..9bb9c047bf9d 100644 --- a/examples/pylab_examples/axes_demo.py +++ b/examples/pylab_examples/axes_demo.py @@ -1,32 +1,34 @@ #!/usr/bin/env python -from pylab import * +import matplotlib.pyplot as plt +import numpy as np +import scipy as sp # create some data to use for the plot dt = 0.001 -t = arange(0.0, 10.0, dt) -r = exp(-t[:1000]/0.05) # impulse response -x = randn(len(t)) -s = convolve(x, r)[:len(x)]*dt # colored noise +t = np.arange(0.0, 10.0, dt) +r = np.exp(-t[:1000]/0.05) # impulse response +x = sp.randn(len(t)) +s = np.convolve(x, r)[:len(x)]*dt # colored noise # the main axes is subplot(111) by default -plot(t, s) -axis([0, 1, 1.1*amin(s), 2*amax(s)]) -xlabel('time (s)') -ylabel('current (nA)') -title('Gaussian colored noise') +plt.plot(t, s) +plt.axis([0, 1, 1.1*np.amin(s), 2*np.amax(s)]) +plt.xlabel('time (s)') +plt.ylabel('current (nA)') +plt.title('Gaussian colored noise') # this is an inset axes over the main axes -a = axes([.65, .6, .2, .2], axisbg='y') -n, bins, patches = hist(s, 400, normed=1) -title('Probability') -setp(a, xticks=[], yticks=[]) +a = plt.axes([.65, .6, .2, .2], axisbg='y') +n, bins, patches = plt.hist(s, 400, normed=1) +plt.title('Probability') +plt.setp(a, xticks=[], yticks=[]) # this is another inset axes over the main axes -a = axes([0.2, 0.6, .2, .2], axisbg='y') -plot(t[:len(r)], r) -title('Impulse response') -setp(a, xlim=(0, .2), xticks=[], yticks=[]) +a = plt.axes([0.2, 0.6, .2, .2], axisbg='y') +plt.plot(t[:len(r)], r) +plt.title('Impulse response') +plt.setp(a, xlim=(0, .2), xticks=[], yticks=[]) -show() +plt.show()