diff --git a/examples/images_contours_and_fields/interpolation_none_vs_nearest.py b/examples/images_contours_and_fields/interpolation_none_vs_nearest.py deleted file mode 100644 index 487b4017471d..000000000000 --- a/examples/images_contours_and_fields/interpolation_none_vs_nearest.py +++ /dev/null @@ -1,62 +0,0 @@ -""" -Displays the difference between interpolation = 'none' and -interpolation = 'nearest'. - -Interpolation = 'none' and interpolation = 'nearest' are equivalent when -converting a figure to an image file, such as a PNG. -Interpolation = 'none' and interpolation = 'nearest' behave quite -differently, however, when converting a figure to a vector graphics file, -such as a PDF. As shown, Interpolation = 'none' works well when a big -image is scaled down, while interpolation = 'nearest' works well when a -small image is blown up. -""" - -import numpy as np -import matplotlib.pyplot as plt -import matplotlib.cbook as cbook - -# Load big image -big_im_path = cbook.get_sample_data('necked_tensile_specimen.png') -big_im = plt.imread(big_im_path) -# Define small image -small_im = np.array([[0.25, 0.75, 1.0, 0.75], [0.1, 0.65, 0.5, 0.4], - [0.6, 0.3, 0.0, 0.2], [0.7, 0.9, 0.4, 0.6]]) - -# Create a 2x2 table of plots -fig, axes = plt.subplots(figsize=[8.0, 7.5], ncols=2, nrows=2) - -axes[0, 0].imshow(big_im, interpolation='none') -axes[0, 1].imshow(big_im, interpolation='nearest') -axes[1, 0].imshow(small_im, interpolation='none') -axes[1, 1].imshow(small_im, interpolation='nearest') -fig.subplots_adjust(left=0.24, wspace=0.2, hspace=0.1, - bottom=0.05, top=0.86) - -# Label the rows and columns of the table -fig.text(0.03, 0.645, 'Big Image\nScaled Down', ha='left') -fig.text(0.03, 0.225, 'Small Image\nBlown Up', ha='left') -fig.text(0.383, 0.90, "Interpolation = 'none'", ha='center') -fig.text(0.75, 0.90, "Interpolation = 'nearest'", ha='center') - -# If you were going to run this example on your local machine, you -# would save the figure as a PNG, save the same figure as a PDF, and -# then compare them. The following code would suffice. -txt = fig.text(0.452, 0.95, 'Saved as a PNG', fontsize=18) -# plt.savefig('None_vs_nearest-png.png') -# txt.set_text('Saved as a PDF') -# plt.savefig('None_vs_nearest-pdf.pdf') - -# Here, however, we need to display the PDF on a webpage, which means -# the PDF must be converted into an image. For the purposes of this -# example, the 'Nearest_vs_none-pdf.pdf' has been pre-converted into -#'Nearest_vs_none-pdf.png' at 80 dpi. We simply need to load and -# display it. -# The conversion is done with: -# gs -dNOPAUSE -dBATCH -dDOINTERPOLATE -sDEVICE=pngalpha \ -# -sOutputFile=None_vs_nearest-pdf.png -r80 None_vs_nearest-pdf.pdf -pdf_im_path = cbook.get_sample_data('None_vs_nearest-pdf.png') -pdf_im = plt.imread(pdf_im_path) -fig2 = plt.figure(figsize=[8.0, 7.5]) -fig2.figimage(pdf_im) - -plt.show() diff --git a/lib/matplotlib/mpl-data/sample_data/necked_tensile_specimen.png b/lib/matplotlib/mpl-data/sample_data/necked_tensile_specimen.png deleted file mode 100644 index 31a2250423ca..000000000000 Binary files a/lib/matplotlib/mpl-data/sample_data/necked_tensile_specimen.png and /dev/null differ