Skip to content

Commit 15361a3

Browse files
committed
added README.md sample output
1 parent 9a4540c commit 15361a3

File tree

1 file changed

+173
-0
lines changed

1 file changed

+173
-0
lines changed

language/api/README.md

Lines changed: 173 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,173 @@
1+
2+
# Google Cloud Natural Language API Sample
3+
4+
This Python sample demonstrates the use of the [Google Cloud Natural Language API][NL-Docs]
5+
for sentiment, entity, and syntax analysis.
6+
7+
[NL-Docs]: https://cloud.google.com/natural-language/docs/
8+
9+
## Setup
10+
11+
Please follow the [Set Up Your Project](https://cloud.google.com/natural-language/docs/getting-started#set_up_your_project)
12+
steps in the Quickstart doc to create a project and enable the
13+
Cloud Natural Language API. Following those steps, make sure that you
14+
[Set Up a Service Account](https://cloud.google.com/natural-language/docs/common/auth#set_up_a_service_account),
15+
and export the following environment variable:
16+
17+
```
18+
export GOOGLE_APPLICATION_CREDENTIALS=/path/to/your-project-credentials.json
19+
```
20+
21+
## Run the sample
22+
23+
Install [pip](https://pip.pypa.io/en/stable/installing) if not already installed.
24+
25+
To run the example, install the necessary libraries using pip:
26+
27+
```sh
28+
$ pip install -r requirements.txt
29+
```
30+
31+
Then, run the script:
32+
33+
```sh
34+
$ python analyze.py <command> <text-string>
35+
```
36+
37+
where `<command>` is one of: `entities`, `sentiment`, or `syntax`.
38+
39+
The script will write to STDOUT the json returned from the API for the requested feature.
40+
41+
* Example1:
42+
43+
```sh
44+
$ python analyze.py entities "Tom Sawyer is a book written by a guy known as Mark Twain."
45+
```
46+
47+
You will see something like the following returned:
48+
49+
```
50+
{
51+
"entities": [
52+
{
53+
"salience": 0.50827783,
54+
"mentions": [
55+
{
56+
"text": {
57+
"content": "Tom Sawyer",
58+
"beginOffset": 0
59+
},
60+
"type": "PROPER"
61+
}
62+
],
63+
"type": "PERSON",
64+
"name": "Tom Sawyer",
65+
"metadata": {
66+
"mid": "/m/01b6vv",
67+
"wikipedia_url": "http://en.wikipedia.org/wiki/The_Adventures_of_Tom_Sawyer"
68+
}
69+
},
70+
{
71+
"salience": 0.22226454,
72+
"mentions": [
73+
{
74+
"text": {
75+
"content": "book",
76+
"beginOffset": 16
77+
},
78+
"type": "COMMON"
79+
}
80+
],
81+
"type": "WORK_OF_ART",
82+
"name": "book",
83+
"metadata": {}
84+
},
85+
{
86+
"salience": 0.18305534,
87+
"mentions": [
88+
{
89+
"text": {
90+
"content": "guy",
91+
"beginOffset": 34
92+
},
93+
"type": "COMMON"
94+
}
95+
],
96+
"type": "PERSON",
97+
"name": "guy",
98+
"metadata": {}
99+
},
100+
{
101+
"salience": 0.086402282,
102+
"mentions": [
103+
{
104+
"text": {
105+
"content": "Mark Twain",
106+
"beginOffset": 47
107+
},
108+
"type": "PROPER"
109+
}
110+
],
111+
"type": "PERSON",
112+
"name": "Mark Twain",
113+
"metadata": {
114+
"mid": "/m/014635",
115+
"wikipedia_url": "http://en.wikipedia.org/wiki/Mark_Twain"
116+
}
117+
}
118+
],
119+
"language": "en"
120+
}
121+
```
122+
123+
* Example2:
124+
125+
```sh
126+
$ python analyze.py entities "Apple has launched new iPhone."
127+
```
128+
129+
You will see something like the following returned:
130+
131+
```
132+
{
133+
"entities": [
134+
{
135+
"salience": 0.72550339,
136+
"mentions": [
137+
{
138+
"text": {
139+
"content": "Apple",
140+
"beginOffset": 0
141+
},
142+
"type": "PROPER"
143+
}
144+
],
145+
"type": "ORGANIZATION",
146+
"name": "Apple",
147+
"metadata": {
148+
"mid": "/m/0k8z",
149+
"wikipedia_url": "http://en.wikipedia.org/wiki/Apple_Inc."
150+
}
151+
},
152+
{
153+
"salience": 0.27449661,
154+
"mentions": [
155+
{
156+
"text": {
157+
"content": "iPhone",
158+
"beginOffset": 23
159+
},
160+
"type": "PROPER"
161+
}
162+
],
163+
"type": "CONSUMER_GOOD",
164+
"name": "iPhone",
165+
"metadata": {
166+
"mid": "/m/027lnzs",
167+
"wikipedia_url": "http://en.wikipedia.org/wiki/IPhone"
168+
}
169+
}
170+
],
171+
"language": "en"
172+
}
173+
```

0 commit comments

Comments
 (0)