diff --git a/README.md b/README.md index 80f84cb..097ffe8 100644 --- a/README.md +++ b/README.md @@ -101,7 +101,7 @@ _General-purpose machine learning and deep learning frameworks._
Tensorflow (πŸ₯‡56 Β· ⭐ 190K) - An Open Source Machine Learning Framework for Everyone. Apache-2 -- [GitHub](https://github.com/tensorflow/tensorflow) (πŸ‘¨β€πŸ’» 4.8K Β· πŸ”€ 75K Β· πŸ“¦ 500K Β· πŸ“‹ 47K - 15% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/tensorflow/tensorflow) (πŸ‘¨β€πŸ’» 4.8K Β· πŸ”€ 75K Β· πŸ“¦ 500K Β· πŸ“‹ 47K - 15% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/tensorflow/tensorflow @@ -110,23 +110,23 @@ _General-purpose machine learning and deep learning frameworks._ ``` pip install tensorflow ``` -- [Conda](https://anaconda.org/conda-forge/tensorflow) (πŸ“₯ 5.5M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/tensorflow) (πŸ“₯ 5.5M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge tensorflow ``` -- [Docker Hub](https://hub.docker.com/r/tensorflow/tensorflow) (πŸ“₯ 80M Β· ⭐ 2.7K Β· ⏱️ 17.04.2025): +- [Docker Hub](https://hub.docker.com/r/tensorflow/tensorflow) (πŸ“₯ 80M Β· ⭐ 2.7K Β· ⏱️ 24.04.2025): ``` docker pull tensorflow/tensorflow ```
PyTorch (πŸ₯‡55 Β· ⭐ 89K) - Tensors and Dynamic neural networks in Python with strong GPU.. BSD-3 -- [GitHub](https://github.com/pytorch/pytorch) (πŸ‘¨β€πŸ’» 5.5K Β· πŸ”€ 24K Β· πŸ“₯ 84K Β· πŸ“¦ 720K Β· πŸ“‹ 52K - 31% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/pytorch/pytorch) (πŸ‘¨β€πŸ’» 5.6K Β· πŸ”€ 24K Β· πŸ“₯ 85K Β· πŸ“¦ 730K Β· πŸ“‹ 52K - 31% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/pytorch/pytorch ``` -- [PyPi](https://pypi.org/project/torch) (πŸ“₯ 45M / month Β· πŸ“¦ 24K Β· ⏱️ 29.01.2025): +- [PyPi](https://pypi.org/project/torch) (πŸ“₯ 48M / month Β· πŸ“¦ 24K Β· ⏱️ 23.04.2025): ``` pip install torch ``` @@ -137,23 +137,23 @@ _General-purpose machine learning and deep learning frameworks._
scikit-learn (πŸ₯‡53 Β· ⭐ 62K) - scikit-learn: machine learning in Python. BSD-3 -- [GitHub](https://github.com/scikit-learn/scikit-learn) (πŸ‘¨β€πŸ’» 3.3K Β· πŸ”€ 26K Β· πŸ“₯ 1.1K Β· πŸ“¦ 1.2M Β· πŸ“‹ 12K - 17% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/scikit-learn/scikit-learn) (πŸ‘¨β€πŸ’» 3.3K Β· πŸ”€ 26K Β· πŸ“₯ 1.1K Β· πŸ“¦ 1.2M Β· πŸ“‹ 12K - 17% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/scikit-learn/scikit-learn ``` -- [PyPi](https://pypi.org/project/scikit-learn) (πŸ“₯ 91M / month Β· πŸ“¦ 27K Β· ⏱️ 10.01.2025): +- [PyPi](https://pypi.org/project/scikit-learn) (πŸ“₯ 93M / month Β· πŸ“¦ 30K Β· ⏱️ 10.01.2025): ``` pip install scikit-learn ``` -- [Conda](https://anaconda.org/conda-forge/scikit-learn) (πŸ“₯ 35M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/scikit-learn) (πŸ“₯ 36M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge scikit-learn ```
Keras (πŸ₯‡47 Β· ⭐ 63K) - Deep Learning for humans. Apache-2 -- [GitHub](https://github.com/keras-team/keras) (πŸ‘¨β€πŸ’» 1.4K Β· πŸ”€ 20K Β· πŸ“‹ 12K - 2% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/keras-team/keras) (πŸ‘¨β€πŸ’» 1.4K Β· πŸ”€ 20K Β· πŸ“‹ 12K - 2% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/keras-team/keras @@ -162,14 +162,14 @@ _General-purpose machine learning and deep learning frameworks._ ``` pip install keras ``` -- [Conda](https://anaconda.org/conda-forge/keras) (πŸ“₯ 4M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/keras) (πŸ“₯ 4.1M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge keras ```
XGBoost (πŸ₯‡46 Β· ⭐ 27K) - Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or.. Apache-2 -- [GitHub](https://github.com/dmlc/xgboost) (πŸ‘¨β€πŸ’» 660 Β· πŸ”€ 8.8K Β· πŸ“₯ 16K Β· πŸ“¦ 150K Β· πŸ“‹ 5.5K - 8% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/dmlc/xgboost) (πŸ‘¨β€πŸ’» 660 Β· πŸ”€ 8.8K Β· πŸ“₯ 16K Β· πŸ“¦ 150K Β· πŸ“‹ 5.5K - 8% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/dmlc/xgboost @@ -178,90 +178,102 @@ _General-purpose machine learning and deep learning frameworks._ ``` pip install xgboost ``` -- [Conda](https://anaconda.org/conda-forge/xgboost) (πŸ“₯ 6M Β· ⏱️ 11.04.2025): +- [Conda](https://anaconda.org/conda-forge/xgboost) (πŸ“₯ 6M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge xgboost ```
-
PySpark (πŸ₯‡45 Β· ⭐ 41K) - Apache Spark Python API. Apache-2 +
jax (πŸ₯‡45 Β· ⭐ 32K) - Composable transformations of Python+NumPy programs: differentiate,.. Apache-2 -- [GitHub](https://github.com/apache/spark) (πŸ‘¨β€πŸ’» 3.2K Β· πŸ”€ 28K Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/jax-ml/jax) (πŸ‘¨β€πŸ’» 860 Β· πŸ”€ 3K Β· πŸ“¦ 42K Β· πŸ“‹ 6.1K - 24% open Β· ⏱️ 24.04.2025): ``` - git clone https://github.com/apache/spark + git clone https://github.com/google/jax ``` -- [PyPi](https://pypi.org/project/pyspark) (πŸ“₯ 40M / month Β· πŸ“¦ 1.8K Β· ⏱️ 27.02.2025): +- [PyPi](https://pypi.org/project/jax) (πŸ“₯ 8.4M / month Β· πŸ“¦ 2.4K Β· ⏱️ 17.04.2025): ``` - pip install pyspark + pip install jax ``` -- [Conda](https://anaconda.org/conda-forge/pyspark) (πŸ“₯ 3.8M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/jaxlib) (πŸ“₯ 2.5M Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge pyspark + conda install -c conda-forge jaxlib ```
-
jax (πŸ₯‡45 Β· ⭐ 32K Β· πŸ“‰) - Composable transformations of Python+NumPy programs: differentiate,.. Apache-2 +
PaddlePaddle (πŸ₯‡45 Β· ⭐ 23K) - PArallel Distributed Deep LEarning: Machine Learning.. Apache-2 -- [GitHub](https://github.com/jax-ml/jax) (πŸ‘¨β€πŸ’» 860 Β· πŸ”€ 3K Β· πŸ“¦ 41K Β· πŸ“‹ 6.1K - 24% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/PaddlePaddle/Paddle) (πŸ‘¨β€πŸ’» 1.4K Β· πŸ”€ 5.7K Β· πŸ“₯ 15K Β· πŸ“¦ 7.8K Β· πŸ“‹ 19K - 9% open Β· ⏱️ 24.04.2025): ``` - git clone https://github.com/google/jax - ``` -- [PyPi](https://pypi.org/project/jax) (πŸ“₯ 8.8M / month Β· πŸ“¦ 2.4K Β· ⏱️ 17.04.2025): - ``` - pip install jax + git clone https://github.com/PaddlePaddle/Paddle ``` -- [Conda](https://anaconda.org/conda-forge/jaxlib) (πŸ“₯ 2.5M Β· ⏱️ 25.03.2025): +- [PyPi](https://pypi.org/project/paddlepaddle) (πŸ“₯ 400K / month Β· πŸ“¦ 230 Β· ⏱️ 26.03.2025): ``` - conda install -c conda-forge jaxlib + pip install paddlepaddle ```
-
PaddlePaddle (πŸ₯‡45 Β· ⭐ 23K) - PArallel Distributed Deep LEarning: Machine Learning.. Apache-2 +
PySpark (πŸ₯ˆ44 Β· ⭐ 41K Β· πŸ“‰) - Apache Spark Python API. Apache-2 -- [GitHub](https://github.com/PaddlePaddle/Paddle) (πŸ‘¨β€πŸ’» 1.4K Β· πŸ”€ 5.7K Β· πŸ“₯ 15K Β· πŸ“¦ 7.7K Β· πŸ“‹ 19K - 9% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/apache/spark) (πŸ‘¨β€πŸ’» 3.2K Β· πŸ”€ 28K Β· ⏱️ 24.04.2025): ``` - git clone https://github.com/PaddlePaddle/Paddle + git clone https://github.com/apache/spark ``` -- [PyPi](https://pypi.org/project/paddlepaddle) (πŸ“₯ 410K / month Β· πŸ“¦ 230 Β· ⏱️ 26.03.2025): +- [PyPi](https://pypi.org/project/pyspark) (πŸ“₯ 42M / month Β· πŸ“¦ 1.8K Β· ⏱️ 27.02.2025): ``` - pip install paddlepaddle + pip install pyspark + ``` +- [Conda](https://anaconda.org/conda-forge/pyspark) (πŸ“₯ 3.8M Β· ⏱️ 22.04.2025): + ``` + conda install -c conda-forge pyspark ```
pytorch-lightning (πŸ₯ˆ44 Β· ⭐ 29K) - Pretrain, finetune ANY AI model of ANY size on.. Apache-2 -- [GitHub](https://github.com/Lightning-AI/pytorch-lightning) (πŸ‘¨β€πŸ’» 1K Β· πŸ”€ 3.5K Β· πŸ“₯ 12K Β· πŸ“¦ 45K Β· πŸ“‹ 7.3K - 12% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/Lightning-AI/pytorch-lightning) (πŸ‘¨β€πŸ’» 1K Β· πŸ”€ 3.5K Β· πŸ“₯ 12K Β· πŸ“¦ 45K Β· πŸ“‹ 7.3K - 12% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/Lightning-AI/lightning ``` -- [PyPi](https://pypi.org/project/pytorch-lightning) (πŸ“₯ 8M / month Β· πŸ“¦ 1.6K Β· ⏱️ 19.03.2025): +- [PyPi](https://pypi.org/project/pytorch-lightning) (πŸ“₯ 8.3M / month Β· πŸ“¦ 1.6K Β· ⏱️ 19.03.2025): ``` pip install pytorch-lightning ``` -- [Conda](https://anaconda.org/conda-forge/pytorch-lightning) (πŸ“₯ 1.5M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pytorch-lightning) (πŸ“₯ 1.5M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pytorch-lightning ```
StatsModels (πŸ₯ˆ44 Β· ⭐ 11K) - Statsmodels: statistical modeling and econometrics in Python. BSD-3 -- [GitHub](https://github.com/statsmodels/statsmodels) (πŸ‘¨β€πŸ’» 450 Β· πŸ”€ 3.1K Β· πŸ“₯ 35 Β· πŸ“¦ 160K Β· πŸ“‹ 5.7K - 50% open Β· ⏱️ 02.04.2025): +- [GitHub](https://github.com/statsmodels/statsmodels) (πŸ‘¨β€πŸ’» 450 Β· πŸ”€ 3.1K Β· πŸ“₯ 35 Β· πŸ“¦ 170K Β· πŸ“‹ 5.7K - 50% open Β· ⏱️ 02.04.2025): ``` git clone https://github.com/statsmodels/statsmodels ``` -- [PyPi](https://pypi.org/project/statsmodels) (πŸ“₯ 16M / month Β· πŸ“¦ 4.5K Β· ⏱️ 03.10.2024): +- [PyPi](https://pypi.org/project/statsmodels) (πŸ“₯ 17M / month Β· πŸ“¦ 4.5K Β· ⏱️ 03.10.2024): ``` pip install statsmodels ``` -- [Conda](https://anaconda.org/conda-forge/statsmodels) (πŸ“₯ 18M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/statsmodels) (πŸ“₯ 19M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge statsmodels ```
+
Fastai (πŸ₯ˆ42 Β· ⭐ 27K Β· πŸ“ˆ) - The fastai deep learning library. Apache-2 + +- [GitHub](https://github.com/fastai/fastai) (πŸ‘¨β€πŸ’» 670 Β· πŸ”€ 7.6K Β· πŸ“¦ 22K Β· πŸ“‹ 1.8K - 13% open Β· ⏱️ 19.04.2025): + + ``` + git clone https://github.com/fastai/fastai + ``` +- [PyPi](https://pypi.org/project/fastai) (πŸ“₯ 500K / month Β· πŸ“¦ 330 Β· ⏱️ 18.04.2025): + ``` + pip install fastai + ``` +
LightGBM (πŸ₯ˆ42 Β· ⭐ 17K) - A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT,.. MIT -- [GitHub](https://github.com/microsoft/LightGBM) (πŸ‘¨β€πŸ’» 330 Β· πŸ”€ 3.9K Β· πŸ“₯ 290K Β· πŸ“¦ 49K Β· πŸ“‹ 3.5K - 11% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/microsoft/LightGBM) (πŸ‘¨β€πŸ’» 330 Β· πŸ”€ 3.9K Β· πŸ“₯ 290K Β· πŸ“¦ 50K Β· πŸ“‹ 3.5K - 11% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/microsoft/LightGBM @@ -270,75 +282,63 @@ _General-purpose machine learning and deep learning frameworks._ ``` pip install lightgbm ``` -- [Conda](https://anaconda.org/conda-forge/lightgbm) (πŸ“₯ 3.4M Β· ⏱️ 26.03.2025): +- [Conda](https://anaconda.org/conda-forge/lightgbm) (πŸ“₯ 3.4M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge lightgbm ```
-
Catboost (πŸ₯ˆ42 Β· ⭐ 8.4K Β· πŸ“ˆ) - A fast, scalable, high performance Gradient Boosting on.. Apache-2 +
Catboost (πŸ₯ˆ42 Β· ⭐ 8.4K) - A fast, scalable, high performance Gradient Boosting on Decision.. Apache-2 -- [GitHub](https://github.com/catboost/catboost) (πŸ‘¨β€πŸ’» 1.3K Β· πŸ”€ 1.2K Β· πŸ“₯ 380K Β· πŸ“¦ 16 Β· πŸ“‹ 2.4K - 25% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/catboost/catboost) (πŸ‘¨β€πŸ’» 1.3K Β· πŸ”€ 1.2K Β· πŸ“₯ 380K Β· πŸ“¦ 16 Β· πŸ“‹ 2.4K - 25% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/catboost/catboost ``` -- [PyPi](https://pypi.org/project/catboost) (πŸ“₯ 3M / month Β· πŸ“¦ 650 Β· ⏱️ 13.04.2025): +- [PyPi](https://pypi.org/project/catboost) (πŸ“₯ 2.9M / month Β· πŸ“¦ 650 Β· ⏱️ 13.04.2025): ``` pip install catboost ``` -- [Conda](https://anaconda.org/conda-forge/catboost) (πŸ“₯ 2M Β· ⏱️ 16.04.2025): +- [Conda](https://anaconda.org/conda-forge/catboost) (πŸ“₯ 2M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge catboost ```
-
Fastai (πŸ₯ˆ41 Β· ⭐ 27K) - The fastai deep learning library. Apache-2 - -- [GitHub](https://github.com/fastai/fastai) (πŸ‘¨β€πŸ’» 670 Β· πŸ”€ 7.6K Β· πŸ“¦ 22K Β· πŸ“‹ 1.8K - 13% open Β· ⏱️ 08.04.2025): - - ``` - git clone https://github.com/fastai/fastai - ``` -- [PyPi](https://pypi.org/project/fastai) (πŸ“₯ 470K / month Β· πŸ“¦ 320 Β· ⏱️ 18.03.2025): - ``` - pip install fastai - ``` -
PyFlink (πŸ₯ˆ40 Β· ⭐ 25K) - Apache Flink Python API. Apache-2 -- [GitHub](https://github.com/apache/flink) (πŸ‘¨β€πŸ’» 2K Β· πŸ”€ 13K Β· πŸ“¦ 21 Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/apache/flink) (πŸ‘¨β€πŸ’» 2K Β· πŸ”€ 13K Β· πŸ“¦ 21 Β· ⏱️ 24.04.2025): ``` git clone https://github.com/apache/flink ``` -- [PyPi](https://pypi.org/project/apache-flink) (πŸ“₯ 3.4M / month Β· πŸ“¦ 35 Β· ⏱️ 12.02.2025): +- [PyPi](https://pypi.org/project/apache-flink) (πŸ“₯ 5.5M / month Β· πŸ“¦ 35 Β· ⏱️ 12.02.2025): ``` pip install apache-flink ```
Flax (πŸ₯ˆ37 Β· ⭐ 6.5K) - Flax is a neural network library for JAX that is designed for.. Apache-2 -- [GitHub](https://github.com/google/flax) (πŸ‘¨β€πŸ’» 260 Β· πŸ”€ 680 Β· πŸ“₯ 60 Β· πŸ“¦ 13K Β· πŸ“‹ 1.2K - 32% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/google/flax) (πŸ‘¨β€πŸ’» 260 Β· πŸ”€ 690 Β· πŸ“₯ 60 Β· πŸ“¦ 14K Β· πŸ“‹ 1.2K - 33% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/google/flax ``` -- [PyPi](https://pypi.org/project/flax) (πŸ“₯ 1.5M / month Β· πŸ“¦ 590 Β· ⏱️ 31.03.2025): +- [PyPi](https://pypi.org/project/flax) (πŸ“₯ 1.6M / month Β· πŸ“¦ 610 Β· ⏱️ 23.04.2025): ``` pip install flax ``` -- [Conda](https://anaconda.org/conda-forge/flax) (πŸ“₯ 96K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/flax) (πŸ“₯ 97K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge flax ```
-
Ignite (πŸ₯ˆ37 Β· ⭐ 4.6K Β· πŸ“ˆ) - High-level library to help with training and evaluating neural.. BSD-3 +
Ignite (πŸ₯ˆ37 Β· ⭐ 4.7K) - High-level library to help with training and evaluating neural.. BSD-3 -- [GitHub](https://github.com/pytorch/ignite) (πŸ‘¨β€πŸ’» 830 Β· πŸ”€ 650 Β· πŸ“¦ 3.7K Β· πŸ“‹ 1.4K - 11% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/pytorch/ignite) (πŸ‘¨β€πŸ’» 840 Β· πŸ”€ 650 Β· πŸ“¦ 3.7K Β· πŸ“‹ 1.4K - 11% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/pytorch/ignite ``` -- [PyPi](https://pypi.org/project/pytorch-ignite) (πŸ“₯ 170K / month Β· πŸ“¦ 110 Β· ⏱️ 17.04.2025): +- [PyPi](https://pypi.org/project/pytorch-ignite) (πŸ“₯ 180K / month Β· πŸ“¦ 110 Β· ⏱️ 24.04.2025): ``` pip install pytorch-ignite ``` @@ -349,16 +349,16 @@ _General-purpose machine learning and deep learning frameworks._
einops (πŸ₯ˆ36 Β· ⭐ 8.9K) - Flexible and powerful tensor operations for readable and reliable code.. MIT -- [GitHub](https://github.com/arogozhnikov/einops) (πŸ‘¨β€πŸ’» 33 Β· πŸ”€ 360 Β· πŸ“¦ 70K Β· πŸ“‹ 190 - 18% open Β· ⏱️ 09.02.2025): +- [GitHub](https://github.com/arogozhnikov/einops) (πŸ‘¨β€πŸ’» 33 Β· πŸ”€ 360 Β· πŸ“¦ 71K Β· πŸ“‹ 200 - 18% open Β· ⏱️ 09.02.2025): ``` git clone https://github.com/arogozhnikov/einops ``` -- [PyPi](https://pypi.org/project/einops) (πŸ“₯ 9.3M / month Β· πŸ“¦ 2.6K Β· ⏱️ 09.02.2025): +- [PyPi](https://pypi.org/project/einops) (πŸ“₯ 9.4M / month Β· πŸ“¦ 2.6K Β· ⏱️ 09.02.2025): ``` pip install einops ``` -- [Conda](https://anaconda.org/conda-forge/einops) (πŸ“₯ 370K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/einops) (πŸ“₯ 370K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge einops ``` @@ -374,7 +374,7 @@ _General-purpose machine learning and deep learning frameworks._ ``` pip install jina ``` -- [Conda](https://anaconda.org/conda-forge/jina-core) (πŸ“₯ 92K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/jina-core) (πŸ“₯ 92K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge jina-core ``` @@ -383,62 +383,62 @@ _General-purpose machine learning and deep learning frameworks._ docker pull jinaai/jina ```
-
ivy (πŸ₯ˆ35 Β· ⭐ 14K Β· πŸ“‰) - Convert Machine Learning Code Between Frameworks. Apache-2 +
ivy (πŸ₯ˆ34 Β· ⭐ 14K) - Convert Machine Learning Code Between Frameworks. Apache-2 -- [GitHub](https://github.com/ivy-llc/ivy) (πŸ‘¨β€πŸ’» 1.5K Β· πŸ”€ 5.7K Β· πŸ“‹ 17K - 5% open Β· ⏱️ 21.02.2025): +- [GitHub](https://github.com/ivy-llc/ivy) (πŸ‘¨β€πŸ’» 1.5K Β· πŸ”€ 5.7K Β· πŸ“‹ 17K - 5% open Β· ⏱️ 19.04.2025): ``` git clone https://github.com/unifyai/ivy ``` -- [PyPi](https://pypi.org/project/ivy) (πŸ“₯ 28K / month Β· πŸ“¦ 16 Β· ⏱️ 21.02.2025): +- [PyPi](https://pypi.org/project/ivy) (πŸ“₯ 29K / month Β· πŸ“¦ 16 Β· ⏱️ 21.02.2025): ``` pip install ivy ```
-
Vowpal Wabbit (πŸ₯ˆ34 Β· ⭐ 8.6K Β· πŸ’€) - Vowpal Wabbit is a machine learning system which pushes the.. BSD-3 +
Thinc (πŸ₯ˆ34 Β· ⭐ 2.8K) - A refreshing functional take on deep learning, compatible with your favorite.. MIT -- [GitHub](https://github.com/VowpalWabbit/vowpal_wabbit) (πŸ‘¨β€πŸ’» 340 Β· πŸ”€ 1.9K Β· πŸ“¦ 2 Β· πŸ“‹ 1.3K - 10% open Β· ⏱️ 01.08.2024): +- [GitHub](https://github.com/explosion/thinc) (πŸ‘¨β€πŸ’» 67 Β· πŸ”€ 280 Β· πŸ“₯ 1.2K Β· πŸ“¦ 66K Β· πŸ“‹ 150 - 12% open Β· ⏱️ 07.03.2025): ``` - git clone https://github.com/VowpalWabbit/vowpal_wabbit + git clone https://github.com/explosion/thinc ``` -- [PyPi](https://pypi.org/project/vowpalwabbit) (πŸ“₯ 87K / month Β· πŸ“¦ 40 Β· ⏱️ 08.08.2024): +- [PyPi](https://pypi.org/project/thinc) (πŸ“₯ 17M / month Β· πŸ“¦ 160 Β· ⏱️ 04.04.2025): ``` - pip install vowpalwabbit + pip install thinc ``` -- [Conda](https://anaconda.org/conda-forge/vowpalwabbit) (πŸ“₯ 340K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/thinc) (πŸ“₯ 3.5M Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge vowpalwabbit + conda install -c conda-forge thinc ```
-
Thinc (πŸ₯ˆ34 Β· ⭐ 2.8K) - A refreshing functional take on deep learning, compatible with your favorite.. MIT +
Vowpal Wabbit (πŸ₯ˆ33 Β· ⭐ 8.6K Β· πŸ’€) - Vowpal Wabbit is a machine learning system which pushes the.. BSD-3 -- [GitHub](https://github.com/explosion/thinc) (πŸ‘¨β€πŸ’» 67 Β· πŸ”€ 280 Β· πŸ“₯ 1.2K Β· πŸ“¦ 65K Β· πŸ“‹ 150 - 12% open Β· ⏱️ 07.03.2025): +- [GitHub](https://github.com/VowpalWabbit/vowpal_wabbit) (πŸ‘¨β€πŸ’» 340 Β· πŸ”€ 1.9K Β· πŸ“¦ 2 Β· πŸ“‹ 1.3K - 10% open Β· ⏱️ 01.08.2024): ``` - git clone https://github.com/explosion/thinc + git clone https://github.com/VowpalWabbit/vowpal_wabbit ``` -- [PyPi](https://pypi.org/project/thinc) (πŸ“₯ 16M / month Β· πŸ“¦ 160 Β· ⏱️ 04.04.2025): +- [PyPi](https://pypi.org/project/vowpalwabbit) (πŸ“₯ 49K / month Β· πŸ“¦ 40 Β· ⏱️ 08.08.2024): ``` - pip install thinc + pip install vowpalwabbit ``` -- [Conda](https://anaconda.org/conda-forge/thinc) (πŸ“₯ 3.5M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/vowpalwabbit) (πŸ“₯ 350K Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge thinc + conda install -c conda-forge vowpalwabbit ```
-
mlpack (πŸ₯‰33 Β· ⭐ 5.3K) - mlpack: a fast, header-only C++ machine learning library. BSD-3 +
mlpack (πŸ₯ˆ33 Β· ⭐ 5.3K) - mlpack: a fast, header-only C++ machine learning library. BSD-3 -- [GitHub](https://github.com/mlpack/mlpack) (πŸ‘¨β€πŸ’» 330 Β· πŸ”€ 1.7K Β· πŸ“‹ 1.6K - 0% open Β· ⏱️ 14.04.2025): +- [GitHub](https://github.com/mlpack/mlpack) (πŸ‘¨β€πŸ’» 330 Β· πŸ”€ 1.7K Β· πŸ“‹ 1.6K - 0% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/mlpack/mlpack ``` -- [PyPi](https://pypi.org/project/mlpack) (πŸ“₯ 8.3K / month Β· πŸ“¦ 6 Β· ⏱️ 04.04.2025): +- [PyPi](https://pypi.org/project/mlpack) (πŸ“₯ 7.2K / month Β· πŸ“¦ 6 Β· ⏱️ 04.04.2025): ``` pip install mlpack ``` -- [Conda](https://anaconda.org/conda-forge/mlpack) (πŸ“₯ 350K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/mlpack) (πŸ“₯ 350K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge mlpack ``` @@ -450,7 +450,7 @@ _General-purpose machine learning and deep learning frameworks._ ``` git clone https://github.com/ludwig-ai/ludwig ``` -- [PyPi](https://pypi.org/project/ludwig) (πŸ“₯ 2.7K / month Β· πŸ“¦ 6 Β· ⏱️ 30.07.2024): +- [PyPi](https://pypi.org/project/ludwig) (πŸ“₯ 2.5K / month Β· πŸ“¦ 6 Β· ⏱️ 30.07.2024): ``` pip install ludwig ``` @@ -462,39 +462,55 @@ _General-purpose machine learning and deep learning frameworks._ ``` git clone https://github.com/deepmind/sonnet ``` -- [PyPi](https://pypi.org/project/dm-sonnet) (πŸ“₯ 23K / month Β· πŸ“¦ 19 Β· ⏱️ 02.01.2024): +- [PyPi](https://pypi.org/project/dm-sonnet) (πŸ“₯ 22K / month Β· πŸ“¦ 19 Β· ⏱️ 02.01.2024): ``` pip install dm-sonnet ``` -- [Conda](https://anaconda.org/conda-forge/sonnet) (πŸ“₯ 41K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/sonnet) (πŸ“₯ 41K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge sonnet ```
skorch (πŸ₯‰32 Β· ⭐ 6K) - A scikit-learn compatible neural network library that wraps.. BSD-3 -- [GitHub](https://github.com/skorch-dev/skorch) (πŸ‘¨β€πŸ’» 67 Β· πŸ”€ 390 Β· πŸ“¦ 1.6K Β· πŸ“‹ 540 - 12% open Β· ⏱️ 26.03.2025): +- [GitHub](https://github.com/skorch-dev/skorch) (πŸ‘¨β€πŸ’» 67 Β· πŸ”€ 390 Β· πŸ“¦ 1.6K Β· πŸ“‹ 540 - 12% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/skorch-dev/skorch ``` -- [PyPi](https://pypi.org/project/skorch) (πŸ“₯ 150K / month Β· πŸ“¦ 94 Β· ⏱️ 10.01.2025): +- [PyPi](https://pypi.org/project/skorch) (πŸ“₯ 130K / month Β· πŸ“¦ 94 Β· ⏱️ 10.01.2025): ``` pip install skorch ``` -- [Conda](https://anaconda.org/conda-forge/skorch) (πŸ“₯ 800K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/skorch) (πŸ“₯ 800K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge skorch ```
+
Haiku (πŸ₯‰31 Β· ⭐ 3K) - JAX-based neural network library. Apache-2 + +- [GitHub](https://github.com/google-deepmind/dm-haiku) (πŸ‘¨β€πŸ’» 85 Β· πŸ”€ 240 Β· πŸ“¦ 2.4K Β· πŸ“‹ 250 - 29% open Β· ⏱️ 22.04.2025): + + ``` + git clone https://github.com/deepmind/dm-haiku + ``` +- [PyPi](https://pypi.org/project/dm-haiku) (πŸ“₯ 190K / month Β· πŸ“¦ 190 Β· ⏱️ 22.04.2025): + ``` + pip install dm-haiku + ``` +- [Conda](https://anaconda.org/conda-forge/dm-haiku) (πŸ“₯ 32K Β· ⏱️ 23.04.2025): + ``` + conda install -c conda-forge dm-haiku + ``` +
tensorflow-upstream (πŸ₯‰31 Β· ⭐ 690) - TensorFlow ROCm port. Apache-2 -- [GitHub](https://github.com/ROCm/tensorflow-upstream) (πŸ‘¨β€πŸ’» 4.9K Β· πŸ”€ 99 Β· πŸ“₯ 28 Β· πŸ“‹ 390 - 4% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/ROCm/tensorflow-upstream) (πŸ‘¨β€πŸ’» 4.9K Β· πŸ”€ 99 Β· πŸ“₯ 29 Β· πŸ“‹ 390 - 4% open Β· ⏱️ 21.04.2025): ``` git clone https://github.com/ROCmSoftwarePlatform/tensorflow-upstream ``` -- [PyPi](https://pypi.org/project/tensorflow-rocm) (πŸ“₯ 6.5K / month Β· πŸ“¦ 9 Β· ⏱️ 10.01.2024): +- [PyPi](https://pypi.org/project/tensorflow-rocm) (πŸ“₯ 6.1K / month Β· πŸ“¦ 9 Β· ⏱️ 10.01.2024): ``` pip install tensorflow-rocm ``` @@ -511,22 +527,6 @@ _General-purpose machine learning and deep learning frameworks._ pip install determined ```
-
Haiku (πŸ₯‰30 Β· ⭐ 3K) - JAX-based neural network library. Apache-2 - -- [GitHub](https://github.com/google-deepmind/dm-haiku) (πŸ‘¨β€πŸ’» 85 Β· πŸ”€ 240 Β· πŸ“¦ 2.4K Β· πŸ“‹ 250 - 29% open Β· ⏱️ 10.04.2025): - - ``` - git clone https://github.com/deepmind/dm-haiku - ``` -- [PyPi](https://pypi.org/project/dm-haiku) (πŸ“₯ 190K / month Β· πŸ“¦ 180 Β· ⏱️ 16.10.2024): - ``` - pip install dm-haiku - ``` -- [Conda](https://anaconda.org/conda-forge/dm-haiku) (πŸ“₯ 32K Β· ⏱️ 25.03.2025): - ``` - conda install -c conda-forge dm-haiku - ``` -
Geomstats (πŸ₯‰29 Β· ⭐ 1.3K) - Computations and statistics on manifolds with geometric structures. MIT - [GitHub](https://github.com/geomstats/geomstats) (πŸ‘¨β€πŸ’» 95 Β· πŸ”€ 250 Β· πŸ“¦ 140 Β· πŸ“‹ 570 - 36% open Β· ⏱️ 28.02.2025): @@ -534,11 +534,11 @@ _General-purpose machine learning and deep learning frameworks._ ``` git clone https://github.com/geomstats/geomstats ``` -- [PyPi](https://pypi.org/project/geomstats) (πŸ“₯ 5.6K / month Β· πŸ“¦ 12 Β· ⏱️ 09.09.2024): +- [PyPi](https://pypi.org/project/geomstats) (πŸ“₯ 5.5K / month Β· πŸ“¦ 12 Β· ⏱️ 09.09.2024): ``` pip install geomstats ``` -- [Conda](https://anaconda.org/conda-forge/geomstats) (πŸ“₯ 6.1K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/geomstats) (πŸ“₯ 6.2K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge geomstats ``` @@ -555,30 +555,30 @@ _General-purpose machine learning and deep learning frameworks._ pip install nupic ```
-
ktrain (πŸ₯‰28 Β· ⭐ 1.3K Β· πŸ’€) - ktrain is a Python library that makes deep learning and AI.. Apache-2 +
ktrain (πŸ₯‰27 Β· ⭐ 1.3K Β· πŸ’€) - ktrain is a Python library that makes deep learning and AI.. Apache-2 - [GitHub](https://github.com/amaiya/ktrain) (πŸ‘¨β€πŸ’» 17 Β· πŸ”€ 270 Β· πŸ“¦ 570 Β· πŸ“‹ 500 - 0% open Β· ⏱️ 09.07.2024): ``` git clone https://github.com/amaiya/ktrain ``` -- [PyPi](https://pypi.org/project/ktrain) (πŸ“₯ 8.1K / month Β· πŸ“¦ 4 Β· ⏱️ 19.06.2024): +- [PyPi](https://pypi.org/project/ktrain) (πŸ“₯ 8K / month Β· πŸ“¦ 4 Β· ⏱️ 19.06.2024): ``` pip install ktrain ```
-
pyRiemann (πŸ₯‰27 Β· ⭐ 670) - Machine learning for multivariate data through the Riemannian.. BSD-3 +
pyRiemann (πŸ₯‰27 Β· ⭐ 680) - Machine learning for multivariate data through the Riemannian.. BSD-3 - [GitHub](https://github.com/pyRiemann/pyRiemann) (πŸ‘¨β€πŸ’» 37 Β· πŸ”€ 170 Β· πŸ“¦ 450 Β· πŸ“‹ 110 - 2% open Β· ⏱️ 17.04.2025): ``` git clone https://github.com/pyRiemann/pyRiemann ``` -- [PyPi](https://pypi.org/project/pyriemann) (πŸ“₯ 50K / month Β· πŸ“¦ 28 Β· ⏱️ 12.02.2025): +- [PyPi](https://pypi.org/project/pyriemann) (πŸ“₯ 53K / month Β· πŸ“¦ 28 Β· ⏱️ 12.02.2025): ``` pip install pyriemann ``` -- [Conda](https://anaconda.org/conda-forge/pyriemann) (πŸ“₯ 12K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pyriemann) (πŸ“₯ 12K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pyriemann ``` @@ -590,14 +590,14 @@ _General-purpose machine learning and deep learning frameworks._ ``` git clone https://github.com/sony/nnabla ``` -- [PyPi](https://pypi.org/project/nnabla) (πŸ“₯ 7K / month Β· πŸ“¦ 44 Β· ⏱️ 29.05.2024): +- [PyPi](https://pypi.org/project/nnabla) (πŸ“₯ 7.9K / month Β· πŸ“¦ 44 Β· ⏱️ 29.05.2024): ``` pip install nnabla ```
Towhee (πŸ₯‰24 Β· ⭐ 3.4K) - Towhee is a framework that is dedicated to making neural data.. Apache-2 -- [GitHub](https://github.com/towhee-io/towhee) (πŸ‘¨β€πŸ’» 38 Β· πŸ”€ 260 Β· πŸ“₯ 2.7K Β· πŸ“‹ 670 - 0% open Β· ⏱️ 18.10.2024): +- [GitHub](https://github.com/towhee-io/towhee) (πŸ‘¨β€πŸ’» 38 Β· πŸ”€ 260 Β· πŸ“₯ 2.7K Β· πŸ“‹ 680 - 0% open Β· ⏱️ 18.10.2024): ``` git clone https://github.com/towhee-io/towhee @@ -609,12 +609,12 @@ _General-purpose machine learning and deep learning frameworks._
fklearn (πŸ₯‰24 Β· ⭐ 1.5K) - fklearn: Functional Machine Learning. Apache-2 -- [GitHub](https://github.com/nubank/fklearn) (πŸ‘¨β€πŸ’» 56 Β· πŸ”€ 170 Β· πŸ“¦ 16 Β· πŸ“‹ 64 - 60% open Β· ⏱️ 26.02.2025): +- [GitHub](https://github.com/nubank/fklearn) (πŸ‘¨β€πŸ’» 56 Β· πŸ”€ 170 Β· πŸ“¦ 16 Β· πŸ“‹ 64 - 60% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/nubank/fklearn ``` -- [PyPi](https://pypi.org/project/fklearn) (πŸ“₯ 2.3K / month Β· ⏱️ 26.02.2025): +- [PyPi](https://pypi.org/project/fklearn) (πŸ“₯ 2.4K / month Β· ⏱️ 26.02.2025): ``` pip install fklearn ``` @@ -626,19 +626,19 @@ _General-purpose machine learning and deep learning frameworks._ ``` git clone https://github.com/run-house/runhouse ``` -- [PyPi](https://pypi.org/project/runhouse) (πŸ“₯ 27K / month Β· πŸ“¦ 1 Β· ⏱️ 10.03.2025): +- [PyPi](https://pypi.org/project/runhouse) (πŸ“₯ 25K / month Β· πŸ“¦ 1 Β· ⏱️ 10.03.2025): ``` pip install runhouse ```
ThunderSVM (πŸ₯‰22 Β· ⭐ 1.6K Β· πŸ’€) - ThunderSVM: A Fast SVM Library on GPUs and CPUs. Apache-2 -- [GitHub](https://github.com/Xtra-Computing/thundersvm) (πŸ‘¨β€πŸ’» 37 Β· πŸ”€ 220 Β· πŸ“₯ 2.9K Β· πŸ“‹ 230 - 35% open Β· ⏱️ 01.04.2024): +- [GitHub](https://github.com/Xtra-Computing/thundersvm) (πŸ‘¨β€πŸ’» 37 Β· πŸ”€ 220 Β· πŸ“₯ 3K Β· πŸ“‹ 230 - 35% open Β· ⏱️ 01.04.2024): ``` git clone https://github.com/Xtra-Computing/thundersvm ``` -- [PyPi](https://pypi.org/project/thundersvm) (πŸ“₯ 1.5K / month Β· ⏱️ 13.03.2020): +- [PyPi](https://pypi.org/project/thundersvm) (πŸ“₯ 1.6K / month Β· ⏱️ 13.03.2020): ``` pip install thundersvm ``` @@ -650,19 +650,19 @@ _General-purpose machine learning and deep learning frameworks._ ``` git clone https://github.com/neoml-lib/neoml ``` -- [PyPi](https://pypi.org/project/neoml) (πŸ“₯ 1.4K / month Β· ⏱️ 26.12.2023): +- [PyPi](https://pypi.org/project/neoml) (πŸ“₯ 1.5K / month Β· ⏱️ 26.12.2023): ``` pip install neoml ```
-
chefboost (πŸ₯‰20 Β· ⭐ 470) - A Lightweight Decision Tree Framework supporting regular algorithms:.. MIT +
chefboost (πŸ₯‰20 Β· ⭐ 480) - A Lightweight Decision Tree Framework supporting regular algorithms:.. MIT - [GitHub](https://github.com/serengil/chefboost) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 100 Β· πŸ“¦ 69 Β· ⏱️ 31.03.2025): ``` git clone https://github.com/serengil/chefboost ``` -- [PyPi](https://pypi.org/project/chefboost) (πŸ“₯ 6.9K / month Β· ⏱️ 30.10.2024): +- [PyPi](https://pypi.org/project/chefboost) (πŸ“₯ 7.4K / month Β· ⏱️ 30.10.2024): ``` pip install chefboost ``` @@ -674,7 +674,7 @@ _General-purpose machine learning and deep learning frameworks._ ``` git clone https://github.com/Xtra-Computing/thundergbm ``` -- [PyPi](https://pypi.org/project/thundergbm) (πŸ“₯ 480 / month Β· ⏱️ 19.09.2022): +- [PyPi](https://pypi.org/project/thundergbm) (πŸ“₯ 540 / month Β· ⏱️ 19.09.2022): ``` pip install thundergbm ``` @@ -685,8 +685,8 @@ _General-purpose machine learning and deep learning frameworks._ - MXNet (πŸ₯ˆ39 Β· ⭐ 21K Β· πŸ’€) - Lightweight, Portable, Flexible Distributed/Mobile Deep.. Apache-2 - Theano (πŸ₯ˆ38 Β· ⭐ 9.9K Β· πŸ’€) - Theano was a Python library that allows you to define, optimize, and.. BSD-3 - Chainer (πŸ₯ˆ34 Β· ⭐ 5.9K Β· πŸ’€) - A flexible framework of neural networks for deep learning. MIT -- MindsDB (πŸ₯‰33 Β· ⭐ 28K) - AIs query engine - Platform for building AI that can learn and.. ❗️ICU -- tensorpack (πŸ₯‰33 Β· ⭐ 6.3K Β· πŸ’€) - A Neural Net Training Interface on TensorFlow, with.. Apache-2 +- MindsDB (πŸ₯ˆ33 Β· ⭐ 28K) - AIs query engine - Platform for building AI that can learn and.. ❗️ICU +- tensorpack (πŸ₯ˆ33 Β· ⭐ 6.3K Β· πŸ’€) - A Neural Net Training Interface on TensorFlow, with.. Apache-2 - Turi Create (πŸ₯‰32 Β· ⭐ 11K Β· πŸ’€) - Turi Create simplifies the development of custom machine.. BSD-3 - TFlearn (πŸ₯‰31 Β· ⭐ 9.6K Β· πŸ’€) - Deep learning library featuring a higher-level API for TensorFlow. MIT - dyNET (πŸ₯‰31 Β· ⭐ 3.4K Β· πŸ’€) - DyNet: The Dynamic Neural Network Toolkit. Apache-2 @@ -694,13 +694,13 @@ _General-purpose machine learning and deep learning frameworks._ - Lasagne (πŸ₯‰28 Β· ⭐ 3.9K Β· πŸ’€) - Lightweight library to build and train neural networks in Theano. MIT - SHOGUN (πŸ₯‰27 Β· ⭐ 3K Β· πŸ’€) - Unified and efficient Machine Learning. BSD-3 - EvaDB (πŸ₯‰27 Β· ⭐ 2.7K Β· πŸ’€) - Database system for AI-powered apps. Apache-2 +- xLearn (πŸ₯‰25 Β· ⭐ 3.1K Β· πŸ’€) - High performance, easy-to-use, and scalable machine learning (ML).. Apache-2 - neon (πŸ₯‰24 Β· ⭐ 3.9K Β· πŸ’€) - Intel Nervana reference deep learning framework committed to best.. Apache-2 -- xLearn (πŸ₯‰24 Β· ⭐ 3.1K Β· πŸ’€) - High performance, easy-to-use, and scalable machine learning (ML).. Apache-2 - Neural Tangents (πŸ₯‰24 Β· ⭐ 2.3K Β· πŸ’€) - Fast and Easy Infinite Neural Networks in Python. Apache-2 - NeuPy (πŸ₯‰24 Β· ⭐ 740 Β· πŸ’€) - NeuPy is a Tensorflow based python library for prototyping and building.. MIT - Torchbearer (πŸ₯‰22 Β· ⭐ 640 Β· πŸ’€) - torchbearer: A model fitting library for PyTorch. MIT - mace (πŸ₯‰21 Β· ⭐ 5K Β· πŸ’€) - MACE is a deep learning inference framework optimized for mobile.. Apache-2 -- elegy (πŸ₯‰20 Β· ⭐ 470 Β· πŸ’€) - A High Level API for Deep Learning in JAX. MIT +- elegy (πŸ₯‰20 Β· ⭐ 480 Β· πŸ’€) - A High Level API for Deep Learning in JAX. MIT - Objax (πŸ₯‰19 Β· ⭐ 770 Β· πŸ’€) - Objax is a machine learning framework that provides an Object.. Apache-2 - StarSpace (πŸ₯‰16 Β· ⭐ 4K Β· πŸ’€) - Learning embeddings for classification, retrieval and ranking. MIT - nanodl (πŸ₯‰14 Β· ⭐ 290 Β· πŸ’€) - A Jax-based library for designing and training small transformers. MIT @@ -715,23 +715,23 @@ _General-purpose and task-specific data visualization libraries._
Matplotlib (πŸ₯‡49 Β· ⭐ 21K) - matplotlib: plotting with Python. ❗Unlicensed -- [GitHub](https://github.com/matplotlib/matplotlib) (πŸ‘¨β€πŸ’» 1.8K Β· πŸ”€ 7.8K Β· πŸ“¦ 1.7M Β· πŸ“‹ 11K - 14% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/matplotlib/matplotlib) (πŸ‘¨β€πŸ’» 1.8K Β· πŸ”€ 7.8K Β· πŸ“¦ 1.7M Β· πŸ“‹ 11K - 14% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/matplotlib/matplotlib ``` -- [PyPi](https://pypi.org/project/matplotlib) (πŸ“₯ 84M / month Β· πŸ“¦ 56K Β· ⏱️ 27.02.2025): +- [PyPi](https://pypi.org/project/matplotlib) (πŸ“₯ 85M / month Β· πŸ“¦ 56K Β· ⏱️ 27.02.2025): ``` pip install matplotlib ``` -- [Conda](https://anaconda.org/conda-forge/matplotlib) (πŸ“₯ 29M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/matplotlib) (πŸ“₯ 30M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge matplotlib ```
dash (πŸ₯‡46 Β· ⭐ 22K) - Data Apps & Dashboards for Python. No JavaScript Required. MIT -- [GitHub](https://github.com/plotly/dash) (πŸ‘¨β€πŸ’» 180 Β· πŸ”€ 2.1K Β· πŸ“₯ 88 Β· πŸ“¦ 83K Β· πŸ“‹ 2K - 27% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/plotly/dash) (πŸ‘¨β€πŸ’» 180 Β· πŸ”€ 2.1K Β· πŸ“₯ 88 Β· πŸ“¦ 84K Β· πŸ“‹ 2K - 27% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/plotly/dash @@ -740,14 +740,14 @@ _General-purpose and task-specific data visualization libraries._ ``` pip install dash ``` -- [Conda](https://anaconda.org/conda-forge/dash) (πŸ“₯ 1.8M Β· ⏱️ 15.04.2025): +- [Conda](https://anaconda.org/conda-forge/dash) (πŸ“₯ 1.8M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge dash ```
Plotly (πŸ₯‡46 Β· ⭐ 17K) - The interactive graphing library for Python. MIT -- [GitHub](https://github.com/plotly/plotly.py) (πŸ‘¨β€πŸ’» 280 Β· πŸ”€ 2.6K Β· πŸ“₯ 150 Β· πŸ“¦ 400K Β· πŸ“‹ 3.2K - 20% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/plotly/plotly.py) (πŸ‘¨β€πŸ’» 280 Β· πŸ”€ 2.6K Β· πŸ“₯ 160 Β· πŸ“¦ 410K Β· πŸ“‹ 3.2K - 20% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/plotly/plotly.py @@ -756,34 +756,34 @@ _General-purpose and task-specific data visualization libraries._ ``` pip install plotly ``` -- [Conda](https://anaconda.org/conda-forge/plotly) (πŸ“₯ 9.1M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/plotly) (πŸ“₯ 9.2M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge plotly ``` -- [npm](https://www.npmjs.com/package/plotlywidget) (πŸ“₯ 59K / month Β· πŸ“¦ 9 Β· ⏱️ 12.01.2021): +- [npm](https://www.npmjs.com/package/plotlywidget) (πŸ“₯ 57K / month Β· πŸ“¦ 9 Β· ⏱️ 12.01.2021): ``` npm install plotlywidget ```
Bokeh (πŸ₯‡45 Β· ⭐ 20K) - Interactive Data Visualization in the browser, from Python. BSD-3 -- [GitHub](https://github.com/bokeh/bokeh) (πŸ‘¨β€πŸ’» 710 Β· πŸ”€ 4.2K Β· πŸ“¦ 100K Β· πŸ“‹ 7.9K - 10% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/bokeh/bokeh) (πŸ‘¨β€πŸ’» 710 Β· πŸ”€ 4.2K Β· πŸ“¦ 100K Β· πŸ“‹ 7.9K - 10% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/bokeh/bokeh ``` -- [PyPi](https://pypi.org/project/bokeh) (πŸ“₯ 3.8M / month Β· πŸ“¦ 1.9K Β· ⏱️ 28.03.2025): +- [PyPi](https://pypi.org/project/bokeh) (πŸ“₯ 3.7M / month Β· πŸ“¦ 1.9K Β· ⏱️ 28.03.2025): ``` pip install bokeh ``` -- [Conda](https://anaconda.org/conda-forge/bokeh) (πŸ“₯ 16M Β· ⏱️ 01.04.2025): +- [Conda](https://anaconda.org/conda-forge/bokeh) (πŸ“₯ 16M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge bokeh ```
Seaborn (πŸ₯‡43 Β· ⭐ 13K) - Statistical data visualization in Python. BSD-3 -- [GitHub](https://github.com/mwaskom/seaborn) (πŸ‘¨β€πŸ’» 220 Β· πŸ”€ 1.9K Β· πŸ“₯ 470 Β· πŸ“¦ 620K Β· πŸ“‹ 2.6K - 6% open Β· ⏱️ 26.01.2025): +- [GitHub](https://github.com/mwaskom/seaborn) (πŸ‘¨β€πŸ’» 220 Β· πŸ”€ 1.9K Β· πŸ“₯ 470 Β· πŸ“¦ 630K Β· πŸ“‹ 2.6K - 6% open Β· ⏱️ 26.01.2025): ``` git clone https://github.com/mwaskom/seaborn @@ -792,14 +792,14 @@ _General-purpose and task-specific data visualization libraries._ ``` pip install seaborn ``` -- [Conda](https://anaconda.org/conda-forge/seaborn) (πŸ“₯ 12M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/seaborn) (πŸ“₯ 12M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge seaborn ```
Altair (πŸ₯‡42 Β· ⭐ 9.7K) - Declarative visualization library for Python. BSD-3 -- [GitHub](https://github.com/vega/altair) (πŸ‘¨β€πŸ’» 180 Β· πŸ”€ 800 Β· πŸ“₯ 230 Β· πŸ“¦ 220K Β· πŸ“‹ 2.1K - 6% open Β· ⏱️ 08.03.2025): +- [GitHub](https://github.com/vega/altair) (πŸ‘¨β€πŸ’» 180 Β· πŸ”€ 800 Β· πŸ“₯ 230 Β· πŸ“¦ 220K Β· πŸ“‹ 2.1K - 6% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/altair-viz/altair @@ -808,173 +808,173 @@ _General-purpose and task-specific data visualization libraries._ ``` pip install altair ``` -- [Conda](https://anaconda.org/conda-forge/altair) (πŸ“₯ 2.7M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/altair) (πŸ“₯ 2.7M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge altair ```
FiftyOne (πŸ₯ˆ39 Β· ⭐ 9.4K) - Visualize, create, and debug image and video datasets.. Apache-2 -- [GitHub](https://github.com/voxel51/fiftyone) (πŸ‘¨β€πŸ’» 150 Β· πŸ”€ 610 Β· πŸ“¦ 920 Β· πŸ“‹ 1.7K - 33% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/voxel51/fiftyone) (πŸ‘¨β€πŸ’» 150 Β· πŸ”€ 620 Β· πŸ“¦ 930 Β· πŸ“‹ 1.7K - 33% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/voxel51/fiftyone ``` -- [PyPi](https://pypi.org/project/fiftyone) (πŸ“₯ 130K / month Β· πŸ“¦ 26 Β· ⏱️ 04.04.2025): +- [PyPi](https://pypi.org/project/fiftyone) (πŸ“₯ 150K / month Β· πŸ“¦ 26 Β· ⏱️ 04.04.2025): ``` pip install fiftyone ```
PyVista (πŸ₯ˆ39 Β· ⭐ 3K) - 3D plotting and mesh analysis through a streamlined interface for the.. MIT -- [GitHub](https://github.com/pyvista/pyvista) (πŸ‘¨β€πŸ’» 170 Β· πŸ”€ 550 Β· πŸ“₯ 890 Β· πŸ“¦ 4.5K Β· πŸ“‹ 1.9K - 35% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/pyvista/pyvista) (πŸ‘¨β€πŸ’» 170 Β· πŸ”€ 550 Β· πŸ“₯ 890 Β· πŸ“¦ 4.6K Β· πŸ“‹ 1.9K - 36% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/pyvista/pyvista ``` -- [PyPi](https://pypi.org/project/pyvista) (πŸ“₯ 560K / month Β· πŸ“¦ 580 Β· ⏱️ 27.11.2024): +- [PyPi](https://pypi.org/project/pyvista) (πŸ“₯ 600K / month Β· πŸ“¦ 690 Β· ⏱️ 19.04.2025): ``` pip install pyvista ``` -- [Conda](https://anaconda.org/conda-forge/pyvista) (πŸ“₯ 660K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pyvista) (πŸ“₯ 670K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pyvista ```
-
HoloViews (πŸ₯ˆ39 Β· ⭐ 2.8K) - With Holoviews, your data visualizes itself. BSD-3 +
pandas-profiling (πŸ₯ˆ38 Β· ⭐ 13K) - 1 Line of code data quality profiling & exploratory.. MIT -- [GitHub](https://github.com/holoviz/holoviews) (πŸ‘¨β€πŸ’» 150 Β· πŸ”€ 410 Β· πŸ“¦ 15K Β· πŸ“‹ 3.4K - 32% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/ydataai/ydata-profiling) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 1.7K Β· πŸ“₯ 310 Β· πŸ“¦ 6.2K Β· πŸ“‹ 840 - 29% open Β· ⏱️ 26.03.2025): ``` - git clone https://github.com/holoviz/holoviews - ``` -- [PyPi](https://pypi.org/project/holoviews) (πŸ“₯ 510K / month Β· πŸ“¦ 430 Β· ⏱️ 31.03.2025): - ``` - pip install holoviews + git clone https://github.com/ydataai/pandas-profiling ``` -- [Conda](https://anaconda.org/conda-forge/holoviews) (πŸ“₯ 2M Β· ⏱️ 25.03.2025): +- [PyPi](https://pypi.org/project/pandas-profiling) (πŸ“₯ 370K / month Β· πŸ“¦ 180 Β· ⏱️ 03.02.2023): ``` - conda install -c conda-forge holoviews + pip install pandas-profiling ``` -- [npm](https://www.npmjs.com/package/@pyviz/jupyterlab_pyviz) (πŸ“₯ 190 / month Β· πŸ“¦ 5 Β· ⏱️ 14.01.2025): +- [Conda](https://anaconda.org/conda-forge/pandas-profiling) (πŸ“₯ 510K Β· ⏱️ 22.04.2025): ``` - npm install @pyviz/jupyterlab_pyviz + conda install -c conda-forge pandas-profiling ```
-
pandas-profiling (πŸ₯ˆ38 Β· ⭐ 13K) - 1 Line of code data quality profiling & exploratory.. MIT +
HoloViews (πŸ₯ˆ38 Β· ⭐ 2.8K Β· πŸ“‰) - With Holoviews, your data visualizes itself. BSD-3 -- [GitHub](https://github.com/ydataai/ydata-profiling) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 1.7K Β· πŸ“₯ 300 Β· πŸ“¦ 6.1K Β· πŸ“‹ 840 - 29% open Β· ⏱️ 26.03.2025): +- [GitHub](https://github.com/holoviz/holoviews) (πŸ‘¨β€πŸ’» 150 Β· πŸ”€ 410 Β· πŸ“¦ 15K Β· πŸ“‹ 3.4K - 32% open Β· ⏱️ 23.04.2025): ``` - git clone https://github.com/ydataai/pandas-profiling + git clone https://github.com/holoviz/holoviews ``` -- [PyPi](https://pypi.org/project/pandas-profiling) (πŸ“₯ 360K / month Β· πŸ“¦ 180 Β· ⏱️ 03.02.2023): +- [PyPi](https://pypi.org/project/holoviews) (πŸ“₯ 510K / month Β· πŸ“¦ 430 Β· ⏱️ 31.03.2025): ``` - pip install pandas-profiling + pip install holoviews ``` -- [Conda](https://anaconda.org/conda-forge/pandas-profiling) (πŸ“₯ 500K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/holoviews) (πŸ“₯ 2M Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge pandas-profiling + conda install -c conda-forge holoviews + ``` +- [npm](https://www.npmjs.com/package/@pyviz/jupyterlab_pyviz) (πŸ“₯ 220 / month Β· πŸ“¦ 5 Β· ⏱️ 14.01.2025): + ``` + npm install @pyviz/jupyterlab_pyviz ```
-
PyQtGraph (πŸ₯ˆ38 Β· ⭐ 4K) - Fast data visualization and GUI tools for scientific / engineering.. MIT +
PyQtGraph (πŸ₯ˆ37 Β· ⭐ 4.1K) - Fast data visualization and GUI tools for scientific / engineering.. MIT - [GitHub](https://github.com/pyqtgraph/pyqtgraph) (πŸ‘¨β€πŸ’» 300 Β· πŸ”€ 1.1K Β· πŸ“¦ 12K Β· πŸ“‹ 1.3K - 32% open Β· ⏱️ 08.04.2025): ``` git clone https://github.com/pyqtgraph/pyqtgraph ``` -- [PyPi](https://pypi.org/project/pyqtgraph) (πŸ“₯ 450K / month Β· πŸ“¦ 1K Β· ⏱️ 29.04.2024): +- [PyPi](https://pypi.org/project/pyqtgraph) (πŸ“₯ 390K / month Β· πŸ“¦ 1K Β· ⏱️ 29.04.2024): ``` pip install pyqtgraph ``` -- [Conda](https://anaconda.org/conda-forge/pyqtgraph) (πŸ“₯ 680K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pyqtgraph) (πŸ“₯ 680K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pyqtgraph ```
pyecharts (πŸ₯ˆ36 Β· ⭐ 15K) - Python Echarts Plotting Library. MIT -- [GitHub](https://github.com/pyecharts/pyecharts) (πŸ‘¨β€πŸ’» 45 Β· πŸ”€ 2.9K Β· πŸ“₯ 73 Β· πŸ“¦ 5.2K Β· πŸ“‹ 1.9K - 0% open Β· ⏱️ 26.01.2025): +- [GitHub](https://github.com/pyecharts/pyecharts) (πŸ‘¨β€πŸ’» 45 Β· πŸ”€ 2.9K Β· πŸ“₯ 73 Β· πŸ“¦ 5.3K Β· πŸ“‹ 1.9K - 0% open Β· ⏱️ 26.01.2025): ``` git clone https://github.com/pyecharts/pyecharts ``` -- [PyPi](https://pypi.org/project/pyecharts) (πŸ“₯ 180K / month Β· πŸ“¦ 220 Β· ⏱️ 24.01.2025): +- [PyPi](https://pypi.org/project/pyecharts) (πŸ“₯ 200K / month Β· πŸ“¦ 220 Β· ⏱️ 24.01.2025): ``` pip install pyecharts ```
plotnine (πŸ₯ˆ36 Β· ⭐ 4.2K) - A Grammar of Graphics for Python. MIT -- [GitHub](https://github.com/has2k1/plotnine) (πŸ‘¨β€πŸ’» 110 Β· πŸ”€ 230 Β· πŸ“¦ 11K Β· πŸ“‹ 710 - 10% open Β· ⏱️ 12.04.2025): +- [GitHub](https://github.com/has2k1/plotnine) (πŸ‘¨β€πŸ’» 110 Β· πŸ”€ 230 Β· πŸ“¦ 12K Β· πŸ“‹ 710 - 10% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/has2k1/plotnine ``` -- [PyPi](https://pypi.org/project/plotnine) (πŸ“₯ 2.4M / month Β· πŸ“¦ 360 Β· ⏱️ 07.04.2025): +- [PyPi](https://pypi.org/project/plotnine) (πŸ“₯ 2.3M / month Β· πŸ“¦ 370 Β· ⏱️ 23.04.2025): ``` pip install plotnine ``` -- [Conda](https://anaconda.org/conda-forge/plotnine) (πŸ“₯ 460K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/plotnine) (πŸ“₯ 460K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge plotnine ```
Graphviz (πŸ₯ˆ36 Β· ⭐ 1.7K Β· πŸ’€) - Simple Python interface for Graphviz. MIT -- [GitHub](https://github.com/xflr6/graphviz) (πŸ‘¨β€πŸ’» 23 Β· πŸ”€ 210 Β· πŸ“¦ 87K Β· πŸ“‹ 190 - 6% open Β· ⏱️ 13.05.2024): +- [GitHub](https://github.com/xflr6/graphviz) (πŸ‘¨β€πŸ’» 23 Β· πŸ”€ 210 Β· πŸ“¦ 88K Β· πŸ“‹ 190 - 6% open Β· ⏱️ 13.05.2024): ``` git clone https://github.com/xflr6/graphviz ``` -- [PyPi](https://pypi.org/project/graphviz) (πŸ“₯ 16M / month Β· πŸ“¦ 2.9K Β· ⏱️ 21.03.2024): +- [PyPi](https://pypi.org/project/graphviz) (πŸ“₯ 18M / month Β· πŸ“¦ 2.9K Β· ⏱️ 21.03.2024): ``` pip install graphviz ``` -- [Conda](https://anaconda.org/anaconda/python-graphviz) (πŸ“₯ 54K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/anaconda/python-graphviz) (πŸ“₯ 54K Β· ⏱️ 22.04.2025): ``` conda install -c anaconda python-graphviz ```
-
Perspective (πŸ₯ˆ34 Β· ⭐ 9.1K) - A data visualization and analytics component, especially.. Apache-2 +
VisPy (πŸ₯ˆ35 Β· ⭐ 3.4K Β· πŸ“ˆ) - High-performance interactive 2D/3D data visualization library. BSD-3 -- [GitHub](https://github.com/finos/perspective) (πŸ‘¨β€πŸ’» 99 Β· πŸ”€ 1.2K Β· πŸ“₯ 11K Β· πŸ“¦ 170 Β· πŸ“‹ 880 - 12% open Β· ⏱️ 11.04.2025): +- [GitHub](https://github.com/vispy/vispy) (πŸ‘¨β€πŸ’» 200 Β· πŸ”€ 620 Β· πŸ“¦ 2K Β· πŸ“‹ 1.5K - 25% open Β· ⏱️ 22.04.2025): ``` - git clone https://github.com/finos/perspective + git clone https://github.com/vispy/vispy ``` -- [PyPi](https://pypi.org/project/perspective-python) (πŸ“₯ 19K / month Β· πŸ“¦ 30 Β· ⏱️ 11.04.2025): +- [PyPi](https://pypi.org/project/vispy) (πŸ“₯ 150K / month Β· πŸ“¦ 200 Β· ⏱️ 22.04.2025): ``` - pip install perspective-python + pip install vispy ``` -- [Conda](https://anaconda.org/conda-forge/perspective) (πŸ“₯ 2M Β· ⏱️ 11.04.2025): +- [Conda](https://anaconda.org/conda-forge/vispy) (πŸ“₯ 790K Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge perspective + conda install -c conda-forge vispy ``` -- [npm](https://www.npmjs.com/package/@finos/perspective-jupyterlab) (πŸ“₯ 730 / month Β· πŸ“¦ 6 Β· ⏱️ 11.04.2025): +- [npm](https://www.npmjs.com/package/vispy) (πŸ“₯ 23 / month Β· πŸ“¦ 3 Β· ⏱️ 15.03.2020): ``` - npm install @finos/perspective-jupyterlab + npm install vispy ```
-
VisPy (πŸ₯ˆ34 Β· ⭐ 3.4K) - High-performance interactive 2D/3D data visualization library. BSD-3 +
Perspective (πŸ₯ˆ34 Β· ⭐ 9.1K) - A data visualization and analytics component, especially.. Apache-2 -- [GitHub](https://github.com/vispy/vispy) (πŸ‘¨β€πŸ’» 200 Β· πŸ”€ 620 Β· πŸ“¦ 1.9K Β· πŸ“‹ 1.5K - 25% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/finos/perspective) (πŸ‘¨β€πŸ’» 99 Β· πŸ”€ 1.2K Β· πŸ“₯ 11K Β· πŸ“¦ 180 Β· πŸ“‹ 880 - 12% open Β· ⏱️ 11.04.2025): ``` - git clone https://github.com/vispy/vispy + git clone https://github.com/finos/perspective ``` -- [PyPi](https://pypi.org/project/vispy) (πŸ“₯ 140K / month Β· πŸ“¦ 170 Β· ⏱️ 17.06.2024): +- [PyPi](https://pypi.org/project/perspective-python) (πŸ“₯ 20K / month Β· πŸ“¦ 30 Β· ⏱️ 11.04.2025): ``` - pip install vispy + pip install perspective-python ``` -- [Conda](https://anaconda.org/conda-forge/vispy) (πŸ“₯ 780K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/perspective) (πŸ“₯ 2M Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge vispy + conda install -c conda-forge perspective ``` -- [npm](https://www.npmjs.com/package/vispy) (πŸ“₯ 32 / month Β· πŸ“¦ 3 Β· ⏱️ 15.03.2020): +- [npm](https://www.npmjs.com/package/@finos/perspective-jupyterlab) (πŸ“₯ 680 / month Β· πŸ“¦ 6 Β· ⏱️ 11.04.2025): ``` - npm install vispy + npm install @finos/perspective-jupyterlab ```
datashader (πŸ₯ˆ34 Β· ⭐ 3.4K) - Quickly and accurately render even the largest data. BSD-3 @@ -984,27 +984,27 @@ _General-purpose and task-specific data visualization libraries._ ``` git clone https://github.com/holoviz/datashader ``` -- [PyPi](https://pypi.org/project/datashader) (πŸ“₯ 180K / month Β· πŸ“¦ 240 Β· ⏱️ 10.04.2025): +- [PyPi](https://pypi.org/project/datashader) (πŸ“₯ 190K / month Β· πŸ“¦ 240 Β· ⏱️ 10.04.2025): ``` pip install datashader ``` -- [Conda](https://anaconda.org/conda-forge/datashader) (πŸ“₯ 1.4M Β· ⏱️ 10.04.2025): +- [Conda](https://anaconda.org/conda-forge/datashader) (πŸ“₯ 1.4M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge datashader ```
cartopy (πŸ₯ˆ34 Β· ⭐ 1.5K) - Cartopy - a cartographic python library with matplotlib support. BSD-3 -- [GitHub](https://github.com/SciTools/cartopy) (πŸ‘¨β€πŸ’» 130 Β· πŸ”€ 380 Β· πŸ“¦ 7.2K Β· πŸ“‹ 1.3K - 24% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/SciTools/cartopy) (πŸ‘¨β€πŸ’» 130 Β· πŸ”€ 380 Β· πŸ“¦ 7.3K Β· πŸ“‹ 1.3K - 24% open Β· ⏱️ 17.04.2025): ``` git clone https://github.com/SciTools/cartopy ``` -- [PyPi](https://pypi.org/project/cartopy) (πŸ“₯ 560K / month Β· πŸ“¦ 720 Β· ⏱️ 08.10.2024): +- [PyPi](https://pypi.org/project/cartopy) (πŸ“₯ 550K / month Β· πŸ“¦ 720 Β· ⏱️ 08.10.2024): ``` pip install cartopy ``` -- [Conda](https://anaconda.org/conda-forge/cartopy) (πŸ“₯ 4.7M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/cartopy) (πŸ“₯ 4.7M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge cartopy ``` @@ -1020,42 +1020,42 @@ _General-purpose and task-specific data visualization libraries._ ``` pip install wordcloud ``` -- [Conda](https://anaconda.org/conda-forge/wordcloud) (πŸ“₯ 660K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/wordcloud) (πŸ“₯ 660K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge wordcloud ```
-
UMAP (πŸ₯ˆ32 Β· ⭐ 7.7K) - Uniform Manifold Approximation and Projection. BSD-3 +
lets-plot (πŸ₯ˆ33 Β· ⭐ 1.7K) - Multiplatform plotting library based on the Grammar of Graphics. MIT -- [GitHub](https://github.com/lmcinnes/umap) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 820 Β· πŸ“¦ 1 Β· πŸ“‹ 840 - 59% open Β· ⏱️ 28.02.2025): +- [GitHub](https://github.com/JetBrains/lets-plot) (πŸ‘¨β€πŸ’» 21 Β· πŸ”€ 53 Β· πŸ“₯ 3.2K Β· πŸ“¦ 180 Β· πŸ“‹ 680 - 23% open Β· ⏱️ 21.04.2025): ``` - git clone https://github.com/lmcinnes/umap - ``` -- [PyPi](https://pypi.org/project/umap-learn) (πŸ“₯ 1.6M / month Β· πŸ“¦ 1.1K Β· ⏱️ 28.10.2024): - ``` - pip install umap-learn + git clone https://github.com/JetBrains/lets-plot ``` -- [Conda](https://anaconda.org/conda-forge/umap-learn) (πŸ“₯ 2.9M Β· ⏱️ 25.03.2025): +- [PyPi](https://pypi.org/project/lets-plot) (πŸ“₯ 54K / month Β· πŸ“¦ 15 Β· ⏱️ 28.03.2025): ``` - conda install -c conda-forge umap-learn + pip install lets-plot ```
-
lets-plot (πŸ₯ˆ32 Β· ⭐ 1.7K) - Multiplatform plotting library based on the Grammar of Graphics. MIT +
UMAP (πŸ₯ˆ32 Β· ⭐ 7.7K) - Uniform Manifold Approximation and Projection. BSD-3 -- [GitHub](https://github.com/JetBrains/lets-plot) (πŸ‘¨β€πŸ’» 21 Β· πŸ”€ 53 Β· πŸ“₯ 3.2K Β· πŸ“¦ 170 Β· πŸ“‹ 680 - 23% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/lmcinnes/umap) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 820 Β· πŸ“¦ 1 Β· πŸ“‹ 850 - 59% open Β· ⏱️ 28.02.2025): ``` - git clone https://github.com/JetBrains/lets-plot + git clone https://github.com/lmcinnes/umap ``` -- [PyPi](https://pypi.org/project/lets-plot) (πŸ“₯ 50K / month Β· πŸ“¦ 15 Β· ⏱️ 28.03.2025): +- [PyPi](https://pypi.org/project/umap-learn) (πŸ“₯ 1.6M / month Β· πŸ“¦ 1.1K Β· ⏱️ 28.10.2024): ``` - pip install lets-plot + pip install umap-learn + ``` +- [Conda](https://anaconda.org/conda-forge/umap-learn) (πŸ“₯ 3M Β· ⏱️ 22.04.2025): + ``` + conda install -c conda-forge umap-learn ```
hvPlot (πŸ₯ˆ32 Β· ⭐ 1.2K) - A high-level plotting API for pandas, dask, xarray, and networkx built.. BSD-3 -- [GitHub](https://github.com/holoviz/hvplot) (πŸ‘¨β€πŸ’» 51 Β· πŸ”€ 110 Β· πŸ“¦ 6.9K Β· πŸ“‹ 860 - 43% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/holoviz/hvplot) (πŸ‘¨β€πŸ’» 51 Β· πŸ”€ 110 Β· πŸ“¦ 7K Β· πŸ“‹ 860 - 43% open Β· ⏱️ 16.04.2025): ``` git clone https://github.com/holoviz/hvplot @@ -1064,27 +1064,27 @@ _General-purpose and task-specific data visualization libraries._ ``` pip install hvplot ``` -- [Conda](https://anaconda.org/conda-forge/hvplot) (πŸ“₯ 750K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/hvplot) (πŸ“₯ 750K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge hvplot ```
mpld3 (πŸ₯‰31 Β· ⭐ 2.4K) - An interactive data visualization tool which brings matplotlib graphics to.. BSD-3 -- [GitHub](https://github.com/mpld3/mpld3) (πŸ‘¨β€πŸ’» 53 Β· πŸ”€ 360 Β· πŸ“¦ 7.2K Β· πŸ“‹ 370 - 59% open Β· ⏱️ 30.10.2024): +- [GitHub](https://github.com/mpld3/mpld3) (πŸ‘¨β€πŸ’» 53 Β· πŸ”€ 360 Β· πŸ“¦ 7.3K Β· πŸ“‹ 370 - 59% open Β· ⏱️ 30.10.2024): ``` git clone https://github.com/mpld3/mpld3 ``` -- [PyPi](https://pypi.org/project/mpld3) (πŸ“₯ 350K / month Β· πŸ“¦ 150 Β· ⏱️ 23.12.2023): +- [PyPi](https://pypi.org/project/mpld3) (πŸ“₯ 340K / month Β· πŸ“¦ 150 Β· ⏱️ 23.12.2023): ``` pip install mpld3 ``` -- [Conda](https://anaconda.org/conda-forge/mpld3) (πŸ“₯ 230K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/mpld3) (πŸ“₯ 230K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge mpld3 ``` -- [npm](https://www.npmjs.com/package/mpld3) (πŸ“₯ 1.3K / month Β· πŸ“¦ 9 Β· ⏱️ 23.12.2023): +- [npm](https://www.npmjs.com/package/mpld3) (πŸ“₯ 1.1K / month Β· πŸ“¦ 9 Β· ⏱️ 23.12.2023): ``` npm install mpld3 ``` @@ -1096,11 +1096,11 @@ _General-purpose and task-specific data visualization libraries._ ``` git clone https://github.com/man-group/dtale ``` -- [PyPi](https://pypi.org/project/dtale) (πŸ“₯ 150K / month Β· πŸ“¦ 53 Β· ⏱️ 20.03.2025): +- [PyPi](https://pypi.org/project/dtale) (πŸ“₯ 180K / month Β· πŸ“¦ 53 Β· ⏱️ 20.03.2025): ``` pip install dtale ``` -- [Conda](https://anaconda.org/conda-forge/dtale) (πŸ“₯ 410K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/dtale) (πŸ“₯ 410K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge dtale ``` @@ -1116,45 +1116,45 @@ _General-purpose and task-specific data visualization libraries._ ``` pip install bqplot ``` -- [Conda](https://anaconda.org/conda-forge/bqplot) (πŸ“₯ 1.6M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/bqplot) (πŸ“₯ 1.6M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge bqplot ``` -- [npm](https://www.npmjs.com/package/bqplot) (πŸ“₯ 1.9K / month Β· πŸ“¦ 21 Β· ⏱️ 24.12.2024): +- [npm](https://www.npmjs.com/package/bqplot) (πŸ“₯ 2K / month Β· πŸ“¦ 21 Β· ⏱️ 24.12.2024): ``` npm install bqplot ```
-
openTSNE (πŸ₯‰28 Β· ⭐ 1.5K) - Extensible, parallel implementations of t-SNE. BSD-3 +
AutoViz (πŸ₯‰27 Β· ⭐ 1.8K Β· πŸ’€) - Automatically Visualize any dataset, any size with a single line.. Apache-2 -- [GitHub](https://github.com/pavlin-policar/openTSNE) (πŸ‘¨β€πŸ’» 13 Β· πŸ”€ 170 Β· πŸ“¦ 1K Β· πŸ“‹ 140 - 7% open Β· ⏱️ 24.10.2024): +- [GitHub](https://github.com/AutoViML/AutoViz) (πŸ‘¨β€πŸ’» 17 Β· πŸ”€ 200 Β· πŸ“¦ 860 Β· πŸ“‹ 98 - 2% open Β· ⏱️ 10.06.2024): ``` - git clone https://github.com/pavlin-policar/openTSNE + git clone https://github.com/AutoViML/AutoViz ``` -- [PyPi](https://pypi.org/project/opentsne) (πŸ“₯ 99K / month Β· πŸ“¦ 47 Β· ⏱️ 13.08.2024): +- [PyPi](https://pypi.org/project/autoviz) (πŸ“₯ 17K / month Β· πŸ“¦ 11 Β· ⏱️ 10.06.2024): ``` - pip install opentsne + pip install autoviz ``` -- [Conda](https://anaconda.org/conda-forge/opentsne) (πŸ“₯ 420K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/autoviz) (πŸ“₯ 83K Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge opentsne + conda install -c conda-forge autoviz ```
-
AutoViz (πŸ₯‰27 Β· ⭐ 1.8K Β· πŸ’€) - Automatically Visualize any dataset, any size with a single line.. Apache-2 +
openTSNE (πŸ₯‰27 Β· ⭐ 1.5K) - Extensible, parallel implementations of t-SNE. BSD-3 -- [GitHub](https://github.com/AutoViML/AutoViz) (πŸ‘¨β€πŸ’» 17 Β· πŸ”€ 200 Β· πŸ“¦ 850 Β· πŸ“‹ 98 - 2% open Β· ⏱️ 10.06.2024): +- [GitHub](https://github.com/pavlin-policar/openTSNE) (πŸ‘¨β€πŸ’» 13 Β· πŸ”€ 170 Β· πŸ“¦ 1K Β· πŸ“‹ 140 - 7% open Β· ⏱️ 24.10.2024): ``` - git clone https://github.com/AutoViML/AutoViz + git clone https://github.com/pavlin-policar/openTSNE ``` -- [PyPi](https://pypi.org/project/autoviz) (πŸ“₯ 16K / month Β· πŸ“¦ 11 Β· ⏱️ 10.06.2024): +- [PyPi](https://pypi.org/project/opentsne) (πŸ“₯ 43K / month Β· πŸ“¦ 47 Β· ⏱️ 13.08.2024): ``` - pip install autoviz + pip install opentsne ``` -- [Conda](https://anaconda.org/conda-forge/autoviz) (πŸ“₯ 82K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/opentsne) (πŸ“₯ 420K Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge autoviz + conda install -c conda-forge opentsne ```
Plotly-Resampler (πŸ₯‰27 Β· ⭐ 1.1K) - Visualize large time series data with plotly.py. MIT @@ -1164,11 +1164,11 @@ _General-purpose and task-specific data visualization libraries._ ``` git clone https://github.com/predict-idlab/plotly-resampler ``` -- [PyPi](https://pypi.org/project/plotly-resampler) (πŸ“₯ 490K / month Β· πŸ“¦ 31 Β· ⏱️ 07.04.2025): +- [PyPi](https://pypi.org/project/plotly-resampler) (πŸ“₯ 480K / month Β· πŸ“¦ 31 Β· ⏱️ 07.04.2025): ``` pip install plotly-resampler ``` -- [Conda](https://anaconda.org/conda-forge/plotly-resampler) (πŸ“₯ 100K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/plotly-resampler) (πŸ“₯ 110K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge plotly-resampler ``` @@ -1180,18 +1180,18 @@ _General-purpose and task-specific data visualization libraries._ ``` git clone https://github.com/spotify/chartify ``` -- [PyPi](https://pypi.org/project/chartify) (πŸ“₯ 2.3K / month Β· πŸ“¦ 9 Β· ⏱️ 16.10.2024): +- [PyPi](https://pypi.org/project/chartify) (πŸ“₯ 2K / month Β· πŸ“¦ 9 Β· ⏱️ 16.10.2024): ``` pip install chartify ``` -- [Conda](https://anaconda.org/conda-forge/chartify) (πŸ“₯ 37K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/chartify) (πŸ“₯ 37K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge chartify ```
data-validation (πŸ₯‰25 Β· ⭐ 770) - Library for exploring and validating machine learning.. Apache-2 -- [GitHub](https://github.com/tensorflow/data-validation) (πŸ‘¨β€πŸ’» 27 Β· πŸ”€ 180 Β· πŸ“₯ 980 Β· πŸ“‹ 180 - 21% open Β· ⏱️ 12.03.2025): +- [GitHub](https://github.com/tensorflow/data-validation) (πŸ‘¨β€πŸ’» 27 Β· πŸ”€ 170 Β· πŸ“₯ 980 Β· πŸ“‹ 180 - 21% open Β· ⏱️ 12.03.2025): ``` git clone https://github.com/tensorflow/data-validation @@ -1212,7 +1212,7 @@ _General-purpose and task-specific data visualization libraries._ ``` pip install python-ternary ``` -- [Conda](https://anaconda.org/conda-forge/python-ternary) (πŸ“₯ 100K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/python-ternary) (πŸ“₯ 100K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge python-ternary ``` @@ -1224,11 +1224,11 @@ _General-purpose and task-specific data visualization libraries._ ``` git clone https://github.com/gyli/PyWaffle ``` -- [PyPi](https://pypi.org/project/pywaffle) (πŸ“₯ 12K / month Β· πŸ“¦ 6 Β· ⏱️ 16.06.2024): +- [PyPi](https://pypi.org/project/pywaffle) (πŸ“₯ 13K / month Β· πŸ“¦ 6 Β· ⏱️ 16.06.2024): ``` pip install pywaffle ``` -- [Conda](https://anaconda.org/conda-forge/pywaffle) (πŸ“₯ 16K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pywaffle) (πŸ“₯ 16K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pywaffle ``` @@ -1240,11 +1240,11 @@ _General-purpose and task-specific data visualization libraries._ ``` git clone https://github.com/vega/ipyvega ``` -- [PyPi](https://pypi.org/project/vega) (πŸ“₯ 18K / month Β· πŸ“¦ 17 Β· ⏱️ 25.09.2024): +- [PyPi](https://pypi.org/project/vega) (πŸ“₯ 17K / month Β· πŸ“¦ 17 Β· ⏱️ 25.09.2024): ``` pip install vega ``` -- [Conda](https://anaconda.org/conda-forge/vega) (πŸ“₯ 730K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/vega) (πŸ“₯ 730K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge vega ``` @@ -1268,11 +1268,11 @@ _General-purpose and task-specific data visualization libraries._ ``` git clone https://github.com/t-makaro/animatplot ``` -- [PyPi](https://pypi.org/project/animatplot) (πŸ“₯ 860 / month Β· πŸ“¦ 4 Β· ⏱️ 29.08.2024): +- [PyPi](https://pypi.org/project/animatplot) (πŸ“₯ 850 / month Β· πŸ“¦ 4 Β· ⏱️ 29.08.2024): ``` pip install animatplot ``` -- [Conda](https://anaconda.org/conda-forge/animatplot) (πŸ“₯ 17K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/animatplot) (πŸ“₯ 17K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge animatplot ``` @@ -1284,27 +1284,27 @@ _General-purpose and task-specific data visualization libraries._ ``` git clone https://github.com/vegafusion/vegafusion ``` -- [PyPi](https://pypi.org/project/vegafusion-jupyter) (πŸ“₯ 2K / month Β· πŸ“¦ 2 Β· ⏱️ 09.05.2024): +- [PyPi](https://pypi.org/project/vegafusion-jupyter) (πŸ“₯ 2.4K / month Β· πŸ“¦ 2 Β· ⏱️ 09.05.2024): ``` pip install vegafusion-jupyter ``` -- [Conda](https://anaconda.org/conda-forge/vegafusion-python-embed) (πŸ“₯ 420K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/vegafusion-python-embed) (πŸ“₯ 420K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge vegafusion-python-embed ``` -- [npm](https://www.npmjs.com/package/vegafusion-jupyter) (πŸ“₯ 280 / month Β· πŸ“¦ 3 Β· ⏱️ 09.05.2024): +- [npm](https://www.npmjs.com/package/vegafusion-jupyter) (πŸ“₯ 310 / month Β· πŸ“¦ 3 Β· ⏱️ 09.05.2024): ``` npm install vegafusion-jupyter ```
ivis (πŸ₯‰19 Β· ⭐ 330 Β· πŸ’€) - Dimensionality reduction in very large datasets using Siamese.. Apache-2 -- [GitHub](https://github.com/beringresearch/ivis) (πŸ‘¨β€πŸ’» 10 Β· πŸ”€ 44 Β· πŸ“¦ 36 Β· πŸ“‹ 60 - 5% open Β· ⏱️ 29.09.2024): +- [GitHub](https://github.com/beringresearch/ivis) (πŸ‘¨β€πŸ’» 10 Β· πŸ”€ 43 Β· πŸ“¦ 37 Β· πŸ“‹ 60 - 5% open Β· ⏱️ 29.09.2024): ``` git clone https://github.com/beringresearch/ivis ``` -- [PyPi](https://pypi.org/project/ivis) (πŸ“₯ 1.6K / month Β· πŸ“¦ 2 Β· ⏱️ 13.06.2024): +- [PyPi](https://pypi.org/project/ivis) (πŸ“₯ 1.8K / month Β· πŸ“¦ 2 Β· ⏱️ 13.06.2024): ``` pip install ivis ``` @@ -1316,11 +1316,11 @@ _General-purpose and task-specific data visualization libraries._ - pythreejs (πŸ₯‰28 Β· ⭐ 960 Β· πŸ’€) - A Jupyter - Three.js bridge. BSD-3 - Facets Overview (πŸ₯‰27 Β· ⭐ 7.4K Β· πŸ’€) - Visualizations for machine learning datasets. Apache-2 - Sweetviz (πŸ₯‰27 Β· ⭐ 3K Β· πŸ’€) - Visualize and compare datasets, target values and associations, with.. MIT -- HiPlot (πŸ₯‰25 Β· ⭐ 2.8K Β· πŸ’€) - HiPlot makes understanding high dimensional data easy. MIT +- HiPlot (πŸ₯‰26 Β· ⭐ 2.8K Β· πŸ’€) - HiPlot makes understanding high dimensional data easy. MIT - HyperTools (πŸ₯‰25 Β· ⭐ 1.8K Β· πŸ’€) - A Python toolbox for gaining geometric insights into high-.. MIT - PandasGUI (πŸ₯‰24 Β· ⭐ 3.2K Β· πŸ’€) - A GUI for Pandas DataFrames. ❗️MIT-0 - Multicore-TSNE (πŸ₯‰24 Β· ⭐ 1.9K Β· πŸ’€) - Parallel t-SNE implementation with Python and Torch.. BSD-3 -- ridgeplot (πŸ₯‰24 Β· ⭐ 220) - Beautiful ridgeline plots in Python. MIT +- ridgeplot (πŸ₯‰24 Β· ⭐ 230) - Beautiful ridgeline plots in Python. MIT - Pandas-Bokeh (πŸ₯‰22 Β· ⭐ 880 Β· πŸ’€) - Bokeh Plotting Backend for Pandas and GeoPandas. MIT - pivottablejs (πŸ₯‰22 Β· ⭐ 700 Β· πŸ’€) - Dragndrop Pivot Tables and Charts for Jupyter/IPython.. MIT - joypy (πŸ₯‰22 Β· ⭐ 590 Β· πŸ’€) - Joyplots in Python with matplotlib & pandas. MIT @@ -1338,18 +1338,18 @@ _General-purpose and task-specific data visualization libraries._ _Libraries for processing, cleaning, manipulating, and analyzing text data as well as libraries for NLP tasks such as language detection, fuzzy matching, classification, seq2seq learning, conversational AI, keyword extraction, and translation._ -
transformers (πŸ₯‡54 Β· ⭐ 140K Β· πŸ“ˆ) - Transformers: State-of-the-art Machine Learning for.. Apache-2 +
transformers (πŸ₯‡54 Β· ⭐ 140K) - Transformers: State-of-the-art Machine Learning for.. Apache-2 -- [GitHub](https://github.com/huggingface/transformers) (πŸ‘¨β€πŸ’» 3.2K Β· πŸ”€ 29K Β· πŸ“¦ 340K Β· πŸ“‹ 18K - 9% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/huggingface/transformers) (πŸ‘¨β€πŸ’» 3.2K Β· πŸ”€ 29K Β· πŸ“¦ 340K Β· πŸ“‹ 18K - 9% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/huggingface/transformers ``` -- [PyPi](https://pypi.org/project/transformers) (πŸ“₯ 59M / month Β· πŸ“¦ 8.4K Β· ⏱️ 14.04.2025): +- [PyPi](https://pypi.org/project/transformers) (πŸ“₯ 62M / month Β· πŸ“¦ 8.4K Β· ⏱️ 14.04.2025): ``` pip install transformers ``` -- [Conda](https://anaconda.org/conda-forge/transformers) (πŸ“₯ 2.7M Β· ⏱️ 14.04.2025): +- [Conda](https://anaconda.org/conda-forge/transformers) (πŸ“₯ 2.7M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge transformers ``` @@ -1361,57 +1361,57 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` git clone https://github.com/nltk/nltk ``` -- [PyPi](https://pypi.org/project/nltk) (πŸ“₯ 32M / month Β· πŸ“¦ 4.7K Β· ⏱️ 18.08.2024): +- [PyPi](https://pypi.org/project/nltk) (πŸ“₯ 33M / month Β· πŸ“¦ 4.7K Β· ⏱️ 18.08.2024): ``` pip install nltk ``` -- [Conda](https://anaconda.org/conda-forge/nltk) (πŸ“₯ 3.1M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/nltk) (πŸ“₯ 3.1M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge nltk ```
-
litellm (πŸ₯‡44 Β· ⭐ 21K) - Python SDK, Proxy Server (LLM Gateway) to call 100+.. MIT o t h e r s +
spaCy (πŸ₯‡43 Β· ⭐ 31K) - Industrial-strength Natural Language Processing (NLP) in Python. MIT -- [GitHub](https://github.com/BerriAI/litellm) (πŸ‘¨β€πŸ’» 480 Β· πŸ”€ 2.6K Β· πŸ“₯ 670 Β· πŸ“¦ 11K Β· πŸ“‹ 5.4K - 30% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/explosion/spaCy) (πŸ‘¨β€πŸ’» 760 Β· πŸ”€ 4.5K Β· πŸ“₯ 2.2K Β· πŸ“¦ 130K Β· πŸ“‹ 5.7K - 3% open Β· ⏱️ 11.04.2025): ``` - git clone https://github.com/BerriAI/litellm + git clone https://github.com/explosion/spaCy ``` -- [PyPi](https://pypi.org/project/litellm) (πŸ“₯ 6.8M / month Β· πŸ“¦ 1.1K Β· ⏱️ 17.04.2025): +- [PyPi](https://pypi.org/project/spacy) (πŸ“₯ 18M / month Β· πŸ“¦ 3.1K Β· ⏱️ 01.04.2025): ``` - pip install litellm + pip install spacy + ``` +- [Conda](https://anaconda.org/conda-forge/spacy) (πŸ“₯ 5.8M Β· ⏱️ 22.04.2025): + ``` + conda install -c conda-forge spacy ```
-
sentence-transformers (πŸ₯‡44 Β· ⭐ 16K Β· πŸ“ˆ) - State-of-the-Art Text Embeddings. Apache-2 +
litellm (πŸ₯‡43 Β· ⭐ 21K Β· πŸ“‰) - Python SDK, Proxy Server (LLM Gateway) to call 100+.. MIT o t h e r s -- [GitHub](https://github.com/UKPLab/sentence-transformers) (πŸ‘¨β€πŸ’» 220 Β· πŸ”€ 2.6K Β· πŸ“¦ 92K Β· πŸ“‹ 2.4K - 52% open Β· ⏱️ 15.04.2025): +- [GitHub](https://github.com/BerriAI/litellm) (πŸ‘¨β€πŸ’» 490 Β· πŸ”€ 2.7K Β· πŸ“₯ 630 Β· πŸ“¦ 11K Β· πŸ“‹ 5.5K - 30% open Β· ⏱️ 24.04.2025): ``` - git clone https://github.com/UKPLab/sentence-transformers - ``` -- [PyPi](https://pypi.org/project/sentence-transformers) (πŸ“₯ 8.6M / month Β· πŸ“¦ 2.4K Β· ⏱️ 15.04.2025): - ``` - pip install sentence-transformers + git clone https://github.com/BerriAI/litellm ``` -- [Conda](https://anaconda.org/conda-forge/sentence-transformers) (πŸ“₯ 650K Β· ⏱️ 15.04.2025): +- [PyPi](https://pypi.org/project/litellm) (πŸ“₯ 7.4M / month Β· πŸ“¦ 1.1K Β· ⏱️ 24.04.2025): ``` - conda install -c conda-forge sentence-transformers + pip install litellm ```
-
spaCy (πŸ₯‡43 Β· ⭐ 31K) - Industrial-strength Natural Language Processing (NLP) in Python. MIT +
sentence-transformers (πŸ₯‡43 Β· ⭐ 17K Β· πŸ“‰) - State-of-the-Art Text Embeddings. Apache-2 -- [GitHub](https://github.com/explosion/spaCy) (πŸ‘¨β€πŸ’» 760 Β· πŸ”€ 4.5K Β· πŸ“₯ 2.2K Β· πŸ“¦ 130K Β· πŸ“‹ 5.7K - 3% open Β· ⏱️ 11.04.2025): +- [GitHub](https://github.com/UKPLab/sentence-transformers) (πŸ‘¨β€πŸ’» 220 Β· πŸ”€ 2.6K Β· πŸ“¦ 96K Β· πŸ“‹ 2.4K - 52% open Β· ⏱️ 24.04.2025): ``` - git clone https://github.com/explosion/spaCy + git clone https://github.com/UKPLab/sentence-transformers ``` -- [PyPi](https://pypi.org/project/spacy) (πŸ“₯ 17M / month Β· πŸ“¦ 3.1K Β· ⏱️ 01.04.2025): +- [PyPi](https://pypi.org/project/sentence-transformers) (πŸ“₯ 8.9M / month Β· πŸ“¦ 2.4K Β· ⏱️ 15.04.2025): ``` - pip install spacy + pip install sentence-transformers ``` -- [Conda](https://anaconda.org/conda-forge/spacy) (πŸ“₯ 5.8M Β· ⏱️ 01.04.2025): +- [Conda](https://anaconda.org/conda-forge/sentence-transformers) (πŸ“₯ 660K Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge spacy + conda install -c conda-forge sentence-transformers ```
flair (πŸ₯‡40 Β· ⭐ 14K) - A very simple framework for state-of-the-art Natural Language Processing.. MIT @@ -1421,11 +1421,11 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` git clone https://github.com/flairNLP/flair ``` -- [PyPi](https://pypi.org/project/flair) (πŸ“₯ 120K / month Β· πŸ“¦ 150 Β· ⏱️ 05.02.2025): +- [PyPi](https://pypi.org/project/flair) (πŸ“₯ 110K / month Β· πŸ“¦ 150 Β· ⏱️ 05.02.2025): ``` pip install flair ``` -- [Conda](https://anaconda.org/conda-forge/python-flair) (πŸ“₯ 41K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/python-flair) (πŸ“₯ 41K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge python-flair ``` @@ -1437,51 +1437,51 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` git clone https://github.com/RasaHQ/rasa ``` -- [PyPi](https://pypi.org/project/rasa) (πŸ“₯ 240K / month Β· πŸ“¦ 60 Β· ⏱️ 14.01.2025): +- [PyPi](https://pypi.org/project/rasa) (πŸ“₯ 220K / month Β· πŸ“¦ 60 Β· ⏱️ 14.01.2025): ``` pip install rasa ```
Tokenizers (πŸ₯‡39 Β· ⭐ 9.6K) - Fast State-of-the-Art Tokenizers optimized for Research and.. Apache-2 -- [GitHub](https://github.com/huggingface/tokenizers) (πŸ‘¨β€πŸ’» 110 Β· πŸ”€ 860 Β· πŸ“₯ 74 Β· πŸ“¦ 160K Β· πŸ“‹ 1.1K - 7% open Β· ⏱️ 18.03.2025): +- [GitHub](https://github.com/huggingface/tokenizers) (πŸ‘¨β€πŸ’» 110 Β· πŸ”€ 870 Β· πŸ“₯ 74 Β· πŸ“¦ 160K Β· πŸ“‹ 1.1K - 7% open Β· ⏱️ 18.03.2025): ``` git clone https://github.com/huggingface/tokenizers ``` -- [PyPi](https://pypi.org/project/tokenizers) (πŸ“₯ 49M / month Β· πŸ“¦ 1.3K Β· ⏱️ 13.03.2025): +- [PyPi](https://pypi.org/project/tokenizers) (πŸ“₯ 51M / month Β· πŸ“¦ 1.3K Β· ⏱️ 13.03.2025): ``` pip install tokenizers ``` -- [Conda](https://anaconda.org/conda-forge/tokenizers) (πŸ“₯ 2.8M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/tokenizers) (πŸ“₯ 2.9M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge tokenizers ```
haystack (πŸ₯‡38 Β· ⭐ 20K) - AI orchestration framework to build customizable, production-ready.. Apache-2 -- [GitHub](https://github.com/deepset-ai/haystack) (πŸ‘¨β€πŸ’» 280 Β· πŸ”€ 2.1K Β· πŸ“¦ 1K Β· πŸ“‹ 3.9K - 3% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/deepset-ai/haystack) (πŸ‘¨β€πŸ’» 290 Β· πŸ”€ 2.1K Β· πŸ“¦ 1.1K Β· πŸ“‹ 3.9K - 3% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/deepset-ai/haystack ``` -- [PyPi](https://pypi.org/project/haystack) (πŸ“₯ 5.8K / month Β· πŸ“¦ 5 Β· ⏱️ 15.12.2021): +- [PyPi](https://pypi.org/project/haystack) (πŸ“₯ 5.9K / month Β· πŸ“¦ 5 Β· ⏱️ 15.12.2021): ``` pip install haystack ```
gensim (πŸ₯‡38 Β· ⭐ 16K) - Topic Modelling for Humans. ❗️LGPL-2.1 -- [GitHub](https://github.com/piskvorky/gensim) (πŸ‘¨β€πŸ’» 460 Β· πŸ”€ 4.4K Β· πŸ“₯ 6K Β· πŸ“¦ 74K Β· πŸ“‹ 1.9K - 21% open Β· ⏱️ 14.02.2025): +- [GitHub](https://github.com/piskvorky/gensim) (πŸ‘¨β€πŸ’» 460 Β· πŸ”€ 4.4K Β· πŸ“₯ 6K Β· πŸ“¦ 75K Β· πŸ“‹ 1.9K - 21% open Β· ⏱️ 14.02.2025): ``` git clone https://github.com/RaRe-Technologies/gensim ``` -- [PyPi](https://pypi.org/project/gensim) (πŸ“₯ 4.7M / month Β· πŸ“¦ 1.4K Β· ⏱️ 19.07.2024): +- [PyPi](https://pypi.org/project/gensim) (πŸ“₯ 4.8M / month Β· πŸ“¦ 1.4K Β· ⏱️ 19.07.2024): ``` pip install gensim ``` -- [Conda](https://anaconda.org/conda-forge/gensim) (πŸ“₯ 1.6M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/gensim) (πŸ“₯ 1.6M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge gensim ``` @@ -1493,42 +1493,42 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` git clone https://github.com/gunthercox/ChatterBot ``` -- [PyPi](https://pypi.org/project/chatterbot) (πŸ“₯ 34K / month Β· πŸ“¦ 18 Β· ⏱️ 05.04.2025): +- [PyPi](https://pypi.org/project/chatterbot) (πŸ“₯ 32K / month Β· πŸ“¦ 18 Β· ⏱️ 05.04.2025): ``` pip install chatterbot ```
NeMo (πŸ₯‡38 Β· ⭐ 14K) - A scalable generative AI framework built for researchers and.. Apache-2 -- [GitHub](https://github.com/NVIDIA/NeMo) (πŸ‘¨β€πŸ’» 410 Β· πŸ”€ 2.8K Β· πŸ“₯ 410K Β· πŸ“¦ 21 Β· πŸ“‹ 2.6K - 7% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/NVIDIA/NeMo) (πŸ‘¨β€πŸ’» 410 Β· πŸ”€ 2.8K Β· πŸ“₯ 420K Β· πŸ“¦ 21 Β· πŸ“‹ 2.6K - 6% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/NVIDIA/NeMo ``` -- [PyPi](https://pypi.org/project/nemo-toolkit) (πŸ“₯ 260K / month Β· πŸ“¦ 14 Β· ⏱️ 15.04.2025): +- [PyPi](https://pypi.org/project/nemo-toolkit) (πŸ“₯ 300K / month Β· πŸ“¦ 14 Β· ⏱️ 21.04.2025): ``` pip install nemo-toolkit ```
sentencepiece (πŸ₯‡38 Β· ⭐ 11K) - Unsupervised text tokenizer for Neural Network-based text.. Apache-2 -- [GitHub](https://github.com/google/sentencepiece) (πŸ‘¨β€πŸ’» 92 Β· πŸ”€ 1.2K Β· πŸ“₯ 55K Β· πŸ“¦ 110K Β· πŸ“‹ 780 - 6% open Β· ⏱️ 26.02.2025): +- [GitHub](https://github.com/google/sentencepiece) (πŸ‘¨β€πŸ’» 92 Β· πŸ”€ 1.2K Β· πŸ“₯ 56K Β· πŸ“¦ 110K Β· πŸ“‹ 780 - 6% open Β· ⏱️ 26.02.2025): ``` git clone https://github.com/google/sentencepiece ``` -- [PyPi](https://pypi.org/project/sentencepiece) (πŸ“₯ 26M / month Β· πŸ“¦ 1.7K Β· ⏱️ 19.02.2024): +- [PyPi](https://pypi.org/project/sentencepiece) (πŸ“₯ 28M / month Β· πŸ“¦ 1.7K Β· ⏱️ 19.02.2024): ``` pip install sentencepiece ``` -- [Conda](https://anaconda.org/conda-forge/sentencepiece) (πŸ“₯ 1.5M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/sentencepiece) (πŸ“₯ 1.5M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge sentencepiece ```
TextBlob (πŸ₯‡38 Β· ⭐ 9.3K) - Simple, Pythonic, text processing--Sentiment analysis, part-of-speech.. MIT -- [GitHub](https://github.com/sloria/TextBlob) (πŸ‘¨β€πŸ’» 37 Β· πŸ”€ 1.2K Β· πŸ“₯ 120 Β· πŸ“¦ 54K Β· πŸ“‹ 280 - 34% open Β· ⏱️ 15.04.2025): +- [GitHub](https://github.com/sloria/TextBlob) (πŸ‘¨β€πŸ’» 37 Β· πŸ”€ 1.2K Β· πŸ“₯ 120 Β· πŸ“¦ 55K Β· πŸ“‹ 280 - 34% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/sloria/TextBlob @@ -1537,42 +1537,42 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` pip install textblob ``` -- [Conda](https://anaconda.org/conda-forge/textblob) (πŸ“₯ 280K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/textblob) (πŸ“₯ 280K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge textblob ```
fairseq (πŸ₯ˆ37 Β· ⭐ 31K) - Facebook AI Research Sequence-to-Sequence Toolkit written in Python. MIT -- [GitHub](https://github.com/facebookresearch/fairseq) (πŸ‘¨β€πŸ’» 430 Β· πŸ”€ 6.5K Β· πŸ“₯ 400 Β· πŸ“¦ 4.1K Β· πŸ“‹ 4.4K - 30% open Β· ⏱️ 18.10.2024): +- [GitHub](https://github.com/facebookresearch/fairseq) (πŸ‘¨β€πŸ’» 430 Β· πŸ”€ 6.5K Β· πŸ“₯ 400 Β· πŸ“¦ 4.2K Β· πŸ“‹ 4.4K - 30% open Β· ⏱️ 18.10.2024): ``` git clone https://github.com/facebookresearch/fairseq ``` -- [PyPi](https://pypi.org/project/fairseq) (πŸ“₯ 97K / month Β· πŸ“¦ 120 Β· ⏱️ 27.06.2022): +- [PyPi](https://pypi.org/project/fairseq) (πŸ“₯ 94K / month Β· πŸ“¦ 120 Β· ⏱️ 27.06.2022): ``` pip install fairseq ``` -- [Conda](https://anaconda.org/conda-forge/fairseq) (πŸ“₯ 140K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/fairseq) (πŸ“₯ 140K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge fairseq ```
TensorFlow Text (πŸ₯ˆ36 Β· ⭐ 1.3K) - Making text a first-class citizen in TensorFlow. Apache-2 -- [GitHub](https://github.com/tensorflow/text) (πŸ‘¨β€πŸ’» 180 Β· πŸ”€ 350 Β· πŸ“¦ 8.9K Β· πŸ“‹ 370 - 52% open Β· ⏱️ 24.03.2025): +- [GitHub](https://github.com/tensorflow/text) (πŸ‘¨β€πŸ’» 180 Β· πŸ”€ 350 Β· πŸ“¦ 9.1K Β· πŸ“‹ 370 - 52% open Β· ⏱️ 24.03.2025): ``` git clone https://github.com/tensorflow/text ``` -- [PyPi](https://pypi.org/project/tensorflow-text) (πŸ“₯ 7.1M / month Β· πŸ“¦ 230 Β· ⏱️ 04.04.2025): +- [PyPi](https://pypi.org/project/tensorflow-text) (πŸ“₯ 7M / month Β· πŸ“¦ 230 Β· ⏱️ 04.04.2025): ``` pip install tensorflow-text ```
spark-nlp (πŸ₯ˆ35 Β· ⭐ 4K) - State of the Art Natural Language Processing. Apache-2 -- [GitHub](https://github.com/JohnSnowLabs/spark-nlp) (πŸ‘¨β€πŸ’» 110 Β· πŸ”€ 720 Β· πŸ“¦ 580 Β· πŸ“‹ 920 - 5% open Β· ⏱️ 20.02.2025): +- [GitHub](https://github.com/JohnSnowLabs/spark-nlp) (πŸ‘¨β€πŸ’» 110 Β· πŸ”€ 720 Β· πŸ“¦ 590 Β· πŸ“‹ 930 - 5% open Β· ⏱️ 20.02.2025): ``` git clone https://github.com/JohnSnowLabs/spark-nlp @@ -1584,7 +1584,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we
qdrant (πŸ₯ˆ34 Β· ⭐ 23K) - Qdrant - High-performance, massive-scale Vector Database and Vector.. Apache-2 -- [GitHub](https://github.com/qdrant/qdrant) (πŸ‘¨β€πŸ’» 130 Β· πŸ”€ 1.6K Β· πŸ“₯ 380K Β· πŸ“¦ 120 Β· πŸ“‹ 1.5K - 23% open Β· ⏱️ 31.03.2025): +- [GitHub](https://github.com/qdrant/qdrant) (πŸ‘¨β€πŸ’» 130 Β· πŸ”€ 1.6K Β· πŸ“₯ 380K Β· πŸ“¦ 120 Β· πŸ“‹ 1.5K - 23% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/qdrant/qdrant @@ -1592,12 +1592,12 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we
stanza (πŸ₯ˆ33 Β· ⭐ 7.4K) - Stanford NLP Python library for tokenization, sentence segmentation,.. Apache-2 -- [GitHub](https://github.com/stanfordnlp/stanza) (πŸ‘¨β€πŸ’» 69 Β· πŸ”€ 900 Β· πŸ“¦ 3.7K Β· πŸ“‹ 920 - 10% open Β· ⏱️ 24.12.2024): +- [GitHub](https://github.com/stanfordnlp/stanza) (πŸ‘¨β€πŸ’» 69 Β· πŸ”€ 900 Β· πŸ“¦ 3.8K Β· πŸ“‹ 920 - 10% open Β· ⏱️ 24.12.2024): ``` git clone https://github.com/stanfordnlp/stanza ``` -- [PyPi](https://pypi.org/project/stanza) (πŸ“₯ 350K / month Β· πŸ“¦ 200 Β· ⏱️ 24.12.2024): +- [PyPi](https://pypi.org/project/stanza) (πŸ“₯ 360K / month Β· πŸ“¦ 200 Β· ⏱️ 24.12.2024): ``` pip install stanza ``` @@ -1608,12 +1608,12 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we
OpenNMT (πŸ₯ˆ33 Β· ⭐ 6.9K Β· πŸ’€) - Open Source Neural Machine Translation and (Large) Language.. MIT -- [GitHub](https://github.com/OpenNMT/OpenNMT-py) (πŸ‘¨β€πŸ’» 190 Β· πŸ”€ 2.2K Β· πŸ“¦ 330 Β· πŸ“‹ 1.5K - 1% open Β· ⏱️ 27.06.2024): +- [GitHub](https://github.com/OpenNMT/OpenNMT-py) (πŸ‘¨β€πŸ’» 190 Β· πŸ”€ 2.3K Β· πŸ“¦ 330 Β· πŸ“‹ 1.5K - 2% open Β· ⏱️ 27.06.2024): ``` git clone https://github.com/OpenNMT/OpenNMT-py ``` -- [PyPi](https://pypi.org/project/OpenNMT-py) (πŸ“₯ 18K / month Β· πŸ“¦ 23 Β· ⏱️ 18.03.2024): +- [PyPi](https://pypi.org/project/OpenNMT-py) (πŸ“₯ 13K / month Β· πŸ“¦ 23 Β· ⏱️ 18.03.2024): ``` pip install OpenNMT-py ``` @@ -1625,39 +1625,39 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` git clone https://github.com/jamesturk/jellyfish ``` -- [PyPi](https://pypi.org/project/jellyfish) (πŸ“₯ 7.2M / month Β· πŸ“¦ 300 Β· ⏱️ 31.03.2025): +- [PyPi](https://pypi.org/project/jellyfish) (πŸ“₯ 7.5M / month Β· πŸ“¦ 300 Β· ⏱️ 31.03.2025): ``` pip install jellyfish ``` -- [Conda](https://anaconda.org/conda-forge/jellyfish) (πŸ“₯ 1.3M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/jellyfish) (πŸ“₯ 1.3M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge jellyfish ```
-
Opik (πŸ₯ˆ32 Β· ⭐ 6.5K) - Debug, evaluate, and monitor your LLM applications, RAG systems, and.. Apache-2 +
Opik (πŸ₯ˆ32 Β· ⭐ 6.8K) - Debug, evaluate, and monitor your LLM applications, RAG systems, and.. Apache-2 -- [GitHub](https://github.com/comet-ml/opik) (πŸ‘¨β€πŸ’» 46 Β· πŸ”€ 470 Β· πŸ“₯ 12 Β· πŸ“¦ 6 Β· πŸ“‹ 250 - 27% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/comet-ml/opik) (πŸ‘¨β€πŸ’» 50 Β· πŸ”€ 490 Β· πŸ“₯ 12 Β· πŸ“¦ 6 Β· πŸ“‹ 260 - 29% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/comet-ml/opik ``` -- [PyPi](https://pypi.org/project/opik) (πŸ“₯ 140K / month Β· πŸ“¦ 8 Β· ⏱️ 16.04.2025): +- [PyPi](https://pypi.org/project/opik) (πŸ“₯ 210K / month Β· πŸ“¦ 10 Β· ⏱️ 23.04.2025): ``` pip install opik ```
-
rubrix (πŸ₯ˆ32 Β· ⭐ 4.4K) - Argilla is a collaboration tool for AI engineers and domain experts.. Apache-2 +
rubrix (πŸ₯ˆ32 Β· ⭐ 4.5K) - Argilla is a collaboration tool for AI engineers and domain experts.. Apache-2 - [GitHub](https://github.com/argilla-io/argilla) (πŸ‘¨β€πŸ’» 110 Β· πŸ”€ 420 Β· πŸ“¦ 3K Β· πŸ“‹ 2.2K - 2% open Β· ⏱️ 10.03.2025): ``` git clone https://github.com/recognai/rubrix ``` -- [PyPi](https://pypi.org/project/rubrix) (πŸ“₯ 4K / month Β· ⏱️ 24.10.2022): +- [PyPi](https://pypi.org/project/rubrix) (πŸ“₯ 3.6K / month Β· ⏱️ 24.10.2022): ``` pip install rubrix ``` -- [Conda](https://anaconda.org/conda-forge/rubrix) (πŸ“₯ 44K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/rubrix) (πŸ“₯ 44K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge rubrix ``` @@ -1669,23 +1669,23 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` git clone https://github.com/pytorch/text ``` -- [PyPi](https://pypi.org/project/torchtext) (πŸ“₯ 900K / month Β· πŸ“¦ 280 Β· ⏱️ 24.04.2024): +- [PyPi](https://pypi.org/project/torchtext) (πŸ“₯ 840K / month Β· πŸ“¦ 280 Β· ⏱️ 24.04.2024): ``` pip install torchtext ```
snowballstemmer (πŸ₯ˆ32 Β· ⭐ 780) - Snowball compiler and stemming algorithms. BSD-3 -- [GitHub](https://github.com/snowballstem/snowball) (πŸ‘¨β€πŸ’» 35 Β· πŸ”€ 170 Β· πŸ“¦ 10 Β· πŸ“‹ 110 - 22% open Β· ⏱️ 11.04.2025): +- [GitHub](https://github.com/snowballstem/snowball) (πŸ‘¨β€πŸ’» 35 Β· πŸ”€ 170 Β· πŸ“¦ 10 Β· πŸ“‹ 110 - 22% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/snowballstem/snowball ``` -- [PyPi](https://pypi.org/project/snowballstemmer) (πŸ“₯ 18M / month Β· πŸ“¦ 450 Β· ⏱️ 16.11.2021): +- [PyPi](https://pypi.org/project/snowballstemmer) (πŸ“₯ 19M / month Β· πŸ“¦ 450 Β· ⏱️ 16.11.2021): ``` pip install snowballstemmer ``` -- [Conda](https://anaconda.org/conda-forge/snowballstemmer) (πŸ“₯ 9.6M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/snowballstemmer) (πŸ“₯ 9.6M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge snowballstemmer ``` @@ -1704,16 +1704,16 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we
ftfy (πŸ₯ˆ31 Β· ⭐ 3.9K) - Fixes mojibake and other glitches in Unicode text, after the fact. Apache-2 -- [GitHub](https://github.com/rspeer/python-ftfy) (πŸ‘¨β€πŸ’» 20 Β· πŸ”€ 120 Β· πŸ“₯ 58 Β· πŸ“¦ 30K Β· πŸ“‹ 150 - 6% open Β· ⏱️ 30.10.2024): +- [GitHub](https://github.com/rspeer/python-ftfy) (πŸ‘¨β€πŸ’» 20 Β· πŸ”€ 120 Β· πŸ“₯ 59 Β· πŸ“¦ 30K Β· πŸ“‹ 150 - 6% open Β· ⏱️ 30.10.2024): ``` git clone https://github.com/rspeer/python-ftfy ``` -- [PyPi](https://pypi.org/project/ftfy) (πŸ“₯ 5.9M / month Β· πŸ“¦ 570 Β· ⏱️ 26.10.2024): +- [PyPi](https://pypi.org/project/ftfy) (πŸ“₯ 6M / month Β· πŸ“¦ 570 Β· ⏱️ 26.10.2024): ``` pip install ftfy ``` -- [Conda](https://anaconda.org/conda-forge/ftfy) (πŸ“₯ 320K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/ftfy) (πŸ“₯ 320K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge ftfy ``` @@ -1729,7 +1729,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` pip install dedupe ``` -- [Conda](https://anaconda.org/conda-forge/dedupe) (πŸ“₯ 100K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/dedupe) (πŸ“₯ 110K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge dedupe ``` @@ -1741,91 +1741,103 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` git clone https://github.com/miso-belica/sumy ``` -- [PyPi](https://pypi.org/project/sumy) (πŸ“₯ 140K / month Β· πŸ“¦ 31 Β· ⏱️ 23.10.2022): +- [PyPi](https://pypi.org/project/sumy) (πŸ“₯ 120K / month Β· πŸ“¦ 31 Β· ⏱️ 23.10.2022): ``` pip install sumy ``` -- [Conda](https://anaconda.org/conda-forge/sumy) (πŸ“₯ 12K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/sumy) (πŸ“₯ 12K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge sumy ```
-
TextDistance (πŸ₯ˆ29 Β· ⭐ 3.5K Β· πŸ’€) - Compute distance between sequences. 30+ algorithms, pure.. MIT +
spacy-transformers (πŸ₯ˆ29 Β· ⭐ 1.4K) - Use pretrained transformers like BERT, XLNet and GPT-2.. MIT spacy + +- [GitHub](https://github.com/explosion/spacy-transformers) (πŸ‘¨β€πŸ’» 23 Β· πŸ”€ 170 Β· πŸ“₯ 170 Β· πŸ“¦ 2.2K Β· ⏱️ 06.02.2025): + + ``` + git clone https://github.com/explosion/spacy-transformers + ``` +- [PyPi](https://pypi.org/project/spacy-transformers) (πŸ“₯ 220K / month Β· πŸ“¦ 98 Β· ⏱️ 06.02.2025): + ``` + pip install spacy-transformers + ``` +- [Conda](https://anaconda.org/conda-forge/spacy-transformers) (πŸ“₯ 110K Β· ⏱️ 22.04.2025): + ``` + conda install -c conda-forge spacy-transformers + ``` +
+
TextDistance (πŸ₯ˆ28 Β· ⭐ 3.5K) - Compute distance between sequences. 30+ algorithms, pure python.. MIT -- [GitHub](https://github.com/life4/textdistance) (πŸ‘¨β€πŸ’» 17 Β· πŸ”€ 250 Β· πŸ“₯ 1.1K Β· πŸ“¦ 8.3K Β· ⏱️ 09.09.2024): +- [GitHub](https://github.com/life4/textdistance) (πŸ‘¨β€πŸ’» 18 Β· πŸ”€ 250 Β· πŸ“₯ 1.1K Β· πŸ“¦ 8.4K Β· ⏱️ 18.04.2025): ``` git clone https://github.com/life4/textdistance ``` -- [PyPi](https://pypi.org/project/textdistance) (πŸ“₯ 1.1M / month Β· πŸ“¦ 99 Β· ⏱️ 16.07.2024): +- [PyPi](https://pypi.org/project/textdistance) (πŸ“₯ 1M / month Β· πŸ“¦ 99 Β· ⏱️ 16.07.2024): ``` pip install textdistance ``` -- [Conda](https://anaconda.org/conda-forge/textdistance) (πŸ“₯ 790K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/textdistance) (πŸ“₯ 800K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge textdistance ```
-
SciSpacy (πŸ₯ˆ29 Β· ⭐ 1.8K) - A full spaCy pipeline and models for scientific/biomedical documents. Apache-2 +
SciSpacy (πŸ₯ˆ28 Β· ⭐ 1.8K) - A full spaCy pipeline and models for scientific/biomedical documents. Apache-2 - [GitHub](https://github.com/allenai/scispacy) (πŸ‘¨β€πŸ’» 37 Β· πŸ”€ 230 Β· πŸ“¦ 1.2K Β· πŸ“‹ 320 - 10% open Β· ⏱️ 23.11.2024): ``` git clone https://github.com/allenai/scispacy ``` -- [PyPi](https://pypi.org/project/scispacy) (πŸ“₯ 94K / month Β· πŸ“¦ 34 Β· ⏱️ 27.10.2024): +- [PyPi](https://pypi.org/project/scispacy) (πŸ“₯ 39K / month Β· πŸ“¦ 34 Β· ⏱️ 27.10.2024): ``` pip install scispacy ```
-
spacy-transformers (πŸ₯ˆ29 Β· ⭐ 1.4K) - Use pretrained transformers like BERT, XLNet and GPT-2.. MIT spacy +
english-words (πŸ₯‰27 Β· ⭐ 11K) - A text file containing 479k English words for all your.. Unlicense -- [GitHub](https://github.com/explosion/spacy-transformers) (πŸ‘¨β€πŸ’» 23 Β· πŸ”€ 170 Β· πŸ“₯ 170 Β· πŸ“¦ 2.2K Β· ⏱️ 06.02.2025): +- [GitHub](https://github.com/dwyl/english-words) (πŸ‘¨β€πŸ’» 34 Β· πŸ”€ 1.9K Β· πŸ“¦ 2 Β· πŸ“‹ 160 - 74% open Β· ⏱️ 06.01.2025): ``` - git clone https://github.com/explosion/spacy-transformers - ``` -- [PyPi](https://pypi.org/project/spacy-transformers) (πŸ“₯ 220K / month Β· πŸ“¦ 98 Β· ⏱️ 06.02.2025): - ``` - pip install spacy-transformers + git clone https://github.com/dwyl/english-words ``` -- [Conda](https://anaconda.org/conda-forge/spacy-transformers) (πŸ“₯ 110K Β· ⏱️ 25.03.2025): +- [PyPi](https://pypi.org/project/english-words) (πŸ“₯ 63K / month Β· πŸ“¦ 14 Β· ⏱️ 24.05.2023): ``` - conda install -c conda-forge spacy-transformers + pip install english-words ```
-
english-words (πŸ₯‰27 Β· ⭐ 11K) - A text file containing 479k English words for all your.. Unlicense +
PyTextRank (πŸ₯‰27 Β· ⭐ 2.2K Β· πŸ’€) - Python implementation of TextRank algorithms (textgraphs) for.. MIT -- [GitHub](https://github.com/dwyl/english-words) (πŸ‘¨β€πŸ’» 34 Β· πŸ”€ 1.9K Β· πŸ“¦ 2 Β· πŸ“‹ 160 - 74% open Β· ⏱️ 06.01.2025): +- [GitHub](https://github.com/DerwenAI/pytextrank) (πŸ‘¨β€πŸ’» 19 Β· πŸ”€ 340 Β· πŸ“¦ 840 Β· πŸ“‹ 100 - 12% open Β· ⏱️ 21.05.2024): ``` - git clone https://github.com/dwyl/english-words + git clone https://github.com/DerwenAI/pytextrank ``` -- [PyPi](https://pypi.org/project/english-words) (πŸ“₯ 72K / month Β· πŸ“¦ 14 Β· ⏱️ 24.05.2023): +- [PyPi](https://pypi.org/project/pytextrank) (πŸ“₯ 73K / month Β· πŸ“¦ 19 Β· ⏱️ 21.02.2024): ``` - pip install english-words + pip install pytextrank ```
CLTK (πŸ₯‰27 Β· ⭐ 850) - The Classical Language Toolkit. MIT -- [GitHub](https://github.com/cltk/cltk) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 330 Β· πŸ“₯ 130 Β· πŸ“¦ 290 Β· πŸ“‹ 580 - 6% open Β· ⏱️ 01.12.2024): +- [GitHub](https://github.com/cltk/cltk) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 330 Β· πŸ“₯ 130 Β· πŸ“¦ 300 Β· πŸ“‹ 580 - 6% open Β· ⏱️ 01.12.2024): ``` git clone https://github.com/cltk/cltk ``` -- [PyPi](https://pypi.org/project/cltk) (πŸ“₯ 5.6K / month Β· πŸ“¦ 17 Β· ⏱️ 01.12.2024): +- [PyPi](https://pypi.org/project/cltk) (πŸ“₯ 7K / month Β· πŸ“¦ 17 Β· ⏱️ 01.12.2024): ``` pip install cltk ```
DeepKE (πŸ₯‰26 Β· ⭐ 3.9K) - [EMNLP 2022] An Open Toolkit for Knowledge Graph Extraction and.. MIT -- [GitHub](https://github.com/zjunlp/DeepKE) (πŸ‘¨β€πŸ’» 33 Β· πŸ”€ 700 Β· πŸ“¦ 24 Β· πŸ“‹ 600 - 1% open Β· ⏱️ 10.03.2025): +- [GitHub](https://github.com/zjunlp/DeepKE) (πŸ‘¨β€πŸ’» 33 Β· πŸ”€ 710 Β· πŸ“¦ 24 Β· πŸ“‹ 610 - 1% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/zjunlp/deepke ``` -- [PyPi](https://pypi.org/project/deepke) (πŸ“₯ 2.6K / month Β· ⏱️ 21.09.2023): +- [PyPi](https://pypi.org/project/deepke) (πŸ“₯ 2K / month Β· ⏱️ 21.09.2023): ``` pip install deepke ``` @@ -1837,35 +1849,39 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` git clone https://github.com/JasonKessler/scattertext ``` -- [PyPi](https://pypi.org/project/scattertext) (πŸ“₯ 12K / month Β· πŸ“¦ 5 Β· ⏱️ 23.09.2024): +- [PyPi](https://pypi.org/project/scattertext) (πŸ“₯ 11K / month Β· πŸ“¦ 5 Β· ⏱️ 23.09.2024): ``` pip install scattertext ``` -- [Conda](https://anaconda.org/conda-forge/scattertext) (πŸ“₯ 110K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/scattertext) (πŸ“₯ 110K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge scattertext ```
-
PyTextRank (πŸ₯‰26 Β· ⭐ 2.2K Β· πŸ’€) - Python implementation of TextRank algorithms (textgraphs) for.. MIT +
sense2vec (πŸ₯‰24 Β· ⭐ 1.6K) - Contextually-keyed word vectors. MIT -- [GitHub](https://github.com/DerwenAI/pytextrank) (πŸ‘¨β€πŸ’» 19 Β· πŸ”€ 340 Β· πŸ“¦ 830 Β· πŸ“‹ 100 - 12% open Β· ⏱️ 21.05.2024): +- [GitHub](https://github.com/explosion/sense2vec) (πŸ‘¨β€πŸ’» 20 Β· πŸ”€ 240 Β· πŸ“₯ 72K Β· πŸ“¦ 460 Β· πŸ“‹ 120 - 20% open Β· ⏱️ 23.04.2025): ``` - git clone https://github.com/DerwenAI/pytextrank + git clone https://github.com/explosion/sense2vec ``` -- [PyPi](https://pypi.org/project/pytextrank) (πŸ“₯ 70K / month Β· πŸ“¦ 19 Β· ⏱️ 21.02.2024): +- [PyPi](https://pypi.org/project/sense2vec) (πŸ“₯ 2.7K / month Β· πŸ“¦ 13 Β· ⏱️ 19.04.2021): ``` - pip install pytextrank + pip install sense2vec + ``` +- [Conda](https://anaconda.org/conda-forge/sense2vec) (πŸ“₯ 59K Β· ⏱️ 22.04.2025): + ``` + conda install -c conda-forge sense2vec ```
detoxify (πŸ₯‰24 Β· ⭐ 1K) - Trained models & code to predict toxic comments on all 3 Jigsaw Toxic.. Apache-2 -- [GitHub](https://github.com/unitaryai/detoxify) (πŸ‘¨β€πŸ’» 14 Β· πŸ”€ 120 Β· πŸ“₯ 1.1M Β· πŸ“¦ 860 Β· πŸ“‹ 67 - 55% open Β· ⏱️ 07.03.2025): +- [GitHub](https://github.com/unitaryai/detoxify) (πŸ‘¨β€πŸ’» 14 Β· πŸ”€ 120 Β· πŸ“₯ 1.1M Β· πŸ“¦ 870 Β· πŸ“‹ 67 - 55% open Β· ⏱️ 07.03.2025): ``` git clone https://github.com/unitaryai/detoxify ``` -- [PyPi](https://pypi.org/project/detoxify) (πŸ“₯ 170K / month Β· πŸ“¦ 30 Β· ⏱️ 01.02.2024): +- [PyPi](https://pypi.org/project/detoxify) (πŸ“₯ 120K / month Β· πŸ“¦ 30 Β· ⏱️ 01.02.2024): ``` pip install detoxify ``` @@ -1901,14 +1917,14 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` git clone https://github.com/IndicoDataSolutions/finetune ``` -- [PyPi](https://pypi.org/project/finetune) (πŸ“₯ 780 / month Β· πŸ“¦ 2 Β· ⏱️ 29.09.2023): +- [PyPi](https://pypi.org/project/finetune) (πŸ“₯ 750 / month Β· πŸ“¦ 2 Β· ⏱️ 29.09.2023): ``` pip install finetune ```
small-text (πŸ₯‰22 Β· ⭐ 610) - Active Learning for Text Classification in Python. MIT -- [GitHub](https://github.com/webis-de/small-text) (πŸ‘¨β€πŸ’» 9 Β· πŸ”€ 69 Β· πŸ“¦ 34 Β· πŸ“‹ 65 - 26% open Β· ⏱️ 06.04.2025): +- [GitHub](https://github.com/webis-de/small-text) (πŸ‘¨β€πŸ’» 9 Β· πŸ”€ 70 Β· πŸ“¦ 34 Β· πŸ“‹ 66 - 27% open Β· ⏱️ 06.04.2025): ``` git clone https://github.com/webis-de/small-text @@ -1917,7 +1933,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` pip install small-text ``` -- [Conda](https://anaconda.org/conda-forge/small-text) (πŸ“₯ 14K Β· ⏱️ 06.04.2025): +- [Conda](https://anaconda.org/conda-forge/small-text) (πŸ“₯ 14K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge small-text ``` @@ -1929,7 +1945,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` git clone https://github.com/EricFillion/happy-transformer ``` -- [PyPi](https://pypi.org/project/happytransformer) (πŸ“₯ 3.2K / month Β· πŸ“¦ 5 Β· ⏱️ 05.08.2023): +- [PyPi](https://pypi.org/project/happytransformer) (πŸ“₯ 3.1K / month Β· πŸ“¦ 5 Β· ⏱️ 05.08.2023): ``` pip install happytransformer ``` @@ -1941,19 +1957,19 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` git clone https://github.com/utterworks/fast-bert ``` -- [PyPi](https://pypi.org/project/fast-bert) (πŸ“₯ 2K / month Β· ⏱️ 19.08.2024): +- [PyPi](https://pypi.org/project/fast-bert) (πŸ“₯ 2.5K / month Β· ⏱️ 19.08.2024): ``` pip install fast-bert ```
-
UForm (πŸ₯‰20 Β· ⭐ 1.1K) - Pocket-Sized Multimodal AI for content understanding and.. Apache-2 +
UForm (πŸ₯‰21 Β· ⭐ 1.1K) - Pocket-Sized Multimodal AI for content understanding and.. Apache-2 -- [GitHub](https://github.com/unum-cloud/uform) (πŸ‘¨β€πŸ’» 19 Β· πŸ”€ 63 Β· πŸ“₯ 590 Β· πŸ“¦ 32 Β· πŸ“‹ 33 - 33% open Β· ⏱️ 03.01.2025): +- [GitHub](https://github.com/unum-cloud/uform) (πŸ‘¨β€πŸ’» 19 Β· πŸ”€ 64 Β· πŸ“₯ 600 Β· πŸ“¦ 34 Β· πŸ“‹ 34 - 35% open Β· ⏱️ 03.01.2025): ``` git clone https://github.com/unum-cloud/uform ``` -- [PyPi](https://pypi.org/project/uform) (πŸ“₯ 1.1K / month Β· πŸ“¦ 2 Β· ⏱️ 03.01.2025): +- [PyPi](https://pypi.org/project/uform) (πŸ“₯ 1.2K / month Β· πŸ“¦ 2 Β· ⏱️ 03.01.2025): ``` pip install uform ``` @@ -1965,23 +1981,23 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we ``` git clone https://github.com/facebookresearch/vizseq ``` -- [PyPi](https://pypi.org/project/vizseq) (πŸ“₯ 280 / month Β· ⏱️ 07.08.2020): +- [PyPi](https://pypi.org/project/vizseq) (πŸ“₯ 290 / month Β· ⏱️ 07.08.2020): ``` pip install vizseq ```
-
Show 57 hidden projects... +
Show 56 hidden projects... - AllenNLP (πŸ₯ˆ37 Β· ⭐ 12K Β· πŸ’€) - An open-source NLP research library, built on PyTorch. Apache-2 - fastText (πŸ₯ˆ35 Β· ⭐ 26K Β· πŸ’€) - Library for fast text representation and classification. MIT - ParlAI (πŸ₯ˆ32 Β· ⭐ 11K Β· πŸ’€) - A framework for training and evaluating AI models on a variety of.. MIT - fuzzywuzzy (πŸ₯ˆ32 Β· ⭐ 9.3K Β· πŸ’€) - Fuzzy String Matching in Python. ❗️GPL-2.0 -- nlpaug (πŸ₯ˆ30 Β· ⭐ 4.5K Β· πŸ’€) - Data augmentation for NLP. MIT -- GluonNLP (πŸ₯ˆ29 Β· ⭐ 2.6K Β· πŸ’€) - Toolkit that enables easy text preprocessing, datasets.. Apache-2 +- nlpaug (πŸ₯ˆ30 Β· ⭐ 4.6K Β· πŸ’€) - Data augmentation for NLP. MIT - langid (πŸ₯ˆ29 Β· ⭐ 2.4K Β· πŸ’€) - Stand-alone language identification system. BSD-3 - Ciphey (πŸ₯ˆ28 Β· ⭐ 19K Β· πŸ’€) - Automatically decrypt encryptions without knowing the key or cipher,.. MIT - vaderSentiment (πŸ₯ˆ28 Β· ⭐ 4.7K Β· πŸ’€) - VADER Sentiment Analysis. VADER (Valence Aware Dictionary.. MIT - fastNLP (πŸ₯ˆ28 Β· ⭐ 3.1K Β· πŸ’€) - fastNLP: A Modularized and Extensible NLP Framework. Currently.. Apache-2 +- GluonNLP (πŸ₯ˆ28 Β· ⭐ 2.6K Β· πŸ’€) - Toolkit that enables easy text preprocessing, datasets.. Apache-2 - textacy (πŸ₯ˆ28 Β· ⭐ 2.2K Β· πŸ’€) - NLP, before and after spaCy. ❗Unlicensed - flashtext (πŸ₯‰27 Β· ⭐ 5.6K Β· πŸ’€) - Extract Keywords from sentence or Replace keywords in sentences. MIT - pySBD (πŸ₯‰27 Β· ⭐ 850 Β· πŸ’€) - pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence.. MIT @@ -1989,12 +2005,11 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we - polyglot (πŸ₯‰26 Β· ⭐ 2.3K Β· πŸ’€) - Multilingual text (NLP) processing toolkit. ❗️GPL-3.0 - underthesea (πŸ₯‰26 Β· ⭐ 1.5K) - Underthesea - Vietnamese NLP Toolkit. ❗️GPL-3.0 - PyText (πŸ₯‰25 Β· ⭐ 6.3K Β· πŸ’€) - A natural language modeling framework based on PyTorch. BSD-3 -- OpenPrompt (πŸ₯‰25 Β· ⭐ 4.6K Β· πŸ’€) - An Open-Source Framework for Prompt-Learning. Apache-2 - Snips NLU (πŸ₯‰25 Β· ⭐ 3.9K Β· πŸ’€) - Snips Python library to extract meaning from text. Apache-2 -- MatchZoo (πŸ₯‰25 Β· ⭐ 3.9K Β· πŸ’€) - Facilitating the design, comparison and sharing of deep.. Apache-2 - pytorch-nlp (πŸ₯‰25 Β· ⭐ 2.2K Β· πŸ’€) - Basic Utilities for PyTorch Natural Language Processing.. BSD-3 -- sense2vec (πŸ₯‰25 Β· ⭐ 1.6K Β· πŸ’€) - Contextually-keyed word vectors. MIT - textgenrnn (πŸ₯‰24 Β· ⭐ 4.9K Β· πŸ’€) - Easily train your own text-generating neural network of any.. MIT +- OpenPrompt (πŸ₯‰24 Β· ⭐ 4.6K Β· πŸ’€) - An Open-Source Framework for Prompt-Learning. Apache-2 +- MatchZoo (πŸ₯‰24 Β· ⭐ 3.9K Β· πŸ’€) - Facilitating the design, comparison and sharing of deep.. Apache-2 - promptsource (πŸ₯‰24 Β· ⭐ 2.8K Β· πŸ’€) - Toolkit for creating, sharing and using natural language.. Apache-2 - Kashgari (πŸ₯‰24 Β· ⭐ 2.4K Β· πŸ’€) - Kashgari is a production-level NLP Transfer learning.. Apache-2 - FARM (πŸ₯‰24 Β· ⭐ 1.8K Β· πŸ’€) - Fast & easy transfer learning for NLP. Harvesting language.. Apache-2 @@ -2040,7 +2055,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well
Pillow (πŸ₯‡48 Β· ⭐ 13K) - Python Imaging Library (Fork). ❗️PIL -- [GitHub](https://github.com/python-pillow/Pillow) (πŸ‘¨β€πŸ’» 480 Β· πŸ”€ 2.3K Β· πŸ“¦ 2.2M Β· πŸ“‹ 3.3K - 3% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/python-pillow/Pillow) (πŸ‘¨β€πŸ’» 480 Β· πŸ”€ 2.3K Β· πŸ“¦ 2.2M Β· πŸ“‹ 3.3K - 3% open Β· ⏱️ 21.04.2025): ``` git clone https://github.com/python-pillow/Pillow @@ -2049,46 +2064,46 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` pip install Pillow ``` -- [Conda](https://anaconda.org/conda-forge/pillow) (πŸ“₯ 53M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pillow) (πŸ“₯ 53M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pillow ```
-
PyTorch Image Models (πŸ₯‡42 Β· ⭐ 34K) - The largest collection of PyTorch image encoders /.. Apache-2 +
torchvision (πŸ₯‡42 Β· ⭐ 17K) - Datasets, Transforms and Models specific to Computer Vision. BSD-3 -- [GitHub](https://github.com/huggingface/pytorch-image-models) (πŸ‘¨β€πŸ’» 170 Β· πŸ”€ 4.9K Β· πŸ“₯ 7.7M Β· πŸ“¦ 53K Β· πŸ“‹ 970 - 5% open Β· ⏱️ 15.04.2025): +- [GitHub](https://github.com/pytorch/vision) (πŸ‘¨β€πŸ’» 640 Β· πŸ”€ 7K Β· πŸ“₯ 40K Β· πŸ“¦ 21 Β· πŸ“‹ 3.7K - 29% open Β· ⏱️ 23.04.2025): ``` - git clone https://github.com/rwightman/pytorch-image-models + git clone https://github.com/pytorch/vision ``` -- [PyPi](https://pypi.org/project/timm) (πŸ“₯ 7.1M / month Β· πŸ“¦ 1.1K Β· ⏱️ 23.02.2025): +- [PyPi](https://pypi.org/project/torchvision) (πŸ“₯ 17M / month Β· πŸ“¦ 7K Β· ⏱️ 23.04.2025): ``` - pip install timm + pip install torchvision ``` -- [Conda](https://anaconda.org/conda-forge/timm) (πŸ“₯ 360K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/torchvision) (πŸ“₯ 2.6M Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge timm + conda install -c conda-forge torchvision ```
-
torchvision (πŸ₯‡42 Β· ⭐ 17K) - Datasets, Transforms and Models specific to Computer Vision. BSD-3 +
PyTorch Image Models (πŸ₯‡41 Β· ⭐ 34K Β· πŸ“‰) - The largest collection of PyTorch image encoders /.. Apache-2 -- [GitHub](https://github.com/pytorch/vision) (πŸ‘¨β€πŸ’» 640 Β· πŸ”€ 7K Β· πŸ“₯ 40K Β· πŸ“¦ 21 Β· πŸ“‹ 3.7K - 29% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/huggingface/pytorch-image-models) (πŸ‘¨β€πŸ’» 170 Β· πŸ”€ 4.9K Β· πŸ“₯ 7.7M Β· πŸ“¦ 54K Β· πŸ“‹ 970 - 5% open Β· ⏱️ 22.04.2025): ``` - git clone https://github.com/pytorch/vision + git clone https://github.com/rwightman/pytorch-image-models ``` -- [PyPi](https://pypi.org/project/torchvision) (πŸ“₯ 17M / month Β· πŸ“¦ 6.7K Β· ⏱️ 29.01.2025): +- [PyPi](https://pypi.org/project/timm) (πŸ“₯ 6.9M / month Β· πŸ“¦ 1.1K Β· ⏱️ 23.02.2025): ``` - pip install torchvision + pip install timm ``` -- [Conda](https://anaconda.org/conda-forge/torchvision) (πŸ“₯ 2.5M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/timm) (πŸ“₯ 370K Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge torchvision + conda install -c conda-forge timm ```
Albumentations (πŸ₯‡41 Β· ⭐ 15K) - Fast and flexible image augmentation library. Paper about.. MIT -- [GitHub](https://github.com/albumentations-team/albumentations) (πŸ‘¨β€πŸ’» 170 Β· πŸ”€ 1.7K Β· πŸ“¦ 35K Β· πŸ“‹ 1.2K - 18% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/albumentations-team/albumentations) (πŸ‘¨β€πŸ’» 170 Β· πŸ”€ 1.7K Β· πŸ“¦ 36K Β· πŸ“‹ 1.2K - 18% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/albumentations-team/albumentations @@ -2097,84 +2112,84 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` pip install albumentations ``` -- [Conda](https://anaconda.org/conda-forge/albumentations) (πŸ“₯ 270K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/albumentations) (πŸ“₯ 270K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge albumentations ```
-
MoviePy (πŸ₯‡41 Β· ⭐ 13K Β· πŸ“‰) - Video editing with Python. MIT +
MoviePy (πŸ₯‡41 Β· ⭐ 13K) - Video editing with Python. MIT - [GitHub](https://github.com/Zulko/moviepy) (πŸ‘¨β€πŸ’» 180 Β· πŸ”€ 1.7K Β· πŸ“¦ 60K Β· πŸ“‹ 2K - 23% open Β· ⏱️ 06.02.2025): ``` git clone https://github.com/Zulko/moviepy ``` -- [PyPi](https://pypi.org/project/moviepy) (πŸ“₯ 2.9M / month Β· πŸ“¦ 1K Β· ⏱️ 10.01.2025): +- [PyPi](https://pypi.org/project/moviepy) (πŸ“₯ 3M / month Β· πŸ“¦ 1K Β· ⏱️ 10.01.2025): ``` pip install moviepy ``` -- [Conda](https://anaconda.org/conda-forge/moviepy) (πŸ“₯ 300K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/moviepy) (πŸ“₯ 300K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge moviepy ```
deepface (πŸ₯‡39 Β· ⭐ 19K) - A Lightweight Face Recognition and Facial Attribute Analysis (Age,.. MIT -- [GitHub](https://github.com/serengil/deepface) (πŸ‘¨β€πŸ’» 87 Β· πŸ”€ 2.5K Β· πŸ“¦ 6.8K Β· πŸ“‹ 1.2K - 0% open Β· ⏱️ 11.04.2025): +- [GitHub](https://github.com/serengil/deepface) (πŸ‘¨β€πŸ’» 87 Β· πŸ”€ 2.5K Β· πŸ“¦ 7K Β· πŸ“‹ 1.2K - 0% open Β· ⏱️ 19.04.2025): ``` git clone https://github.com/serengil/deepface ``` -- [PyPi](https://pypi.org/project/deepface) (πŸ“₯ 680K / month Β· πŸ“¦ 44 Β· ⏱️ 17.08.2024): +- [PyPi](https://pypi.org/project/deepface) (πŸ“₯ 660K / month Β· πŸ“¦ 44 Β· ⏱️ 17.08.2024): ``` pip install deepface ```
InsightFace (πŸ₯ˆ38 Β· ⭐ 25K) - State-of-the-art 2D and 3D Face Analysis Project. MIT -- [GitHub](https://github.com/deepinsight/insightface) (πŸ‘¨β€πŸ’» 66 Β· πŸ”€ 5.5K Β· πŸ“₯ 7.5M Β· πŸ“¦ 3.9K Β· πŸ“‹ 2.6K - 45% open Β· ⏱️ 25.03.2025): +- [GitHub](https://github.com/deepinsight/insightface) (πŸ‘¨β€πŸ’» 66 Β· πŸ”€ 5.5K Β· πŸ“₯ 7.6M Β· πŸ“¦ 4K Β· πŸ“‹ 2.6K - 45% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/deepinsight/insightface ``` -- [PyPi](https://pypi.org/project/insightface) (πŸ“₯ 230K / month Β· πŸ“¦ 30 Β· ⏱️ 17.12.2022): +- [PyPi](https://pypi.org/project/insightface) (πŸ“₯ 240K / month Β· πŸ“¦ 30 Β· ⏱️ 17.12.2022): ``` pip install insightface ```
-
imageio (πŸ₯ˆ38 Β· ⭐ 1.6K) - Python library for reading and writing image data. BSD-2 +
Kornia (πŸ₯ˆ37 Β· ⭐ 10K) - Geometric Computer Vision Library for Spatial AI. Apache-2 -- [GitHub](https://github.com/imageio/imageio) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 310 Β· πŸ“₯ 1.6K Β· πŸ“¦ 170K Β· πŸ“‹ 610 - 16% open Β· ⏱️ 21.02.2025): +- [GitHub](https://github.com/kornia/kornia) (πŸ‘¨β€πŸ’» 280 Β· πŸ”€ 980 Β· πŸ“₯ 1.8K Β· πŸ“¦ 15K Β· πŸ“‹ 970 - 30% open Β· ⏱️ 22.04.2025): ``` - git clone https://github.com/imageio/imageio + git clone https://github.com/kornia/kornia ``` -- [PyPi](https://pypi.org/project/imageio) (πŸ“₯ 26M / month Β· πŸ“¦ 2.6K Β· ⏱️ 20.01.2025): +- [PyPi](https://pypi.org/project/kornia) (πŸ“₯ 2.4M / month Β· πŸ“¦ 310 Β· ⏱️ 11.01.2025): ``` - pip install imageio + pip install kornia ``` -- [Conda](https://anaconda.org/conda-forge/imageio) (πŸ“₯ 7.7M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/kornia) (πŸ“₯ 220K Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge imageio + conda install -c conda-forge kornia ```
-
Kornia (πŸ₯ˆ37 Β· ⭐ 10K) - Geometric Computer Vision Library for Spatial AI. Apache-2 +
imageio (πŸ₯ˆ37 Β· ⭐ 1.6K) - Python library for reading and writing image data. BSD-2 -- [GitHub](https://github.com/kornia/kornia) (πŸ‘¨β€πŸ’» 280 Β· πŸ”€ 980 Β· πŸ“₯ 1.8K Β· πŸ“¦ 15K Β· πŸ“‹ 970 - 30% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/imageio/imageio) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 310 Β· πŸ“₯ 1.6K Β· πŸ“¦ 170K Β· πŸ“‹ 610 - 16% open Β· ⏱️ 21.02.2025): ``` - git clone https://github.com/kornia/kornia + git clone https://github.com/imageio/imageio ``` -- [PyPi](https://pypi.org/project/kornia) (πŸ“₯ 2.3M / month Β· πŸ“¦ 310 Β· ⏱️ 11.01.2025): +- [PyPi](https://pypi.org/project/imageio) (πŸ“₯ 26M / month Β· πŸ“¦ 2.6K Β· ⏱️ 20.01.2025): ``` - pip install kornia + pip install imageio ``` -- [Conda](https://anaconda.org/conda-forge/kornia) (πŸ“₯ 210K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/imageio) (πŸ“₯ 7.8M Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge kornia + conda install -c conda-forge imageio ```
-
opencv-python (πŸ₯ˆ35 Β· ⭐ 4.8K Β· πŸ“‰) - Automated CI toolchain to produce precompiled opencv-python,.. MIT +
opencv-python (πŸ₯ˆ35 Β· ⭐ 4.8K) - Automated CI toolchain to produce precompiled opencv-python,.. MIT - [GitHub](https://github.com/opencv/opencv-python) (πŸ‘¨β€πŸ’» 53 Β· πŸ”€ 870 Β· πŸ“¦ 560K Β· πŸ“‹ 840 - 16% open Β· ⏱️ 16.01.2025): @@ -2197,7 +2212,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` pip install wand ``` -- [Conda](https://anaconda.org/conda-forge/wand) (πŸ“₯ 130K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/wand) (πŸ“₯ 130K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge wand ``` @@ -2213,7 +2228,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` pip install detectron2 ``` -- [Conda](https://anaconda.org/conda-forge/detectron2) (πŸ“₯ 650K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/detectron2) (πŸ“₯ 660K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge detectron2 ``` @@ -2225,23 +2240,11 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` git clone https://github.com/PaddlePaddle/PaddleSeg ``` -- [PyPi](https://pypi.org/project/paddleseg) (πŸ“₯ 2.2K / month Β· πŸ“¦ 7 Β· ⏱️ 30.11.2022): +- [PyPi](https://pypi.org/project/paddleseg) (πŸ“₯ 2K / month Β· πŸ“¦ 7 Β· ⏱️ 30.11.2022): ``` pip install paddleseg ```
-
vit-pytorch (πŸ₯ˆ31 Β· ⭐ 22K) - Implementation of Vision Transformer, a simple way to achieve.. MIT - -- [GitHub](https://github.com/lucidrains/vit-pytorch) (πŸ‘¨β€πŸ’» 23 Β· πŸ”€ 3.2K Β· πŸ“¦ 630 Β· πŸ“‹ 280 - 49% open Β· ⏱️ 05.03.2025): - - ``` - git clone https://github.com/lucidrains/vit-pytorch - ``` -- [PyPi](https://pypi.org/project/vit-pytorch) (πŸ“₯ 25K / month Β· πŸ“¦ 17 Β· ⏱️ 05.03.2025): - ``` - pip install vit-pytorch - ``` -
ImageHash (πŸ₯ˆ31 Β· ⭐ 3.6K) - A Python Perceptual Image Hashing Module. BSD-2 - [GitHub](https://github.com/JohannesBuchner/imagehash) (πŸ‘¨β€πŸ’» 28 Β· πŸ”€ 340 Β· πŸ“¦ 17K Β· πŸ“‹ 150 - 15% open Β· ⏱️ 17.04.2025): @@ -2253,23 +2256,35 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` pip install ImageHash ``` -- [Conda](https://anaconda.org/conda-forge/imagehash) (πŸ“₯ 440K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/imagehash) (πŸ“₯ 440K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge imagehash ```
lightly (πŸ₯ˆ31 Β· ⭐ 3.4K) - A python library for self-supervised learning on images. MIT -- [GitHub](https://github.com/lightly-ai/lightly) (πŸ‘¨β€πŸ’» 65 Β· πŸ”€ 290 Β· πŸ“¦ 420 Β· πŸ“‹ 600 - 13% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/lightly-ai/lightly) (πŸ‘¨β€πŸ’» 65 Β· πŸ”€ 290 Β· πŸ“¦ 430 Β· πŸ“‹ 600 - 12% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/lightly-ai/lightly ``` -- [PyPi](https://pypi.org/project/lightly) (πŸ“₯ 60K / month Β· πŸ“¦ 20 Β· ⏱️ 18.02.2025): +- [PyPi](https://pypi.org/project/lightly) (πŸ“₯ 56K / month Β· πŸ“¦ 20 Β· ⏱️ 22.04.2025): ``` pip install lightly ```
+
vit-pytorch (πŸ₯ˆ30 Β· ⭐ 23K) - Implementation of Vision Transformer, a simple way to achieve.. MIT + +- [GitHub](https://github.com/lucidrains/vit-pytorch) (πŸ‘¨β€πŸ’» 23 Β· πŸ”€ 3.2K Β· πŸ“¦ 640 Β· πŸ“‹ 280 - 49% open Β· ⏱️ 05.03.2025): + + ``` + git clone https://github.com/lucidrains/vit-pytorch + ``` +- [PyPi](https://pypi.org/project/vit-pytorch) (πŸ“₯ 26K / month Β· πŸ“¦ 17 Β· ⏱️ 05.03.2025): + ``` + pip install vit-pytorch + ``` +
PaddleDetection (πŸ₯ˆ30 Β· ⭐ 13K) - Object Detection toolkit based on PaddlePaddle. It.. Apache-2 - [GitHub](https://github.com/PaddlePaddle/PaddleDetection) (πŸ‘¨β€πŸ’» 190 Β· πŸ”€ 2.9K Β· πŸ“‹ 5.8K - 21% open Β· ⏱️ 16.04.2025): @@ -2277,14 +2292,14 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` git clone https://github.com/PaddlePaddle/PaddleDetection ``` -- [PyPi](https://pypi.org/project/paddledet) (πŸ“₯ 1.6K / month Β· πŸ“¦ 2 Β· ⏱️ 19.09.2022): +- [PyPi](https://pypi.org/project/paddledet) (πŸ“₯ 1.4K / month Β· πŸ“¦ 2 Β· ⏱️ 19.09.2022): ``` pip install paddledet ```
sahi (πŸ₯ˆ30 Β· ⭐ 4.5K) - Framework agnostic sliced/tiled inference + interactive ui + error analysis.. MIT -- [GitHub](https://github.com/obss/sahi) (πŸ‘¨β€πŸ’» 51 Β· πŸ”€ 630 Β· πŸ“₯ 35K Β· πŸ“¦ 1.8K Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/obss/sahi) (πŸ‘¨β€πŸ’» 51 Β· πŸ”€ 630 Β· πŸ“₯ 36K Β· πŸ“¦ 1.8K Β· ⏱️ 16.04.2025): ``` git clone https://github.com/obss/sahi @@ -2293,14 +2308,14 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` pip install sahi ``` -- [Conda](https://anaconda.org/conda-forge/sahi) (πŸ“₯ 96K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/sahi) (πŸ“₯ 96K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge sahi ```
doctr (πŸ₯‰29 Β· ⭐ 4.6K) - docTR (Document Text Recognition) - a seamless, high-.. Apache-2 -- [GitHub](https://github.com/mindee/doctr) (πŸ‘¨β€πŸ’» 61 Β· πŸ”€ 480 Β· πŸ“₯ 5.2M Β· πŸ“‹ 400 - 6% open Β· ⏱️ 15.04.2025): +- [GitHub](https://github.com/mindee/doctr) (πŸ‘¨β€πŸ’» 63 Β· πŸ”€ 490 Β· πŸ“₯ 5.3M Β· πŸ“‹ 400 - 6% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/mindee/doctr @@ -2317,26 +2332,26 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` git clone https://github.com/1adrianb/face-alignment ``` -- [PyPi](https://pypi.org/project/face-alignment) (πŸ“₯ 69K / month Β· πŸ“¦ 10 Β· ⏱️ 17.08.2023): +- [PyPi](https://pypi.org/project/face-alignment) (πŸ“₯ 67K / month Β· πŸ“¦ 10 Β· ⏱️ 17.08.2023): ``` pip install face-alignment ```
vidgear (πŸ₯‰28 Β· ⭐ 3.5K Β· πŸ’€) - A High-performance cross-platform Video Processing Python.. Apache-2 -- [GitHub](https://github.com/abhiTronix/vidgear) (πŸ‘¨β€πŸ’» 14 Β· πŸ”€ 260 Β· πŸ“₯ 2.2K Β· πŸ“¦ 710 Β· πŸ“‹ 300 - 2% open Β· ⏱️ 22.06.2024): +- [GitHub](https://github.com/abhiTronix/vidgear) (πŸ‘¨β€πŸ’» 14 Β· πŸ”€ 260 Β· πŸ“₯ 2.3K Β· πŸ“¦ 720 Β· πŸ“‹ 300 - 2% open Β· ⏱️ 22.06.2024): ``` git clone https://github.com/abhiTronix/vidgear ``` -- [PyPi](https://pypi.org/project/vidgear) (πŸ“₯ 19K / month Β· πŸ“¦ 15 Β· ⏱️ 22.06.2024): +- [PyPi](https://pypi.org/project/vidgear) (πŸ“₯ 20K / month Β· πŸ“¦ 15 Β· ⏱️ 22.06.2024): ``` pip install vidgear ```
mtcnn (πŸ₯‰28 Β· ⭐ 2.3K) - MTCNN face detection implementation for TensorFlow, as a PIP package. MIT -- [GitHub](https://github.com/ipazc/mtcnn) (πŸ‘¨β€πŸ’» 16 Β· πŸ”€ 530 Β· πŸ“₯ 49 Β· πŸ“¦ 8.2K Β· πŸ“‹ 130 - 37% open Β· ⏱️ 08.10.2024): +- [GitHub](https://github.com/ipazc/mtcnn) (πŸ‘¨β€πŸ’» 16 Β· πŸ”€ 530 Β· πŸ“₯ 50 Β· πŸ“¦ 8.3K Β· πŸ“‹ 130 - 37% open Β· ⏱️ 08.10.2024): ``` git clone https://github.com/ipazc/mtcnn @@ -2345,31 +2360,31 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` pip install mtcnn ``` -- [Conda](https://anaconda.org/conda-forge/mtcnn) (πŸ“₯ 15K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/mtcnn) (πŸ“₯ 15K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge mtcnn ```
facenet-pytorch (πŸ₯‰27 Β· ⭐ 4.8K Β· πŸ’€) - Pretrained Pytorch face detection (MTCNN) and facial.. MIT -- [GitHub](https://github.com/timesler/facenet-pytorch) (πŸ‘¨β€πŸ’» 18 Β· πŸ”€ 940 Β· πŸ“₯ 1.7M Β· πŸ“¦ 3.2K Β· πŸ“‹ 190 - 41% open Β· ⏱️ 02.08.2024): +- [GitHub](https://github.com/timesler/facenet-pytorch) (πŸ‘¨β€πŸ’» 18 Β· πŸ”€ 940 Β· πŸ“₯ 1.7M Β· πŸ“¦ 3.3K Β· πŸ“‹ 190 - 41% open Β· ⏱️ 02.08.2024): ``` git clone https://github.com/timesler/facenet-pytorch ``` -- [PyPi](https://pypi.org/project/facenet-pytorch) (πŸ“₯ 120K / month Β· πŸ“¦ 51 Β· ⏱️ 29.04.2024): +- [PyPi](https://pypi.org/project/facenet-pytorch) (πŸ“₯ 130K / month Β· πŸ“¦ 51 Β· ⏱️ 29.04.2024): ``` pip install facenet-pytorch ```
CellProfiler (πŸ₯‰27 Β· ⭐ 970) - An open-source application for biological image analysis. BSD-3 -- [GitHub](https://github.com/CellProfiler/CellProfiler) (πŸ‘¨β€πŸ’» 150 Β· πŸ”€ 390 Β· πŸ“₯ 8.6K Β· πŸ“¦ 28 Β· πŸ“‹ 3.3K - 9% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/CellProfiler/CellProfiler) (πŸ‘¨β€πŸ’» 150 Β· πŸ”€ 390 Β· πŸ“₯ 8.6K Β· πŸ“¦ 28 Β· πŸ“‹ 3.3K - 9% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/CellProfiler/CellProfiler ``` -- [PyPi](https://pypi.org/project/cellprofiler) (πŸ“₯ 1.5K / month Β· πŸ“¦ 2 Β· ⏱️ 16.09.2024): +- [PyPi](https://pypi.org/project/cellprofiler) (πŸ“₯ 1.2K / month Β· πŸ“¦ 2 Β· ⏱️ 16.09.2024): ``` pip install cellprofiler ``` @@ -2385,7 +2400,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` pip install mahotas ``` -- [Conda](https://anaconda.org/conda-forge/mahotas) (πŸ“₯ 620K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/mahotas) (πŸ“₯ 620K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge mahotas ``` @@ -2404,28 +2419,28 @@ _Libraries for image & video processing, manipulation, and augmentation as well
pyvips (πŸ₯‰26 Β· ⭐ 690) - python binding for libvips using cffi. MIT -- [GitHub](https://github.com/libvips/pyvips) (πŸ‘¨β€πŸ’» 16 Β· πŸ”€ 50 Β· πŸ“¦ 1K Β· πŸ“‹ 460 - 42% open Β· ⏱️ 13.03.2025): +- [GitHub](https://github.com/libvips/pyvips) (πŸ‘¨β€πŸ’» 16 Β· πŸ”€ 50 Β· πŸ“¦ 1K Β· πŸ“‹ 460 - 42% open Β· ⏱️ 19.04.2025): ``` git clone https://github.com/libvips/pyvips ``` -- [PyPi](https://pypi.org/project/pyvips) (πŸ“₯ 75K / month Β· πŸ“¦ 77 Β· ⏱️ 28.04.2024): +- [PyPi](https://pypi.org/project/pyvips) (πŸ“₯ 86K / month Β· πŸ“¦ 77 Β· ⏱️ 28.04.2024): ``` pip install pyvips ``` -- [Conda](https://anaconda.org/conda-forge/pyvips) (πŸ“₯ 210K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pyvips) (πŸ“₯ 210K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pyvips ```
MMF (πŸ₯‰25 Β· ⭐ 5.6K) - A modular framework for vision & language multimodal research from.. BSD-3 -- [GitHub](https://github.com/facebookresearch/mmf) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 920 Β· πŸ“¦ 21 Β· πŸ“‹ 690 - 21% open Β· ⏱️ 07.04.2025): +- [GitHub](https://github.com/facebookresearch/mmf) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 920 Β· πŸ“¦ 21 Β· πŸ“‹ 690 - 21% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/facebookresearch/mmf ``` -- [PyPi](https://pypi.org/project/mmf) (πŸ“₯ 910 / month Β· πŸ“¦ 1 Β· ⏱️ 12.06.2020): +- [PyPi](https://pypi.org/project/mmf) (πŸ“₯ 850 / month Β· πŸ“¦ 1 Β· ⏱️ 12.06.2020): ``` pip install mmf ``` @@ -2437,7 +2452,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` git clone https://github.com/idealo/imagededup ``` -- [PyPi](https://pypi.org/project/imagededup) (πŸ“₯ 16K / month Β· πŸ“¦ 5 Β· ⏱️ 28.04.2023): +- [PyPi](https://pypi.org/project/imagededup) (πŸ“₯ 23K / month Β· πŸ“¦ 5 Β· ⏱️ 28.04.2023): ``` pip install imagededup ``` @@ -2473,7 +2488,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` git clone https://github.com/tensorflow/graphics ``` -- [PyPi](https://pypi.org/project/tensorflow-graphics) (πŸ“₯ 22K / month Β· πŸ“¦ 11 Β· ⏱️ 03.12.2021): +- [PyPi](https://pypi.org/project/tensorflow-graphics) (πŸ“₯ 24K / month Β· πŸ“¦ 11 Β· ⏱️ 03.12.2021): ``` pip install tensorflow-graphics ``` @@ -2485,7 +2500,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` git clone https://github.com/libffcv/ffcv ``` -- [PyPi](https://pypi.org/project/ffcv) (πŸ“₯ 790 / month Β· πŸ“¦ 1 Β· ⏱️ 28.01.2022): +- [PyPi](https://pypi.org/project/ffcv) (πŸ“₯ 780 / month Β· πŸ“¦ 1 Β· ⏱️ 28.01.2022): ``` pip install ffcv ``` @@ -2497,7 +2512,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` git clone https://github.com/google-research/kubric ``` -- [PyPi](https://pypi.org/project/kubric-nightly) (πŸ“₯ 21K / month Β· ⏱️ 27.12.2023): +- [PyPi](https://pypi.org/project/kubric-nightly) (πŸ“₯ 22K / month Β· ⏱️ 27.12.2023): ``` pip install kubric-nightly ``` @@ -2509,7 +2524,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` git clone https://github.com/airctic/icevision ``` -- [PyPi](https://pypi.org/project/icevision) (πŸ“₯ 3.9K / month Β· πŸ“¦ 6 Β· ⏱️ 10.02.2022): +- [PyPi](https://pypi.org/project/icevision) (πŸ“₯ 4.2K / month Β· πŸ“¦ 6 Β· ⏱️ 10.02.2022): ``` pip install icevision ``` @@ -2521,7 +2536,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` git clone https://github.com/facebookresearch/SlowFast ``` -- [PyPi](https://pypi.org/project/pyslowfast) (πŸ“₯ 48 / month Β· ⏱️ 15.01.2020): +- [PyPi](https://pypi.org/project/pyslowfast) (πŸ“₯ 44 / month Β· ⏱️ 15.01.2020): ``` pip install pyslowfast ``` @@ -2533,7 +2548,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well ``` git clone https://github.com/idealo/image-super-resolution ``` -- [PyPi](https://pypi.org/project/ISR) (πŸ“₯ 6.5K / month Β· πŸ“¦ 5 Β· ⏱️ 08.01.2020): +- [PyPi](https://pypi.org/project/ISR) (πŸ“₯ 6.7K / month Β· πŸ“¦ 5 Β· ⏱️ 08.01.2020): ``` pip install ISR ``` @@ -2542,7 +2557,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well docker pull idealo/image-super-resolution-gpu ```
-
scenic (πŸ₯‰18 Β· ⭐ 3.5K) - Scenic: A Jax Library for Computer Vision Research and Beyond. Apache-2 +
scenic (πŸ₯‰17 Β· ⭐ 3.5K) - Scenic: A Jax Library for Computer Vision Research and Beyond. Apache-2 - [GitHub](https://github.com/google-research/scenic) (πŸ‘¨β€πŸ’» 93 Β· πŸ”€ 450 Β· πŸ“‹ 270 - 56% open Β· ⏱️ 15.04.2025): @@ -2557,7 +2572,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well - glfw (πŸ₯ˆ37 Β· ⭐ 14K) - A multi-platform library for OpenGL, OpenGL ES, Vulkan, window and input. ❗️Zlib - Face Recognition (πŸ₯ˆ36 Β· ⭐ 55K Β· πŸ’€) - The worlds simplest facial recognition api for Python.. MIT - MMDetection (πŸ₯ˆ36 Β· ⭐ 31K Β· πŸ’€) - OpenMMLab Detection Toolbox and Benchmark. Apache-2 -- PyTorch3D (πŸ₯ˆ33 Β· ⭐ 9.2K) - PyTorch3D is FAIRs library of reusable components for.. ❗Unlicensed +- PyTorch3D (πŸ₯ˆ32 Β· ⭐ 9.2K) - PyTorch3D is FAIRs library of reusable components for.. ❗Unlicensed - imutils (πŸ₯ˆ32 Β· ⭐ 4.6K Β· πŸ’€) - A series of convenience functions to make basic image processing.. MIT - imageai (πŸ₯ˆ31 Β· ⭐ 8.8K Β· πŸ’€) - A python library built to empower developers to build applications.. MIT - GluonCV (πŸ₯‰29 Β· ⭐ 5.9K Β· πŸ’€) - Gluon CV Toolkit. Apache-2 @@ -2573,10 +2588,10 @@ _Libraries for image & video processing, manipulation, and augmentation as well - DEβ«ΆTR (πŸ₯‰21 Β· ⭐ 14K Β· πŸ’€) - End-to-End Object Detection with Transformers. Apache-2 - image-match (πŸ₯‰20 Β· ⭐ 3K Β· πŸ’€) - Quickly search over billions of images. Apache-2 - nude.py (πŸ₯‰20 Β· ⭐ 930 Β· πŸ’€) - Nudity detection with Python. MIT -- solt (πŸ₯‰20 Β· ⭐ 260 Β· πŸ“ˆ) - Streaming over lightweight data transformations. MIT +- solt (πŸ₯‰20 Β· ⭐ 260) - Streaming over lightweight data transformations. MIT - pycls (πŸ₯‰18 Β· ⭐ 2.2K Β· πŸ’€) - Codebase for Image Classification Research, written in PyTorch. MIT - Caer (πŸ₯‰17 Β· ⭐ 790 Β· πŸ’€) - A lightweight Computer Vision library. Scale your models, not boilerplate. MIT -- Torch Points 3D (πŸ₯‰17 Β· ⭐ 230 Β· πŸ’€) - Pytorch framework for doing deep learning on point.. BSD-3 +- Torch Points 3D (πŸ₯‰17 Β· ⭐ 240 Β· πŸ’€) - Pytorch framework for doing deep learning on point.. BSD-3 - HugsVision (πŸ₯‰15 Β· ⭐ 200 Β· πŸ’€) - HugsVision is a easy to use huggingface wrapper for state-of-.. MIT huggingface

@@ -2589,39 +2604,39 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas
networkx (πŸ₯‡44 Β· ⭐ 16K) - Network Analysis in Python. BSD-3 -- [GitHub](https://github.com/networkx/networkx) (πŸ‘¨β€πŸ’» 770 Β· πŸ”€ 3.3K Β· πŸ“₯ 110 Β· πŸ“¦ 390K Β· πŸ“‹ 3.4K - 10% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/networkx/networkx) (πŸ‘¨β€πŸ’» 770 Β· πŸ”€ 3.3K Β· πŸ“₯ 110 Β· πŸ“¦ 390K Β· πŸ“‹ 3.4K - 10% open Β· ⏱️ 21.04.2025): ``` git clone https://github.com/networkx/networkx ``` -- [PyPi](https://pypi.org/project/networkx) (πŸ“₯ 83M / month Β· πŸ“¦ 9.6K Β· ⏱️ 21.10.2024): +- [PyPi](https://pypi.org/project/networkx) (πŸ“₯ 86M / month Β· πŸ“¦ 9.6K Β· ⏱️ 21.10.2024): ``` pip install networkx ``` -- [Conda](https://anaconda.org/conda-forge/networkx) (πŸ“₯ 21M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/networkx) (πŸ“₯ 22M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge networkx ```
PyTorch Geometric (πŸ₯‡40 Β· ⭐ 22K) - Graph Neural Network Library for PyTorch. MIT -- [GitHub](https://github.com/pyg-team/pytorch_geometric) (πŸ‘¨β€πŸ’» 540 Β· πŸ”€ 3.8K Β· πŸ“¦ 8.8K Β· πŸ“‹ 3.9K - 30% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/pyg-team/pytorch_geometric) (πŸ‘¨β€πŸ’» 540 Β· πŸ”€ 3.8K Β· πŸ“¦ 8.9K Β· πŸ“‹ 3.9K - 30% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/pyg-team/pytorch_geometric ``` -- [PyPi](https://pypi.org/project/torch-geometric) (πŸ“₯ 570K / month Β· πŸ“¦ 360 Β· ⏱️ 26.09.2024): +- [PyPi](https://pypi.org/project/torch-geometric) (πŸ“₯ 620K / month Β· πŸ“¦ 360 Β· ⏱️ 26.09.2024): ``` pip install torch-geometric ``` -- [Conda](https://anaconda.org/conda-forge/pytorch_geometric) (πŸ“₯ 150K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pytorch_geometric) (πŸ“₯ 150K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pytorch_geometric ```
-
dgl (πŸ₯‡36 Β· ⭐ 14K Β· πŸ“‰) - Python package built to ease deep learning on graph, on top of.. Apache-2 +
dgl (πŸ₯‡36 Β· ⭐ 14K) - Python package built to ease deep learning on graph, on top of existing DL.. Apache-2 -- [GitHub](https://github.com/dmlc/dgl) (πŸ‘¨β€πŸ’» 300 Β· πŸ”€ 3K Β· πŸ“¦ 3.8K Β· πŸ“‹ 2.9K - 18% open Β· ⏱️ 11.02.2025): +- [GitHub](https://github.com/dmlc/dgl) (πŸ‘¨β€πŸ’» 300 Β· πŸ”€ 3K Β· πŸ“¦ 3.9K Β· πŸ“‹ 2.9K - 18% open Β· ⏱️ 11.02.2025): ``` git clone https://github.com/dmlc/dgl @@ -2631,42 +2646,42 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install dgl ```
-
pygraphistry (πŸ₯ˆ30 Β· ⭐ 2.2K) - PyGraphistry is a Python library to quickly load, shape,.. BSD-3 +
PyKEEN (πŸ₯ˆ31 Β· ⭐ 1.8K) - A Python library for learning and evaluating knowledge graph embeddings. MIT -- [GitHub](https://github.com/graphistry/pygraphistry) (πŸ‘¨β€πŸ’» 46 Β· πŸ”€ 210 Β· πŸ“¦ 150 Β· πŸ“‹ 360 - 52% open Β· ⏱️ 06.02.2025): +- [GitHub](https://github.com/pykeen/pykeen) (πŸ‘¨β€πŸ’» 43 Β· πŸ”€ 200 Β· πŸ“₯ 240 Β· πŸ“¦ 310 Β· πŸ“‹ 590 - 20% open Β· ⏱️ 24.04.2025): ``` - git clone https://github.com/graphistry/pygraphistry + git clone https://github.com/pykeen/pykeen ``` -- [PyPi](https://pypi.org/project/graphistry) (πŸ“₯ 24K / month Β· πŸ“¦ 6 Β· ⏱️ 06.02.2025): +- [PyPi](https://pypi.org/project/pykeen) (πŸ“₯ 11K / month Β· πŸ“¦ 21 Β· ⏱️ 24.04.2025): ``` - pip install graphistry + pip install pykeen ```
-
PyKEEN (πŸ₯ˆ30 Β· ⭐ 1.8K) - A Python library for learning and evaluating knowledge graph embeddings. MIT +
pygraphistry (πŸ₯ˆ29 Β· ⭐ 2.2K) - PyGraphistry is a Python library to quickly load, shape,.. BSD-3 -- [GitHub](https://github.com/pykeen/pykeen) (πŸ‘¨β€πŸ’» 43 Β· πŸ”€ 190 Β· πŸ“₯ 240 Β· πŸ“¦ 310 Β· πŸ“‹ 580 - 19% open Β· ⏱️ 14.04.2025): +- [GitHub](https://github.com/graphistry/pygraphistry) (πŸ‘¨β€πŸ’» 46 Β· πŸ”€ 220 Β· πŸ“¦ 150 Β· πŸ“‹ 360 - 53% open Β· ⏱️ 22.04.2025): ``` - git clone https://github.com/pykeen/pykeen + git clone https://github.com/graphistry/pygraphistry ``` -- [PyPi](https://pypi.org/project/pykeen) (πŸ“₯ 17K / month Β· πŸ“¦ 19 Β· ⏱️ 29.10.2024): +- [PyPi](https://pypi.org/project/graphistry) (πŸ“₯ 25K / month Β· πŸ“¦ 6 Β· ⏱️ 22.04.2025): ``` - pip install pykeen + pip install graphistry ```
ogb (πŸ₯ˆ29 Β· ⭐ 2K) - Benchmark datasets, data loaders, and evaluators for graph machine learning. MIT -- [GitHub](https://github.com/snap-stanford/ogb) (πŸ‘¨β€πŸ’» 32 Β· πŸ”€ 400 Β· πŸ“¦ 2.4K Β· πŸ“‹ 300 - 10% open Β· ⏱️ 09.12.2024): +- [GitHub](https://github.com/snap-stanford/ogb) (πŸ‘¨β€πŸ’» 32 Β· πŸ”€ 400 Β· πŸ“¦ 2.5K Β· πŸ“‹ 300 - 10% open Β· ⏱️ 09.12.2024): ``` git clone https://github.com/snap-stanford/ogb ``` -- [PyPi](https://pypi.org/project/ogb) (πŸ“₯ 38K / month Β· πŸ“¦ 22 Β· ⏱️ 02.11.2022): +- [PyPi](https://pypi.org/project/ogb) (πŸ“₯ 37K / month Β· πŸ“¦ 22 Β· ⏱️ 02.11.2022): ``` pip install ogb ``` -- [Conda](https://anaconda.org/conda-forge/ogb) (πŸ“₯ 51K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/ogb) (πŸ“₯ 52K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge ogb ``` @@ -2678,14 +2693,14 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas ``` git clone https://github.com/benedekrozemberczki/pytorch_geometric_temporal ``` -- [PyPi](https://pypi.org/project/torch-geometric-temporal) (πŸ“₯ 4.7K / month Β· πŸ“¦ 7 Β· ⏱️ 28.03.2025): +- [PyPi](https://pypi.org/project/torch-geometric-temporal) (πŸ“₯ 5.6K / month Β· πŸ“¦ 7 Β· ⏱️ 28.03.2025): ``` pip install torch-geometric-temporal ```
Node2Vec (πŸ₯ˆ25 Β· ⭐ 1.3K Β· πŸ’€) - Implementation of the node2vec algorithm. MIT -- [GitHub](https://github.com/eliorc/node2vec) (πŸ‘¨β€πŸ’» 16 Β· πŸ”€ 250 Β· πŸ“¦ 870 Β· πŸ“‹ 97 - 5% open Β· ⏱️ 02.08.2024): +- [GitHub](https://github.com/eliorc/node2vec) (πŸ‘¨β€πŸ’» 16 Β· πŸ”€ 250 Β· πŸ“¦ 880 Β· πŸ“‹ 97 - 5% open Β· ⏱️ 02.08.2024): ``` git clone https://github.com/eliorc/node2vec @@ -2694,23 +2709,23 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas ``` pip install node2vec ``` -- [Conda](https://anaconda.org/conda-forge/node2vec) (πŸ“₯ 35K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/node2vec) (πŸ“₯ 35K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge node2vec ```
-
torch-cluster (πŸ₯ˆ24 Β· ⭐ 860) - PyTorch Extension Library of Optimized Graph Cluster.. MIT +
torch-cluster (πŸ₯ˆ25 Β· ⭐ 860) - PyTorch Extension Library of Optimized Graph Cluster.. MIT -- [GitHub](https://github.com/rusty1s/pytorch_cluster) (πŸ‘¨β€πŸ’» 38 Β· πŸ”€ 150 Β· πŸ“‹ 180 - 17% open Β· ⏱️ 10.04.2025): +- [GitHub](https://github.com/rusty1s/pytorch_cluster) (πŸ‘¨β€πŸ’» 39 Β· πŸ”€ 150 Β· πŸ“‹ 180 - 17% open Β· ⏱️ 20.04.2025): ``` git clone https://github.com/rusty1s/pytorch_cluster ``` -- [PyPi](https://pypi.org/project/torch-cluster) (πŸ“₯ 24K / month Β· πŸ“¦ 62 Β· ⏱️ 12.10.2023): +- [PyPi](https://pypi.org/project/torch-cluster) (πŸ“₯ 23K / month Β· πŸ“¦ 62 Β· ⏱️ 12.10.2023): ``` pip install torch-cluster ``` -- [Conda](https://anaconda.org/conda-forge/pytorch_cluster) (πŸ“₯ 350K Β· ⏱️ 26.03.2025): +- [Conda](https://anaconda.org/conda-forge/pytorch_cluster) (πŸ“₯ 350K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pytorch_cluster ``` @@ -2735,7 +2750,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas - pygal (πŸ₯ˆ27 Β· ⭐ 2.7K Β· πŸ’€) - PYthon svg GrAph plotting Library. ❗️LGPL-3.0 - AmpliGraph (πŸ₯ˆ26 Β· ⭐ 2.2K Β· πŸ’€) - Python library for Representation Learning on Knowledge.. Apache-2 - Paddle Graph Learning (πŸ₯ˆ26 Β· ⭐ 1.6K Β· πŸ’€) - Paddle Graph Learning (PGL) is an efficient and.. Apache-2 -- Karate Club (πŸ₯ˆ24 Β· ⭐ 2.2K Β· πŸ’€) - Karate Club: An API Oriented Open-source Python Framework.. ❗️GPL-3.0 +- Karate Club (πŸ₯‰24 Β· ⭐ 2.2K Β· πŸ’€) - Karate Club: An API Oriented Open-source Python Framework.. ❗️GPL-3.0 - PyTorch-BigGraph (πŸ₯‰23 Β· ⭐ 3.4K Β· πŸ’€) - Generate embeddings from large-scale graph-structured.. BSD-3 - jraph (πŸ₯‰23 Β· ⭐ 1.4K Β· πŸ’€) - A Graph Neural Network Library in Jax. Apache-2 - graph4nlp (πŸ₯‰22 Β· ⭐ 1.7K Β· πŸ’€) - Graph4nlp is the library for the easy use of Graph.. Apache-2 @@ -2778,12 +2793,12 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as
espnet (πŸ₯‡38 Β· ⭐ 9K) - End-to-End Speech Processing Toolkit. Apache-2 -- [GitHub](https://github.com/espnet/espnet) (πŸ‘¨β€πŸ’» 490 Β· πŸ”€ 2.2K Β· πŸ“₯ 84 Β· πŸ“¦ 430 Β· πŸ“‹ 2.5K - 14% open Β· ⏱️ 12.04.2025): +- [GitHub](https://github.com/espnet/espnet) (πŸ‘¨β€πŸ’» 490 Β· πŸ”€ 2.2K Β· πŸ“₯ 84 Β· πŸ“¦ 440 Β· πŸ“‹ 2.5K - 14% open Β· ⏱️ 21.04.2025): ``` git clone https://github.com/espnet/espnet ``` -- [PyPi](https://pypi.org/project/espnet) (πŸ“₯ 23K / month Β· πŸ“¦ 12 Β· ⏱️ 04.12.2024): +- [PyPi](https://pypi.org/project/espnet) (πŸ“₯ 24K / month Β· πŸ“¦ 12 Β· ⏱️ 04.12.2024): ``` pip install espnet ``` @@ -2799,14 +2814,14 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as ``` pip install SpeechRecognition ``` -- [Conda](https://anaconda.org/conda-forge/speechrecognition) (πŸ“₯ 240K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/speechrecognition) (πŸ“₯ 240K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge speechrecognition ```
-
librosa (πŸ₯ˆ35 Β· ⭐ 7.6K Β· πŸ“‰) - Python library for audio and music analysis. ISC +
librosa (πŸ₯ˆ35 Β· ⭐ 7.6K) - Python library for audio and music analysis. ISC -- [GitHub](https://github.com/librosa/librosa) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 980 Β· πŸ“‹ 1.2K - 4% open Β· ⏱️ 11.03.2025): +- [GitHub](https://github.com/librosa/librosa) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 980 Β· πŸ“‹ 1.2K - 5% open Β· ⏱️ 11.03.2025): ``` git clone https://github.com/librosa/librosa @@ -2815,52 +2830,52 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as ``` pip install librosa ``` -- [Conda](https://anaconda.org/conda-forge/librosa) (πŸ“₯ 880K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/librosa) (πŸ“₯ 880K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge librosa ```
torchaudio (πŸ₯ˆ35 Β· ⭐ 2.6K) - Data manipulation and transformation for audio signal.. BSD-2 -- [GitHub](https://github.com/pytorch/audio) (πŸ‘¨β€πŸ’» 230 Β· πŸ”€ 680 Β· πŸ“‹ 1K - 27% open Β· ⏱️ 02.04.2025): +- [GitHub](https://github.com/pytorch/audio) (πŸ‘¨β€πŸ’» 230 Β· πŸ”€ 690 Β· πŸ“‹ 1K - 27% open Β· ⏱️ 18.04.2025): ``` git clone https://github.com/pytorch/audio ``` -- [PyPi](https://pypi.org/project/torchaudio) (πŸ“₯ 12M / month Β· πŸ“¦ 1.6K Β· ⏱️ 29.01.2025): +- [PyPi](https://pypi.org/project/torchaudio) (πŸ“₯ 13M / month Β· πŸ“¦ 1.8K Β· ⏱️ 23.04.2025): ``` pip install torchaudio ```
-
spleeter (πŸ₯ˆ34 Β· ⭐ 27K) - Deezer source separation library including pretrained models. MIT +
spleeter (πŸ₯ˆ33 Β· ⭐ 27K) - Deezer source separation library including pretrained models. MIT -- [GitHub](https://github.com/deezer/spleeter) (πŸ‘¨β€πŸ’» 22 Β· πŸ”€ 2.9K Β· πŸ“₯ 3.9M Β· πŸ“¦ 980 Β· πŸ“‹ 820 - 31% open Β· ⏱️ 02.04.2025): +- [GitHub](https://github.com/deezer/spleeter) (πŸ‘¨β€πŸ’» 22 Β· πŸ”€ 2.9K Β· πŸ“₯ 3.9M Β· πŸ“¦ 990 Β· πŸ“‹ 820 - 31% open Β· ⏱️ 02.04.2025): ``` git clone https://github.com/deezer/spleeter ``` -- [PyPi](https://pypi.org/project/spleeter) (πŸ“₯ 28K / month Β· πŸ“¦ 18 Β· ⏱️ 03.04.2025): +- [PyPi](https://pypi.org/project/spleeter) (πŸ“₯ 30K / month Β· πŸ“¦ 18 Β· ⏱️ 03.04.2025): ``` pip install spleeter ``` -- [Conda](https://anaconda.org/conda-forge/spleeter) (πŸ“₯ 110K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/spleeter) (πŸ“₯ 110K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge spleeter ```
-
Magenta (πŸ₯ˆ32 Β· ⭐ 19K) - Magenta: Music and Art Generation with Machine Intelligence. Apache-2 +
Magenta (πŸ₯ˆ33 Β· ⭐ 19K) - Magenta: Music and Art Generation with Machine Intelligence. Apache-2 -- [GitHub](https://github.com/magenta/magenta) (πŸ‘¨β€πŸ’» 160 Β· πŸ”€ 3.7K Β· πŸ“¦ 570 Β· πŸ“‹ 1K - 41% open Β· ⏱️ 17.01.2025): +- [GitHub](https://github.com/magenta/magenta) (πŸ‘¨β€πŸ’» 160 Β· πŸ”€ 3.7K Β· πŸ“¦ 580 Β· πŸ“‹ 1K - 41% open Β· ⏱️ 17.01.2025): ``` git clone https://github.com/magenta/magenta ``` -- [PyPi](https://pypi.org/project/magenta) (πŸ“₯ 11K / month Β· πŸ“¦ 5 Β· ⏱️ 01.08.2022): +- [PyPi](https://pypi.org/project/magenta) (πŸ“₯ 9.4K / month Β· πŸ“¦ 5 Β· ⏱️ 01.08.2022): ``` pip install magenta ```
-
Porcupine (πŸ₯ˆ31 Β· ⭐ 4K) - On-device wake word detection powered by deep learning. Apache-2 +
Porcupine (πŸ₯ˆ31 Β· ⭐ 4.1K) - On-device wake word detection powered by deep learning. Apache-2 - [GitHub](https://github.com/Picovoice/porcupine) (πŸ‘¨β€πŸ’» 42 Β· πŸ”€ 520 Β· πŸ“¦ 46 Β· πŸ“‹ 570 - 0% open Β· ⏱️ 15.04.2025): @@ -2874,19 +2889,19 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as
audiomentations (πŸ₯ˆ31 Β· ⭐ 2K) - A Python library for audio data augmentation. Useful for making.. MIT -- [GitHub](https://github.com/iver56/audiomentations) (πŸ‘¨β€πŸ’» 32 Β· πŸ”€ 200 Β· πŸ“¦ 740 Β· πŸ“‹ 200 - 26% open Β· ⏱️ 02.04.2025): +- [GitHub](https://github.com/iver56/audiomentations) (πŸ‘¨β€πŸ’» 32 Β· πŸ”€ 200 Β· πŸ“¦ 750 Β· πŸ“‹ 200 - 26% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/iver56/audiomentations ``` -- [PyPi](https://pypi.org/project/audiomentations) (πŸ“₯ 69K / month Β· πŸ“¦ 25 Β· ⏱️ 20.03.2025): +- [PyPi](https://pypi.org/project/audiomentations) (πŸ“₯ 73K / month Β· πŸ“¦ 25 Β· ⏱️ 20.03.2025): ``` pip install audiomentations ```
-
python-soundfile (πŸ₯ˆ30 Β· ⭐ 750) - SoundFile is an audio library based on libsndfile, CFFI, and.. BSD-3 +
python-soundfile (πŸ₯‰29 Β· ⭐ 760) - SoundFile is an audio library based on libsndfile, CFFI, and.. BSD-3 -- [GitHub](https://github.com/bastibe/python-soundfile) (πŸ‘¨β€πŸ’» 37 Β· πŸ”€ 110 Β· πŸ“₯ 21K Β· πŸ“¦ 60K Β· πŸ“‹ 260 - 46% open Β· ⏱️ 25.01.2025): +- [GitHub](https://github.com/bastibe/python-soundfile) (πŸ‘¨β€πŸ’» 37 Β· πŸ”€ 110 Β· πŸ“₯ 21K Β· πŸ“¦ 61K Β· πŸ“‹ 260 - 46% open Β· ⏱️ 25.01.2025): ``` git clone https://github.com/bastibe/python-soundfile @@ -2900,14 +2915,14 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as conda install -c anaconda pysoundfile ```
-
tinytag (πŸ₯‰29 Β· ⭐ 740) - Python library for reading audio file metadata. MIT +
tinytag (πŸ₯‰29 Β· ⭐ 750) - Python library for reading audio file metadata. MIT -- [GitHub](https://github.com/tinytag/tinytag) (πŸ‘¨β€πŸ’» 27 Β· πŸ”€ 100 Β· πŸ“¦ 1.2K Β· πŸ“‹ 120 - 3% open Β· ⏱️ 06.04.2025): +- [GitHub](https://github.com/tinytag/tinytag) (πŸ‘¨β€πŸ’» 27 Β· πŸ”€ 100 Β· πŸ“¦ 1.2K Β· πŸ“‹ 120 - 3% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/devsnd/tinytag ``` -- [PyPi](https://pypi.org/project/tinytag) (πŸ“₯ 70K / month Β· πŸ“¦ 120 Β· ⏱️ 23.02.2025): +- [PyPi](https://pypi.org/project/tinytag) (πŸ“₯ 61K / month Β· πŸ“¦ 120 Β· ⏱️ 23.04.2025): ``` pip install tinytag ``` @@ -2919,19 +2934,19 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as ``` git clone https://github.com/tyiannak/pyAudioAnalysis ``` -- [PyPi](https://pypi.org/project/pyAudioAnalysis) (πŸ“₯ 16K / month Β· πŸ“¦ 12 Β· ⏱️ 07.02.2022): +- [PyPi](https://pypi.org/project/pyAudioAnalysis) (πŸ“₯ 17K / month Β· πŸ“¦ 12 Β· ⏱️ 07.02.2022): ``` pip install pyAudioAnalysis ```
Madmom (πŸ₯‰27 Β· ⭐ 1.4K Β· πŸ’€) - Python audio and music signal processing library. BSD-3 -- [GitHub](https://github.com/CPJKU/madmom) (πŸ‘¨β€πŸ’» 24 Β· πŸ”€ 220 Β· πŸ“¦ 480 Β· πŸ“‹ 280 - 24% open Β· ⏱️ 25.08.2024): +- [GitHub](https://github.com/CPJKU/madmom) (πŸ‘¨β€πŸ’» 24 Β· πŸ”€ 220 Β· πŸ“¦ 490 Β· πŸ“‹ 280 - 24% open Β· ⏱️ 25.08.2024): ``` git clone https://github.com/CPJKU/madmom ``` -- [PyPi](https://pypi.org/project/madmom) (πŸ“₯ 3.3K / month Β· πŸ“¦ 27 Β· ⏱️ 14.11.2018): +- [PyPi](https://pypi.org/project/madmom) (πŸ“₯ 3.4K / month Β· πŸ“¦ 27 Β· ⏱️ 14.11.2018): ``` pip install madmom ``` @@ -2943,11 +2958,11 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as ``` git clone https://github.com/magenta/ddsp ``` -- [PyPi](https://pypi.org/project/ddsp) (πŸ“₯ 5.5K / month Β· πŸ“¦ 1 Β· ⏱️ 25.05.2022): +- [PyPi](https://pypi.org/project/ddsp) (πŸ“₯ 5.3K / month Β· πŸ“¦ 1 Β· ⏱️ 25.05.2022): ``` pip install ddsp ``` -- [Conda](https://anaconda.org/conda-forge/ddsp) (πŸ“₯ 21K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/ddsp) (πŸ“₯ 22K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge ddsp ``` @@ -2959,30 +2974,30 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as ``` git clone https://github.com/mozilla/DeepSpeech ``` -- [PyPi](https://pypi.org/project/deepspeech) (πŸ“₯ 17K / month Β· πŸ“¦ 24 Β· ⏱️ 19.12.2020): +- [PyPi](https://pypi.org/project/deepspeech) (πŸ“₯ 18K / month Β· πŸ“¦ 24 Β· ⏱️ 19.12.2020): ``` pip install deepspeech ``` -- [Conda](https://anaconda.org/conda-forge/deepspeech) (πŸ“₯ 3.7K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/deepspeech) (πŸ“₯ 3.8K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge deepspeech ```
Julius (πŸ₯‰23 Β· ⭐ 440) - Fast PyTorch based DSP for audio and 1D signals. MIT -- [GitHub](https://github.com/adefossez/julius) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 25 Β· πŸ“¦ 2.7K Β· πŸ“‹ 12 - 16% open Β· ⏱️ 17.02.2025): +- [GitHub](https://github.com/adefossez/julius) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 25 Β· πŸ“¦ 2.8K Β· πŸ“‹ 12 - 16% open Β· ⏱️ 17.02.2025): ``` git clone https://github.com/adefossez/julius ``` -- [PyPi](https://pypi.org/project/julius) (πŸ“₯ 400K / month Β· πŸ“¦ 44 Β· ⏱️ 20.09.2022): +- [PyPi](https://pypi.org/project/julius) (πŸ“₯ 410K / month Β· πŸ“¦ 44 Β· ⏱️ 20.09.2022): ``` pip install julius ```
Show 13 hidden projects... -- Coqui TTS (πŸ₯‡36 Β· ⭐ 39K Β· πŸ’€) - - a deep learning toolkit for Text-to-Speech, battle-.. MPL-2.0 +- Coqui TTS (πŸ₯‡36 Β· ⭐ 40K Β· πŸ’€) - - a deep learning toolkit for Text-to-Speech, battle-.. MPL-2.0 - Pydub (πŸ₯‡36 Β· ⭐ 9.3K Β· πŸ’€) - Manipulate audio with a simple and easy high level interface. MIT - audioread (πŸ₯ˆ30 Β· ⭐ 510 Β· πŸ’€) - cross-library (GStreamer + Core Audio + MAD + FFmpeg) audio.. MIT - Essentia (πŸ₯‰29 Β· ⭐ 3K) - C++ library for audio and music analysis, description and.. ❗️AGPL-3.0 @@ -3006,20 +3021,20 @@ _Libraries to load, process, analyze, and write geographic data as well as libra
pydeck (πŸ₯‡43 Β· ⭐ 13K) - WebGL2 powered visualization framework. MIT -- [GitHub](https://github.com/visgl/deck.gl) (πŸ‘¨β€πŸ’» 290 Β· πŸ”€ 2.1K Β· πŸ“¦ 8.9K Β· πŸ“‹ 3.2K - 13% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/visgl/deck.gl) (πŸ‘¨β€πŸ’» 290 Β· πŸ”€ 2.1K Β· πŸ“¦ 9K Β· πŸ“‹ 3.2K - 13% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/visgl/deck.gl ``` -- [PyPi](https://pypi.org/project/pydeck) (πŸ“₯ 8.1M / month Β· πŸ“¦ 160 Β· ⏱️ 21.03.2025): +- [PyPi](https://pypi.org/project/pydeck) (πŸ“₯ 8.5M / month Β· πŸ“¦ 160 Β· ⏱️ 21.03.2025): ``` pip install pydeck ``` -- [Conda](https://anaconda.org/conda-forge/pydeck) (πŸ“₯ 730K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pydeck) (πŸ“₯ 740K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pydeck ``` -- [npm](https://www.npmjs.com/package/deck.gl) (πŸ“₯ 660K / month Β· πŸ“¦ 340 Β· ⏱️ 14.04.2025): +- [npm](https://www.npmjs.com/package/deck.gl) (πŸ“₯ 610K / month Β· πŸ“¦ 340 Β· ⏱️ 18.04.2025): ``` npm install deck.gl ``` @@ -3031,50 +3046,50 @@ _Libraries to load, process, analyze, and write geographic data as well as libra ``` git clone https://github.com/shapely/shapely ``` -- [PyPi](https://pypi.org/project/shapely) (πŸ“₯ 44M / month Β· πŸ“¦ 3.9K Β· ⏱️ 03.04.2025): +- [PyPi](https://pypi.org/project/shapely) (πŸ“₯ 45M / month Β· πŸ“¦ 3.9K Β· ⏱️ 03.04.2025): ``` pip install shapely ``` -- [Conda](https://anaconda.org/conda-forge/shapely) (πŸ“₯ 12M Β· ⏱️ 03.04.2025): +- [Conda](https://anaconda.org/conda-forge/shapely) (πŸ“₯ 12M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge shapely ```
folium (πŸ₯‡39 Β· ⭐ 7.1K) - Python Data. Leaflet.js Maps. MIT -- [GitHub](https://github.com/python-visualization/folium) (πŸ‘¨β€πŸ’» 170 Β· πŸ”€ 2.2K Β· πŸ“¦ 57K Β· πŸ“‹ 1.2K - 8% open Β· ⏱️ 12.04.2025): +- [GitHub](https://github.com/python-visualization/folium) (πŸ‘¨β€πŸ’» 170 Β· πŸ”€ 2.2K Β· πŸ“¦ 58K Β· πŸ“‹ 1.2K - 8% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/python-visualization/folium ``` -- [PyPi](https://pypi.org/project/folium) (πŸ“₯ 2.1M / month Β· πŸ“¦ 860 Β· ⏱️ 27.02.2025): +- [PyPi](https://pypi.org/project/folium) (πŸ“₯ 2.2M / month Β· πŸ“¦ 860 Β· ⏱️ 27.02.2025): ``` pip install folium ``` -- [Conda](https://anaconda.org/conda-forge/folium) (πŸ“₯ 3.7M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/folium) (πŸ“₯ 3.7M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge folium ```
GeoPandas (πŸ₯ˆ38 Β· ⭐ 4.7K) - Python tools for geographic data. BSD-3 -- [GitHub](https://github.com/geopandas/geopandas) (πŸ‘¨β€πŸ’» 240 Β· πŸ”€ 950 Β· πŸ“₯ 3K Β· πŸ“¦ 53K Β· πŸ“‹ 1.7K - 25% open Β· ⏱️ 08.04.2025): +- [GitHub](https://github.com/geopandas/geopandas) (πŸ‘¨β€πŸ’» 240 Β· πŸ”€ 950 Β· πŸ“₯ 3K Β· πŸ“¦ 54K Β· πŸ“‹ 1.7K - 25% open Β· ⏱️ 17.04.2025): ``` git clone https://github.com/geopandas/geopandas ``` -- [PyPi](https://pypi.org/project/geopandas) (πŸ“₯ 7.4M / month Β· πŸ“¦ 2.8K Β· ⏱️ 02.07.2024): +- [PyPi](https://pypi.org/project/geopandas) (πŸ“₯ 7.6M / month Β· πŸ“¦ 2.8K Β· ⏱️ 02.07.2024): ``` pip install geopandas ``` -- [Conda](https://anaconda.org/conda-forge/geopandas) (πŸ“₯ 4.5M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/geopandas) (πŸ“₯ 4.6M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge geopandas ```
Rasterio (πŸ₯ˆ37 Β· ⭐ 2.3K) - Rasterio reads and writes geospatial raster datasets. BSD-3 -- [GitHub](https://github.com/rasterio/rasterio) (πŸ‘¨β€πŸ’» 170 Β· πŸ”€ 540 Β· πŸ“₯ 1K Β· πŸ“¦ 16K Β· πŸ“‹ 1.9K - 8% open Β· ⏱️ 14.04.2025): +- [GitHub](https://github.com/rasterio/rasterio) (πŸ‘¨β€πŸ’» 170 Β· πŸ”€ 540 Β· πŸ“₯ 1K Β· πŸ“¦ 17K Β· πŸ“‹ 1.9K - 8% open Β· ⏱️ 14.04.2025): ``` git clone https://github.com/rasterio/rasterio @@ -3083,35 +3098,35 @@ _Libraries to load, process, analyze, and write geographic data as well as libra ``` pip install rasterio ``` -- [Conda](https://anaconda.org/conda-forge/rasterio) (πŸ“₯ 4.5M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/rasterio) (πŸ“₯ 4.6M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge rasterio ```
pyproj (πŸ₯ˆ37 Β· ⭐ 1.1K) - Python interface to PROJ (cartographic projections and coordinate.. MIT -- [GitHub](https://github.com/pyproj4/pyproj) (πŸ‘¨β€πŸ’» 69 Β· πŸ”€ 220 Β· πŸ“¦ 42K Β· πŸ“‹ 630 - 5% open Β· ⏱️ 01.04.2025): +- [GitHub](https://github.com/pyproj4/pyproj) (πŸ‘¨β€πŸ’» 69 Β· πŸ”€ 220 Β· πŸ“¦ 43K Β· πŸ“‹ 630 - 5% open Β· ⏱️ 01.04.2025): ``` git clone https://github.com/pyproj4/pyproj ``` -- [PyPi](https://pypi.org/project/pyproj) (πŸ“₯ 10M / month Β· πŸ“¦ 1.9K Β· ⏱️ 16.02.2025): +- [PyPi](https://pypi.org/project/pyproj) (πŸ“₯ 11M / month Β· πŸ“¦ 1.9K Β· ⏱️ 16.02.2025): ``` pip install pyproj ``` -- [Conda](https://anaconda.org/conda-forge/pyproj) (πŸ“₯ 10M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pyproj) (πŸ“₯ 10M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pyproj ```
ArcGIS API (πŸ₯ˆ36 Β· ⭐ 2K) - Documentation and samples for ArcGIS API for Python. Apache-2 -- [GitHub](https://github.com/Esri/arcgis-python-api) (πŸ‘¨β€πŸ’» 97 Β· πŸ”€ 1.1K Β· πŸ“₯ 15K Β· πŸ“¦ 940 Β· πŸ“‹ 830 - 7% open Β· ⏱️ 07.04.2025): +- [GitHub](https://github.com/Esri/arcgis-python-api) (πŸ‘¨β€πŸ’» 97 Β· πŸ”€ 1.1K Β· πŸ“₯ 15K Β· πŸ“¦ 940 Β· πŸ“‹ 840 - 8% open Β· ⏱️ 21.04.2025): ``` git clone https://github.com/Esri/arcgis-python-api ``` -- [PyPi](https://pypi.org/project/arcgis) (πŸ“₯ 91K / month Β· πŸ“¦ 40 Β· ⏱️ 01.10.2024): +- [PyPi](https://pypi.org/project/arcgis) (πŸ“₯ 97K / month Β· πŸ“¦ 41 Β· ⏱️ 17.04.2025): ``` pip install arcgis ``` @@ -3131,7 +3146,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra ``` pip install fiona ``` -- [Conda](https://anaconda.org/conda-forge/fiona) (πŸ“₯ 6.7M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/fiona) (πŸ“₯ 6.8M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge fiona ``` @@ -3147,11 +3162,11 @@ _Libraries to load, process, analyze, and write geographic data as well as libra ``` pip install ipyleaflet ``` -- [Conda](https://anaconda.org/conda-forge/ipyleaflet) (πŸ“₯ 1.4M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/ipyleaflet) (πŸ“₯ 1.4M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge ipyleaflet ``` -- [npm](https://www.npmjs.com/package/jupyter-leaflet) (πŸ“₯ 3.1K / month Β· πŸ“¦ 9 Β· ⏱️ 22.07.2024): +- [npm](https://www.npmjs.com/package/jupyter-leaflet) (πŸ“₯ 3.7K / month Β· πŸ“¦ 9 Β· ⏱️ 22.07.2024): ``` npm install jupyter-leaflet ``` @@ -3163,11 +3178,11 @@ _Libraries to load, process, analyze, and write geographic data as well as libra ``` git clone https://github.com/pysal/pysal ``` -- [PyPi](https://pypi.org/project/pysal) (πŸ“₯ 27K / month Β· πŸ“¦ 59 Β· ⏱️ 06.02.2025): +- [PyPi](https://pypi.org/project/pysal) (πŸ“₯ 28K / month Β· πŸ“¦ 59 Β· ⏱️ 06.02.2025): ``` pip install pysal ``` -- [Conda](https://anaconda.org/conda-forge/pysal) (πŸ“₯ 620K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pysal) (πŸ“₯ 620K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pysal ``` @@ -3179,11 +3194,11 @@ _Libraries to load, process, analyze, and write geographic data as well as libra ``` git clone https://github.com/jazzband/geojson ``` -- [PyPi](https://pypi.org/project/geojson) (πŸ“₯ 3.2M / month Β· πŸ“¦ 720 Β· ⏱️ 21.12.2024): +- [PyPi](https://pypi.org/project/geojson) (πŸ“₯ 3M / month Β· πŸ“¦ 720 Β· ⏱️ 21.12.2024): ``` pip install geojson ``` -- [Conda](https://anaconda.org/conda-forge/geojson) (πŸ“₯ 950K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/geojson) (πŸ“₯ 950K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge geojson ``` @@ -3199,7 +3214,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra ``` pip install geoviews ``` -- [Conda](https://anaconda.org/conda-forge/geoviews) (πŸ“₯ 290K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/geoviews) (πŸ“₯ 290K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge geoviews ``` @@ -3211,32 +3226,32 @@ _Libraries to load, process, analyze, and write geographic data as well as libra ``` git clone https://github.com/mapbox/mapboxgl-jupyter ``` -- [PyPi](https://pypi.org/project/mapboxgl) (πŸ“₯ 9.2K / month Β· πŸ“¦ 12 Β· ⏱️ 02.06.2019): +- [PyPi](https://pypi.org/project/mapboxgl) (πŸ“₯ 8.5K / month Β· πŸ“¦ 12 Β· ⏱️ 02.06.2019): ``` pip install mapboxgl ```
pymap3d (πŸ₯‰24 Β· ⭐ 410) - pure-Python (Numpy optional) 3D coordinate conversions for geospace ecef.. BSD-2 -- [GitHub](https://github.com/geospace-code/pymap3d) (πŸ‘¨β€πŸ’» 19 Β· πŸ”€ 87 Β· πŸ“¦ 490 Β· πŸ“‹ 60 - 15% open Β· ⏱️ 08.01.2025): +- [GitHub](https://github.com/geospace-code/pymap3d) (πŸ‘¨β€πŸ’» 19 Β· πŸ”€ 87 Β· πŸ“¦ 500 Β· πŸ“‹ 60 - 15% open Β· ⏱️ 08.01.2025): ``` git clone https://github.com/geospace-code/pymap3d ``` -- [PyPi](https://pypi.org/project/pymap3d) (πŸ“₯ 300K / month Β· πŸ“¦ 44 Β· ⏱️ 11.02.2024): +- [PyPi](https://pypi.org/project/pymap3d) (πŸ“₯ 310K / month Β· πŸ“¦ 44 Β· ⏱️ 11.02.2024): ``` pip install pymap3d ``` -- [Conda](https://anaconda.org/conda-forge/pymap3d) (πŸ“₯ 99K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pymap3d) (πŸ“₯ 100K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pymap3d ```
Show 8 hidden projects... -- geopy (πŸ₯ˆ33 Β· ⭐ 4.6K Β· πŸ’€) - Geocoding library for Python. MIT -- Geocoder (πŸ₯ˆ33 Β· ⭐ 1.6K Β· πŸ’€) - Python Geocoder. MIT -- Satpy (πŸ₯ˆ33 Β· ⭐ 1.1K) - Python package for earth-observing satellite data processing. ❗️GPL-3.0 +- Satpy (πŸ₯ˆ34 Β· ⭐ 1.1K) - Python package for earth-observing satellite data processing. ❗️GPL-3.0 +- geopy (πŸ₯‰33 Β· ⭐ 4.6K Β· πŸ’€) - Geocoding library for Python. MIT +- Geocoder (πŸ₯‰33 Β· ⭐ 1.6K Β· πŸ’€) - Python Geocoder. MIT - Sentinelsat (πŸ₯‰27 Β· ⭐ 1K Β· πŸ’€) - Search and download Copernicus Sentinel satellite images. ❗️GPL-3.0 - EarthPy (πŸ₯‰27 Β· ⭐ 520 Β· πŸ’€) - A package built to support working with spatial data using open.. BSD-3 - prettymaps (πŸ₯‰26 Β· ⭐ 12K) - Draw pretty maps from OpenStreetMap data! Built with osmnx.. ❗️AGPL-3.0 @@ -3253,12 +3268,12 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te
yfinance (πŸ₯‡41 Β· ⭐ 17K) - Download market data from Yahoo! Finances API. Apache-2 -- [GitHub](https://github.com/ranaroussi/yfinance) (πŸ‘¨β€πŸ’» 130 Β· πŸ”€ 2.6K Β· πŸ“¦ 72K Β· πŸ“‹ 1.5K - 11% open Β· ⏱️ 22.03.2025): +- [GitHub](https://github.com/ranaroussi/yfinance) (πŸ‘¨β€πŸ’» 130 Β· πŸ”€ 2.6K Β· πŸ“¦ 73K Β· πŸ“‹ 1.6K - 11% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/ranaroussi/yfinance ``` -- [PyPi](https://pypi.org/project/yfinance) (πŸ“₯ 3M / month Β· πŸ“¦ 890 Β· ⏱️ 20.03.2025): +- [PyPi](https://pypi.org/project/yfinance) (πŸ“₯ 3.1M / month Β· πŸ“¦ 940 Β· ⏱️ 23.04.2025): ``` pip install yfinance ``` @@ -3274,7 +3289,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te ``` git clone https://github.com/microsoft/qlib ``` -- [PyPi](https://pypi.org/project/pyqlib) (πŸ“₯ 9.1K / month Β· πŸ“¦ 1 Β· ⏱️ 23.12.2024): +- [PyPi](https://pypi.org/project/pyqlib) (πŸ“₯ 8.4K / month Β· πŸ“¦ 1 Β· ⏱️ 23.12.2024): ``` pip install pyqlib ``` @@ -3290,23 +3305,23 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te ``` pip install bt ``` -- [Conda](https://anaconda.org/conda-forge/bt) (πŸ“₯ 79K Β· ⏱️ 12.04.2025): +- [Conda](https://anaconda.org/conda-forge/bt) (πŸ“₯ 80K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge bt ```
ffn (πŸ₯ˆ29 Β· ⭐ 2.2K) - ffn - a financial function library for Python. MIT -- [GitHub](https://github.com/pmorissette/ffn) (πŸ‘¨β€πŸ’» 36 Β· πŸ”€ 310 Β· πŸ“¦ 540 Β· πŸ“‹ 130 - 16% open Β· ⏱️ 01.04.2025): +- [GitHub](https://github.com/pmorissette/ffn) (πŸ‘¨β€πŸ’» 36 Β· πŸ”€ 310 Β· πŸ“¦ 550 Β· πŸ“‹ 130 - 16% open Β· ⏱️ 01.04.2025): ``` git clone https://github.com/pmorissette/ffn ``` -- [PyPi](https://pypi.org/project/ffn) (πŸ“₯ 23K / month Β· πŸ“¦ 22 Β· ⏱️ 11.02.2025): +- [PyPi](https://pypi.org/project/ffn) (πŸ“₯ 22K / month Β· πŸ“¦ 22 Β· ⏱️ 11.02.2025): ``` pip install ffn ``` -- [Conda](https://anaconda.org/conda-forge/ffn) (πŸ“₯ 18K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/ffn) (πŸ“₯ 18K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge ffn ``` @@ -3318,11 +3333,11 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te ``` git clone https://github.com/tensortrade-org/tensortrade ``` -- [PyPi](https://pypi.org/project/tensortrade) (πŸ“₯ 1.7K / month Β· πŸ“¦ 1 Β· ⏱️ 10.05.2021): +- [PyPi](https://pypi.org/project/tensortrade) (πŸ“₯ 1.9K / month Β· πŸ“¦ 1 Β· ⏱️ 10.05.2021): ``` pip install tensortrade ``` -- [Conda](https://anaconda.org/conda-forge/tensortrade) (πŸ“₯ 4.7K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/tensortrade) (πŸ“₯ 4.8K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge tensortrade ``` @@ -3338,7 +3353,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te ``` pip install alpha_vantage ``` -- [Conda](https://anaconda.org/conda-forge/alpha_vantage) (πŸ“₯ 8.9K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/alpha_vantage) (πŸ“₯ 8.9K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge alpha_vantage ``` @@ -3362,19 +3377,19 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te ``` git clone https://github.com/cuemacro/finmarketpy ``` -- [PyPi](https://pypi.org/project/finmarketpy) (πŸ“₯ 470 / month Β· ⏱️ 10.03.2025): +- [PyPi](https://pypi.org/project/finmarketpy) (πŸ“₯ 510 / month Β· ⏱️ 10.03.2025): ``` pip install finmarketpy ```
tf-quant-finance (πŸ₯‰22 Β· ⭐ 4.8K) - High-performance TensorFlow library for quantitative.. Apache-2 -- [GitHub](https://github.com/google/tf-quant-finance) (πŸ‘¨β€πŸ’» 48 Β· πŸ”€ 590 Β· πŸ“‹ 63 - 55% open Β· ⏱️ 21.03.2025): +- [GitHub](https://github.com/google/tf-quant-finance) (πŸ‘¨β€πŸ’» 48 Β· πŸ”€ 600 Β· πŸ“‹ 63 - 55% open Β· ⏱️ 21.03.2025): ``` git clone https://github.com/google/tf-quant-finance ``` -- [PyPi](https://pypi.org/project/tf-quant-finance) (πŸ“₯ 390 / month Β· πŸ“¦ 3 Β· ⏱️ 19.08.2022): +- [PyPi](https://pypi.org/project/tf-quant-finance) (πŸ“₯ 500 / month Β· πŸ“¦ 3 Β· ⏱️ 19.08.2022): ``` pip install tf-quant-finance ``` @@ -3386,15 +3401,15 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te - arch (πŸ₯‡32 Β· ⭐ 1.4K) - ARCH models in Python. ❗Unlicensed - ta (πŸ₯ˆ31 Β· ⭐ 4.6K Β· πŸ’€) - Technical Analysis Library using Pandas and Numpy. MIT - backtrader (πŸ₯ˆ29 Β· ⭐ 17K Β· πŸ’€) - Python Backtesting library for trading strategies. ❗️GPL-3.0 -- Backtesting.py (πŸ₯ˆ28 Β· ⭐ 6.3K) - Backtest trading strategies in Python. ❗️AGPL-3.0 -- Alphalens (πŸ₯ˆ28 Β· ⭐ 3.6K Β· πŸ’€) - Performance analysis of predictive (alpha) stock factors. Apache-2 +- Backtesting.py (πŸ₯ˆ28 Β· ⭐ 6.4K) - Backtest trading strategies in Python. ❗️AGPL-3.0 +- Alphalens (πŸ₯ˆ28 Β· ⭐ 3.7K Β· πŸ’€) - Performance analysis of predictive (alpha) stock factors. Apache-2 - IB-insync (πŸ₯ˆ28 Β· ⭐ 3K Β· πŸ’€) - Python sync/async framework for Interactive Brokers API. BSD-2 - empyrical (πŸ₯ˆ28 Β· ⭐ 1.4K Β· πŸ’€) - Common financial risk and performance metrics. Used by.. Apache-2 - Enigma Catalyst (πŸ₯‰26 Β· ⭐ 2.5K Β· πŸ’€) - An Algorithmic Trading Library for Crypto-Assets in.. Apache-2 -- PyAlgoTrade (πŸ₯‰24 Β· ⭐ 4.5K Β· πŸ’€) - Python Algorithmic Trading Library. Apache-2 - FinTA (πŸ₯‰24 Β· ⭐ 2.2K Β· πŸ’€) - Common financial technical indicators implemented in Pandas. ❗️LGPL-3.0 -- Crypto Signals (πŸ₯‰22 Β· ⭐ 5.1K Β· πŸ’€) - Github.com/CryptoSignal - Trading & Technical Analysis Bot -.. MIT +- Crypto Signals (πŸ₯‰22 Β· ⭐ 5.2K Β· πŸ’€) - Github.com/CryptoSignal - Trading & Technical Analysis Bot -.. MIT - FinQuant (πŸ₯‰22 Β· ⭐ 1.5K Β· πŸ’€) - A program for financial portfolio management, analysis and.. MIT +- PyAlgoTrade (πŸ₯‰20 Β· ⭐ 4.5K Β· πŸ’€) - Python Algorithmic Trading Library. Apache-2 - surpriver (πŸ₯‰12 Β· ⭐ 1.8K Β· πŸ’€) - Find big moving stocks before they move using machine.. ❗️GPL-3.0 - pyrtfolio (πŸ₯‰10 Β· ⭐ 150 Β· πŸ’€) - Python package to generate stock portfolios. ❗️GPL-3.0
@@ -3406,9 +3421,9 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te _Libraries for forecasting, anomaly detection, feature extraction, and machine learning on time-series and sequential data._ -
sktime (πŸ₯‡41 Β· ⭐ 8.3K) - A unified framework for machine learning with time series. BSD-3 +
sktime (πŸ₯‡41 Β· ⭐ 8.4K) - A unified framework for machine learning with time series. BSD-3 -- [GitHub](https://github.com/sktime/sktime) (πŸ‘¨β€πŸ’» 460 Β· πŸ”€ 1.5K Β· πŸ“₯ 110 Β· πŸ“¦ 4.3K Β· πŸ“‹ 2.8K - 38% open Β· ⏱️ 13.04.2025): +- [GitHub](https://github.com/sktime/sktime) (πŸ‘¨β€πŸ’» 460 Β· πŸ”€ 1.5K Β· πŸ“₯ 110 Β· πŸ“¦ 4.3K Β· πŸ“‹ 2.9K - 38% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/alan-turing-institute/sktime @@ -3417,23 +3432,23 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l ``` pip install sktime ``` -- [Conda](https://anaconda.org/conda-forge/sktime-all-extras) (πŸ“₯ 1.1M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/sktime-all-extras) (πŸ“₯ 1.1M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge sktime-all-extras ```
StatsForecast (πŸ₯‡34 Β· ⭐ 4.2K) - Lightning fast forecasting with statistical and econometric.. Apache-2 -- [GitHub](https://github.com/Nixtla/statsforecast) (πŸ‘¨β€πŸ’» 51 Β· πŸ”€ 300 Β· πŸ“¦ 1.6K Β· πŸ“‹ 360 - 29% open Β· ⏱️ 18.03.2025): +- [GitHub](https://github.com/Nixtla/statsforecast) (πŸ‘¨β€πŸ’» 51 Β· πŸ”€ 300 Β· πŸ“¦ 1.6K Β· πŸ“‹ 360 - 29% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/Nixtla/statsforecast ``` -- [PyPi](https://pypi.org/project/statsforecast) (πŸ“₯ 940K / month Β· πŸ“¦ 68 Β· ⏱️ 18.02.2025): +- [PyPi](https://pypi.org/project/statsforecast) (πŸ“₯ 980K / month Β· πŸ“¦ 68 Β· ⏱️ 18.02.2025): ``` pip install statsforecast ``` -- [Conda](https://anaconda.org/conda-forge/statsforecast) (πŸ“₯ 170K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/statsforecast) (πŸ“₯ 170K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge statsforecast ``` @@ -3445,31 +3460,31 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l ``` git clone https://github.com/facebook/prophet ``` -- [PyPi](https://pypi.org/project/fbprophet) (πŸ“₯ 200K / month Β· πŸ“¦ 91 Β· ⏱️ 05.09.2020): +- [PyPi](https://pypi.org/project/fbprophet) (πŸ“₯ 240K / month Β· πŸ“¦ 91 Β· ⏱️ 05.09.2020): ``` pip install fbprophet ``` -- [Conda](https://anaconda.org/conda-forge/prophet) (πŸ“₯ 1.4M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/prophet) (πŸ“₯ 1.4M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge prophet ```
Darts (πŸ₯‡33 Β· ⭐ 8.5K) - A python library for user-friendly forecasting and anomaly detection.. Apache-2 -- [GitHub](https://github.com/unit8co/darts) (πŸ‘¨β€πŸ’» 130 Β· πŸ”€ 920 Β· πŸ“‹ 1.7K - 14% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/unit8co/darts) (πŸ‘¨β€πŸ’» 130 Β· πŸ”€ 920 Β· πŸ“‹ 1.7K - 14% open Β· ⏱️ 20.04.2025): ``` git clone https://github.com/unit8co/darts ``` -- [PyPi](https://pypi.org/project/u8darts) (πŸ“₯ 79K / month Β· πŸ“¦ 10 Β· ⏱️ 09.03.2025): +- [PyPi](https://pypi.org/project/u8darts) (πŸ“₯ 78K / month Β· πŸ“¦ 10 Β· ⏱️ 18.04.2025): ``` pip install u8darts ``` -- [Conda](https://anaconda.org/conda-forge/u8darts-all) (πŸ“₯ 76K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/u8darts-all) (πŸ“₯ 76K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge u8darts-all ``` -- [Docker Hub](https://hub.docker.com/r/unit8/darts) (πŸ“₯ 1.4K Β· ⏱️ 09.03.2025): +- [Docker Hub](https://hub.docker.com/r/unit8/darts) (πŸ“₯ 1.4K Β· ⏱️ 18.04.2025): ``` docker pull unit8/darts ``` @@ -3481,18 +3496,18 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l ``` git clone https://github.com/blue-yonder/tsfresh ``` -- [PyPi](https://pypi.org/project/tsfresh) (πŸ“₯ 260K / month Β· πŸ“¦ 100 Β· ⏱️ 16.02.2025): +- [PyPi](https://pypi.org/project/tsfresh) (πŸ“₯ 250K / month Β· πŸ“¦ 100 Β· ⏱️ 16.02.2025): ``` pip install tsfresh ``` -- [Conda](https://anaconda.org/conda-forge/tsfresh) (πŸ“₯ 1.4M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/tsfresh) (πŸ“₯ 1.4M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge tsfresh ```
-
pytorch-forecasting (πŸ₯ˆ32 Β· ⭐ 4.2K) - Time series forecasting with PyTorch. MIT +
pytorch-forecasting (πŸ₯ˆ32 Β· ⭐ 4.3K) - Time series forecasting with PyTorch. MIT -- [GitHub](https://github.com/sktime/pytorch-forecasting) (πŸ‘¨β€πŸ’» 67 Β· πŸ”€ 660 Β· πŸ“¦ 560 Β· πŸ“‹ 840 - 60% open Β· ⏱️ 03.04.2025): +- [GitHub](https://github.com/sktime/pytorch-forecasting) (πŸ‘¨β€πŸ’» 67 Β· πŸ”€ 660 Β· πŸ“¦ 570 Β· πŸ“‹ 840 - 60% open Β· ⏱️ 18.04.2025): ``` git clone https://github.com/jdb78/pytorch-forecasting @@ -3501,7 +3516,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l ``` pip install pytorch-forecasting ``` -- [Conda](https://anaconda.org/conda-forge/pytorch-forecasting) (πŸ“₯ 76K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pytorch-forecasting) (πŸ“₯ 76K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pytorch-forecasting ``` @@ -3517,23 +3532,23 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l ``` pip install stumpy ``` -- [Conda](https://anaconda.org/conda-forge/stumpy) (πŸ“₯ 1.1M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/stumpy) (πŸ“₯ 1.1M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge stumpy ```
-
NeuralForecast (πŸ₯ˆ32 Β· ⭐ 3.4K) - Scalable and user friendly neural forecasting algorithms. Apache-2 +
NeuralForecast (πŸ₯ˆ32 Β· ⭐ 3.5K) - Scalable and user friendly neural forecasting algorithms. Apache-2 -- [GitHub](https://github.com/Nixtla/neuralforecast) (πŸ‘¨β€πŸ’» 50 Β· πŸ”€ 390 Β· πŸ“¦ 340 Β· πŸ“‹ 610 - 17% open Β· ⏱️ 10.04.2025): +- [GitHub](https://github.com/Nixtla/neuralforecast) (πŸ‘¨β€πŸ’» 50 Β· πŸ”€ 400 Β· πŸ“¦ 350 Β· πŸ“‹ 610 - 17% open Β· ⏱️ 10.04.2025): ``` git clone https://github.com/Nixtla/neuralforecast ``` -- [PyPi](https://pypi.org/project/neuralforecast) (πŸ“₯ 65K / month Β· πŸ“¦ 26 Β· ⏱️ 28.02.2025): +- [PyPi](https://pypi.org/project/neuralforecast) (πŸ“₯ 70K / month Β· πŸ“¦ 26 Β· ⏱️ 28.02.2025): ``` pip install neuralforecast ``` -- [Conda](https://anaconda.org/conda-forge/neuralforecast) (πŸ“₯ 35K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/neuralforecast) (πŸ“₯ 36K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge neuralforecast ``` @@ -3545,11 +3560,11 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l ``` git clone https://github.com/alkaline-ml/pmdarima ``` -- [PyPi](https://pypi.org/project/pmdarima) (πŸ“₯ 2.6M / month Β· πŸ“¦ 150 Β· ⏱️ 23.10.2023): +- [PyPi](https://pypi.org/project/pmdarima) (πŸ“₯ 2.7M / month Β· πŸ“¦ 150 Β· ⏱️ 23.10.2023): ``` pip install pmdarima ``` -- [Conda](https://anaconda.org/conda-forge/pmdarima) (πŸ“₯ 1.3M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pmdarima) (πŸ“₯ 1.3M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pmdarima ``` @@ -3561,39 +3576,39 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l ``` git clone https://github.com/tslearn-team/tslearn ``` -- [PyPi](https://pypi.org/project/tslearn) (πŸ“₯ 400K / month Β· πŸ“¦ 79 Β· ⏱️ 12.12.2023): +- [PyPi](https://pypi.org/project/tslearn) (πŸ“₯ 390K / month Β· πŸ“¦ 79 Β· ⏱️ 12.12.2023): ``` pip install tslearn ``` -- [Conda](https://anaconda.org/conda-forge/tslearn) (πŸ“₯ 1.6M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/tslearn) (πŸ“₯ 1.6M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge tslearn ```
skforecast (πŸ₯ˆ31 Β· ⭐ 1.3K) - Time series forecasting with machine learning models. BSD-3 -- [GitHub](https://github.com/skforecast/skforecast) (πŸ‘¨β€πŸ’» 19 Β· πŸ”€ 150 Β· πŸ“¦ 440 Β· πŸ“‹ 190 - 13% open Β· ⏱️ 01.04.2025): +- [GitHub](https://github.com/skforecast/skforecast) (πŸ‘¨β€πŸ’» 19 Β· πŸ”€ 160 Β· πŸ“¦ 440 Β· πŸ“‹ 190 - 13% open Β· ⏱️ 01.04.2025): ``` git clone https://github.com/JoaquinAmatRodrigo/skforecast ``` -- [PyPi](https://pypi.org/project/skforecast) (πŸ“₯ 94K / month Β· πŸ“¦ 18 Β· ⏱️ 18.03.2025): +- [PyPi](https://pypi.org/project/skforecast) (πŸ“₯ 88K / month Β· πŸ“¦ 18 Β· ⏱️ 18.03.2025): ``` pip install skforecast ```
-
GluonTS (πŸ₯ˆ30 Β· ⭐ 4.8K) - Probabilistic time series modeling in Python. Apache-2 +
GluonTS (πŸ₯ˆ30 Β· ⭐ 4.9K) - Probabilistic time series modeling in Python. Apache-2 - [GitHub](https://github.com/awslabs/gluonts) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 780 Β· πŸ“‹ 970 - 34% open Β· ⏱️ 08.04.2025): ``` git clone https://github.com/awslabs/gluon-ts ``` -- [PyPi](https://pypi.org/project/gluonts) (πŸ“₯ 960K / month Β· πŸ“¦ 36 Β· ⏱️ 08.04.2025): +- [PyPi](https://pypi.org/project/gluonts) (πŸ“₯ 910K / month Β· πŸ“¦ 36 Β· ⏱️ 08.04.2025): ``` pip install gluonts ``` -- [Conda](https://anaconda.org/anaconda/gluonts) (πŸ“₯ 1.8K Β· ⏱️ 07.04.2025): +- [Conda](https://anaconda.org/anaconda/gluonts) (πŸ“₯ 1.8K Β· ⏱️ 22.04.2025): ``` conda install -c anaconda gluonts ``` @@ -3605,11 +3620,11 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l ``` git clone https://github.com/python-streamz/streamz ``` -- [PyPi](https://pypi.org/project/streamz) (πŸ“₯ 19K / month Β· πŸ“¦ 57 Β· ⏱️ 27.07.2022): +- [PyPi](https://pypi.org/project/streamz) (πŸ“₯ 21K / month Β· πŸ“¦ 57 Β· ⏱️ 27.07.2022): ``` pip install streamz ``` -- [Conda](https://anaconda.org/conda-forge/streamz) (πŸ“₯ 2M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/streamz) (πŸ“₯ 2M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge streamz ``` @@ -3621,33 +3636,33 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l ``` git clone https://github.com/ourownstory/neural_prophet ``` -- [PyPi](https://pypi.org/project/neuralprophet) (πŸ“₯ 83K / month Β· πŸ“¦ 8 Β· ⏱️ 26.06.2024): +- [PyPi](https://pypi.org/project/neuralprophet) (πŸ“₯ 82K / month Β· πŸ“¦ 8 Β· ⏱️ 26.06.2024): ``` pip install neuralprophet ```
-
TSFEL (πŸ₯‰22 Β· ⭐ 1K) - An intuitive library to extract features from time series. BSD-3 +
greykite (πŸ₯‰23 Β· ⭐ 1.8K Β· πŸ“ˆ) - A flexible, intuitive and fast forecasting library. BSD-2 -- [GitHub](https://github.com/fraunhoferportugal/tsfel) (πŸ‘¨β€πŸ’» 20 Β· πŸ”€ 140 Β· πŸ“¦ 200 Β· πŸ“‹ 82 - 12% open Β· ⏱️ 17.10.2024): +- [GitHub](https://github.com/linkedin/greykite) (πŸ‘¨β€πŸ’» 10 Β· πŸ”€ 110 Β· πŸ“₯ 36 Β· πŸ“¦ 43 Β· πŸ“‹ 110 - 10% open Β· ⏱️ 20.02.2025): ``` - git clone https://github.com/fraunhoferportugal/tsfel + git clone https://github.com/linkedin/greykite ``` -- [PyPi](https://pypi.org/project/tsfel) (πŸ“₯ 10K / month Β· πŸ“¦ 7 Β· ⏱️ 12.09.2024): +- [PyPi](https://pypi.org/project/greykite) (πŸ“₯ 9.5K / month Β· ⏱️ 20.02.2025): ``` - pip install tsfel + pip install greykite ```
-
greykite (πŸ₯‰21 Β· ⭐ 1.8K) - A flexible, intuitive and fast forecasting library. BSD-2 +
TSFEL (πŸ₯‰22 Β· ⭐ 1K) - An intuitive library to extract features from time series. BSD-3 -- [GitHub](https://github.com/linkedin/greykite) (πŸ‘¨β€πŸ’» 10 Β· πŸ”€ 110 Β· πŸ“₯ 36 Β· πŸ“¦ 42 Β· πŸ“‹ 110 - 10% open Β· ⏱️ 20.02.2025): +- [GitHub](https://github.com/fraunhoferportugal/tsfel) (πŸ‘¨β€πŸ’» 20 Β· πŸ”€ 140 Β· πŸ“¦ 200 Β· πŸ“‹ 82 - 12% open Β· ⏱️ 17.10.2024): ``` - git clone https://github.com/linkedin/greykite + git clone https://github.com/fraunhoferportugal/tsfel ``` -- [PyPi](https://pypi.org/project/greykite) (πŸ“₯ 8K / month Β· ⏱️ 20.02.2025): +- [PyPi](https://pypi.org/project/tsfel) (πŸ“₯ 8.7K / month Β· πŸ“¦ 7 Β· ⏱️ 12.09.2024): ``` - pip install greykite + pip install tsfel ```
pydlm (πŸ₯‰20 Β· ⭐ 480 Β· πŸ’€) - A python library for Bayesian time series modeling. BSD-3 @@ -3657,23 +3672,23 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l ``` git clone https://github.com/wwrechard/pydlm ``` -- [PyPi](https://pypi.org/project/pydlm) (πŸ“₯ 68K / month Β· πŸ“¦ 2 Β· ⏱️ 13.08.2024): +- [PyPi](https://pypi.org/project/pydlm) (πŸ“₯ 67K / month Β· πŸ“¦ 2 Β· ⏱️ 13.08.2024): ``` pip install pydlm ```
tsflex (πŸ₯‰20 Β· ⭐ 420 Β· πŸ’€) - Flexible time series feature extraction & processing. MIT -- [GitHub](https://github.com/predict-idlab/tsflex) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 26 Β· πŸ“¦ 21 Β· πŸ“‹ 56 - 58% open Β· ⏱️ 06.09.2024): +- [GitHub](https://github.com/predict-idlab/tsflex) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 26 Β· πŸ“¦ 22 Β· πŸ“‹ 56 - 58% open Β· ⏱️ 06.09.2024): ``` git clone https://github.com/predict-idlab/tsflex ``` -- [PyPi](https://pypi.org/project/tsflex) (πŸ“₯ 1.3K / month Β· πŸ“¦ 2 Β· ⏱️ 06.09.2024): +- [PyPi](https://pypi.org/project/tsflex) (πŸ“₯ 2.2K / month Β· πŸ“¦ 2 Β· ⏱️ 06.09.2024): ``` pip install tsflex ``` -- [Conda](https://anaconda.org/conda-forge/tsflex) (πŸ“₯ 31K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/tsflex) (πŸ“₯ 32K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge tsflex ``` @@ -3685,7 +3700,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l ``` git clone https://github.com/AutoViML/Auto_TS ``` -- [PyPi](https://pypi.org/project/auto-ts) (πŸ“₯ 3.5K / month Β· ⏱️ 05.05.2024): +- [PyPi](https://pypi.org/project/auto-ts) (πŸ“₯ 3.2K / month Β· ⏱️ 05.05.2024): ``` pip install auto-ts ``` @@ -3699,7 +3714,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l - seglearn (πŸ₯‰21 Β· ⭐ 570 Β· πŸ’€) - Python module for machine learning time series:. BSD-3 - tick (πŸ₯‰21 Β· ⭐ 500 Β· πŸ’€) - Module for statistical learning, with a particular emphasis on time-.. BSD-3 - matrixprofile-ts (πŸ₯‰19 Β· ⭐ 740 Β· πŸ’€) - A Python library for detecting patterns and anomalies.. Apache-2 -- atspy (πŸ₯‰14 Β· ⭐ 510 Β· πŸ’€) - AtsPy: Automated Time Series Models in Python (by @firmai). MIT +- atspy (πŸ₯‰14 Β· ⭐ 520 Β· πŸ’€) - AtsPy: Automated Time Series Models in Python (by @firmai). MIT - tsaug (πŸ₯‰14 Β· ⭐ 350 Β· πŸ’€) - A Python package for time series augmentation. Apache-2 - tslumen (πŸ₯‰8 Β· ⭐ 69 Β· πŸ’€) - A library for Time Series EDA (exploratory data analysis). Apache-2
@@ -3713,53 +3728,53 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic
MNE (πŸ₯‡39 Β· ⭐ 2.9K) - MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python. BSD-3 -- [GitHub](https://github.com/mne-tools/mne-python) (πŸ‘¨β€πŸ’» 390 Β· πŸ”€ 1.3K Β· πŸ“¦ 5.6K Β· πŸ“‹ 5K - 11% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/mne-tools/mne-python) (πŸ‘¨β€πŸ’» 390 Β· πŸ”€ 1.3K Β· πŸ“¦ 5.6K Β· πŸ“‹ 5K - 11% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/mne-tools/mne-python ``` -- [PyPi](https://pypi.org/project/mne) (πŸ“₯ 200K / month Β· πŸ“¦ 420 Β· ⏱️ 18.12.2024): +- [PyPi](https://pypi.org/project/mne) (πŸ“₯ 170K / month Β· πŸ“¦ 420 Β· ⏱️ 18.12.2024): ``` pip install mne ``` -- [Conda](https://anaconda.org/conda-forge/mne) (πŸ“₯ 520K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/mne) (πŸ“₯ 520K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge mne ```
-
Nilearn (πŸ₯‡39 Β· ⭐ 1.3K) - Machine learning for NeuroImaging in Python. BSD-3 +
Nilearn (πŸ₯‡38 Β· ⭐ 1.3K Β· πŸ“‰) - Machine learning for NeuroImaging in Python. BSD-3 -- [GitHub](https://github.com/nilearn/nilearn) (πŸ‘¨β€πŸ’» 250 Β· πŸ”€ 600 Β· πŸ“₯ 300 Β· πŸ“¦ 4.1K Β· πŸ“‹ 2.3K - 12% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/nilearn/nilearn) (πŸ‘¨β€πŸ’» 250 Β· πŸ”€ 600 Β· πŸ“₯ 300 Β· πŸ“¦ 4.1K Β· πŸ“‹ 2.3K - 12% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/nilearn/nilearn ``` -- [PyPi](https://pypi.org/project/nilearn) (πŸ“₯ 110K / month Β· πŸ“¦ 310 Β· ⏱️ 23.12.2024): +- [PyPi](https://pypi.org/project/nilearn) (πŸ“₯ 120K / month Β· πŸ“¦ 310 Β· ⏱️ 23.12.2024): ``` pip install nilearn ``` -- [Conda](https://anaconda.org/conda-forge/nilearn) (πŸ“₯ 330K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/nilearn) (πŸ“₯ 330K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge nilearn ```
MONAI (πŸ₯ˆ36 Β· ⭐ 6.3K) - AI Toolkit for Healthcare Imaging. Apache-2 -- [GitHub](https://github.com/Project-MONAI/MONAI) (πŸ‘¨β€πŸ’» 220 Β· πŸ”€ 1.2K Β· πŸ“¦ 3.9K Β· πŸ“‹ 3.2K - 12% open Β· ⏱️ 13.04.2025): +- [GitHub](https://github.com/Project-MONAI/MONAI) (πŸ‘¨β€πŸ’» 220 Β· πŸ”€ 1.2K Β· πŸ“¦ 4K Β· πŸ“‹ 3.2K - 12% open Β· ⏱️ 13.04.2025): ``` git clone https://github.com/Project-MONAI/MONAI ``` -- [PyPi](https://pypi.org/project/monai) (πŸ“₯ 220K / month Β· πŸ“¦ 140 Β· ⏱️ 10.12.2024): +- [PyPi](https://pypi.org/project/monai) (πŸ“₯ 260K / month Β· πŸ“¦ 140 Β· ⏱️ 10.12.2024): ``` pip install monai ``` -- [Conda](https://anaconda.org/conda-forge/monai) (πŸ“₯ 47K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/monai) (πŸ“₯ 47K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge monai ```
-
NIPYPE (πŸ₯ˆ35 Β· ⭐ 780 Β· πŸ“‰) - Workflows and interfaces for neuroimaging packages. Apache-2 +
NIPYPE (πŸ₯ˆ35 Β· ⭐ 780) - Workflows and interfaces for neuroimaging packages. Apache-2 - [GitHub](https://github.com/nipy/nipype) (πŸ‘¨β€πŸ’» 260 Β· πŸ”€ 530 Β· πŸ“¦ 6.5K Β· πŸ“‹ 1.4K - 30% open Β· ⏱️ 19.03.2025): @@ -3770,63 +3785,63 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic ``` pip install nipype ``` -- [Conda](https://anaconda.org/conda-forge/nipype) (πŸ“₯ 790K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/nipype) (πŸ“₯ 790K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge nipype ```
-
NiBabel (πŸ₯ˆ34 Β· ⭐ 690) - Python package to access a cacophony of neuro-imaging file formats. MIT +
NiBabel (πŸ₯ˆ34 Β· ⭐ 700) - Python package to access a cacophony of neuro-imaging file formats. MIT -- [GitHub](https://github.com/nipy/nibabel) (πŸ‘¨β€πŸ’» 110 Β· πŸ”€ 260 Β· πŸ“¦ 27K Β· πŸ“‹ 550 - 23% open Β· ⏱️ 18.03.2025): +- [GitHub](https://github.com/nipy/nibabel) (πŸ‘¨β€πŸ’» 110 Β· πŸ”€ 260 Β· πŸ“¦ 28K Β· πŸ“‹ 550 - 23% open Β· ⏱️ 18.03.2025): ``` git clone https://github.com/nipy/nibabel ``` -- [PyPi](https://pypi.org/project/nibabel) (πŸ“₯ 780K / month Β· πŸ“¦ 1.2K Β· ⏱️ 23.10.2024): +- [PyPi](https://pypi.org/project/nibabel) (πŸ“₯ 790K / month Β· πŸ“¦ 1.2K Β· ⏱️ 23.10.2024): ``` pip install nibabel ``` -- [Conda](https://anaconda.org/conda-forge/nibabel) (πŸ“₯ 880K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/nibabel) (πŸ“₯ 890K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge nibabel ```
Lifelines (πŸ₯ˆ33 Β· ⭐ 2.4K) - Survival analysis in Python. MIT -- [GitHub](https://github.com/CamDavidsonPilon/lifelines) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 560 Β· πŸ“¦ 3.7K Β· πŸ“‹ 980 - 27% open Β· ⏱️ 29.10.2024): +- [GitHub](https://github.com/CamDavidsonPilon/lifelines) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 560 Β· πŸ“¦ 3.8K Β· πŸ“‹ 980 - 27% open Β· ⏱️ 29.10.2024): ``` git clone https://github.com/CamDavidsonPilon/lifelines ``` -- [PyPi](https://pypi.org/project/lifelines) (πŸ“₯ 2.9M / month Β· πŸ“¦ 160 Β· ⏱️ 29.10.2024): +- [PyPi](https://pypi.org/project/lifelines) (πŸ“₯ 2.8M / month Β· πŸ“¦ 160 Β· ⏱️ 29.10.2024): ``` pip install lifelines ``` -- [Conda](https://anaconda.org/conda-forge/lifelines) (πŸ“₯ 420K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/lifelines) (πŸ“₯ 420K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge lifelines ```
Hail (πŸ₯ˆ33 Β· ⭐ 1K) - Cloud-native genomic dataframes and batch computing. MIT -- [GitHub](https://github.com/hail-is/hail) (πŸ‘¨β€πŸ’» 97 Β· πŸ”€ 250 Β· πŸ“¦ 160 Β· πŸ“‹ 2.5K - 10% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/hail-is/hail) (πŸ‘¨β€πŸ’» 97 Β· πŸ”€ 250 Β· πŸ“¦ 160 Β· πŸ“‹ 2.5K - 10% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/hail-is/hail ``` -- [PyPi](https://pypi.org/project/hail) (πŸ“₯ 25K / month Β· πŸ“¦ 42 Β· ⏱️ 07.03.2025): +- [PyPi](https://pypi.org/project/hail) (πŸ“₯ 23K / month Β· πŸ“¦ 42 Β· ⏱️ 07.03.2025): ``` pip install hail ```
DeepVariant (πŸ₯‰24 Β· ⭐ 3.4K) - DeepVariant is an analysis pipeline that uses a deep neural.. BSD-3 -- [GitHub](https://github.com/google/deepvariant) (πŸ‘¨β€πŸ’» 36 Β· πŸ”€ 730 Β· πŸ“₯ 4.8K Β· πŸ“‹ 890 - 0% open Β· ⏱️ 10.03.2025): +- [GitHub](https://github.com/google/deepvariant) (πŸ‘¨β€πŸ’» 36 Β· πŸ”€ 730 Β· πŸ“₯ 4.8K Β· πŸ“‹ 900 - 0% open Β· ⏱️ 10.03.2025): ``` git clone https://github.com/google/deepvariant ``` -- [Conda](https://anaconda.org/bioconda/deepvariant) (πŸ“₯ 76K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/bioconda/deepvariant) (πŸ“₯ 76K Β· ⏱️ 22.04.2025): ``` conda install -c bioconda deepvariant ``` @@ -3838,7 +3853,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic ``` git clone https://github.com/brainiak/brainiak ``` -- [PyPi](https://pypi.org/project/brainiak) (πŸ“₯ 2.2K / month Β· ⏱️ 07.01.2025): +- [PyPi](https://pypi.org/project/brainiak) (πŸ“₯ 2.4K / month Β· ⏱️ 07.01.2025): ``` pip install brainiak ``` @@ -3849,10 +3864,10 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic
Show 10 hidden projects... -- DIPY (πŸ₯ˆ33 Β· ⭐ 750) - DIPY is the paragon 3D/4D+ medical imaging library in Python... ❗Unlicensed +- DIPY (πŸ₯ˆ33 Β· ⭐ 760) - DIPY is the paragon 3D/4D+ medical imaging library in Python... ❗Unlicensed - NiftyNet (πŸ₯‰25 Β· ⭐ 1.4K Β· πŸ’€) - [unmaintained] An open-source convolutional neural.. Apache-2 - NIPY (πŸ₯‰24 Β· ⭐ 390) - Neuroimaging in Python FMRI analysis package. ❗Unlicensed -- MedPy (πŸ₯‰23 Β· ⭐ 590 Β· πŸ’€) - Medical image processing in Python. ❗️GPL-3.0 +- MedPy (πŸ₯‰23 Β· ⭐ 600 Β· πŸ’€) - Medical image processing in Python. ❗️GPL-3.0 - DLTK (πŸ₯‰20 Β· ⭐ 1.4K Β· πŸ’€) - Deep Learning Toolkit for Medical Image Analysis. Apache-2 - Glow (πŸ₯‰20 Β· ⭐ 280) - An open-source toolkit for large-scale genomic analysis. Apache-2 - MedicalTorch (πŸ₯‰15 Β· ⭐ 870 Β· πŸ’€) - A medical imaging framework for Pytorch. Apache-2 @@ -3870,19 +3885,19 @@ _Libraries for processing tabular and structured data._
pytorch_tabular (πŸ₯‡24 Β· ⭐ 1.5K) - A standard framework for modelling Deep Learning Models.. MIT -- [GitHub](https://github.com/manujosephv/pytorch_tabular) (πŸ‘¨β€πŸ’» 27 Β· πŸ”€ 150 Β· πŸ“₯ 54 Β· πŸ“‹ 160 - 6% open Β· ⏱️ 08.04.2025): +- [GitHub](https://github.com/manujosephv/pytorch_tabular) (πŸ‘¨β€πŸ’» 27 Β· πŸ”€ 150 Β· πŸ“₯ 54 Β· πŸ“‹ 170 - 6% open Β· ⏱️ 19.04.2025): ``` git clone https://github.com/manujosephv/pytorch_tabular ``` -- [PyPi](https://pypi.org/project/pytorch_tabular) (πŸ“₯ 6.2K / month Β· πŸ“¦ 9 Β· ⏱️ 28.11.2024): +- [PyPi](https://pypi.org/project/pytorch_tabular) (πŸ“₯ 7.3K / month Β· πŸ“¦ 9 Β· ⏱️ 28.11.2024): ``` pip install pytorch_tabular ```
miceforest (πŸ₯‡24 Β· ⭐ 380 Β· πŸ’€) - Multiple Imputation with LightGBM in Python. MIT -- [GitHub](https://github.com/AnotherSamWilson/miceforest) (πŸ‘¨β€πŸ’» 8 Β· πŸ”€ 30 Β· πŸ“¦ 220 Β· πŸ“‹ 90 - 11% open Β· ⏱️ 02.08.2024): +- [GitHub](https://github.com/AnotherSamWilson/miceforest) (πŸ‘¨β€πŸ’» 8 Β· πŸ”€ 30 Β· πŸ“¦ 230 Β· πŸ“‹ 90 - 11% open Β· ⏱️ 02.08.2024): ``` git clone https://github.com/AnotherSamWilson/miceforest @@ -3891,19 +3906,19 @@ _Libraries for processing tabular and structured data._ ``` pip install miceforest ``` -- [Conda](https://anaconda.org/conda-forge/miceforest) (πŸ“₯ 18K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/miceforest) (πŸ“₯ 19K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge miceforest ```
upgini (πŸ₯‰22 Β· ⭐ 330) - Data search & enrichment library for Machine Learning Easily find and add.. BSD-3 -- [GitHub](https://github.com/upgini/upgini) (πŸ‘¨β€πŸ’» 13 Β· πŸ”€ 25 Β· πŸ“¦ 9 Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/upgini/upgini) (πŸ‘¨β€πŸ’» 13 Β· πŸ”€ 25 Β· πŸ“¦ 9 Β· ⏱️ 19.04.2025): ``` git clone https://github.com/upgini/upgini ``` -- [PyPi](https://pypi.org/project/upgini) (πŸ“₯ 24K / month Β· ⏱️ 16.04.2025): +- [PyPi](https://pypi.org/project/upgini) (πŸ“₯ 28K / month Β· ⏱️ 24.04.2025): ``` pip install upgini ``` @@ -3921,42 +3936,42 @@ _Libraries for processing tabular and structured data._ _Libraries for optical character recognition (OCR) and text extraction from images or videos._ -
PaddleOCR (πŸ₯‡41 Β· ⭐ 48K) - Awesome multilingual OCR toolkits based on PaddlePaddle.. Apache-2 +
PaddleOCR (πŸ₯‡41 Β· ⭐ 49K) - Awesome multilingual OCR toolkits based on PaddlePaddle.. Apache-2 -- [GitHub](https://github.com/PaddlePaddle/PaddleOCR) (πŸ‘¨β€πŸ’» 280 Β· πŸ”€ 8.1K Β· πŸ“₯ 1.7M Β· πŸ“¦ 5.1K Β· πŸ“‹ 9.5K - 0% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/PaddlePaddle/PaddleOCR) (πŸ‘¨β€πŸ’» 280 Β· πŸ”€ 8.1K Β· πŸ“₯ 1.8M Β· πŸ“¦ 5.2K Β· πŸ“‹ 9.6K - 0% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/PaddlePaddle/PaddleOCR ``` -- [PyPi](https://pypi.org/project/paddleocr) (πŸ“₯ 380K / month Β· πŸ“¦ 140 Β· ⏱️ 07.03.2025): +- [PyPi](https://pypi.org/project/paddleocr) (πŸ“₯ 360K / month Β· πŸ“¦ 140 Β· ⏱️ 07.03.2025): ``` pip install paddleocr ```
-
OCRmyPDF (πŸ₯‡37 Β· ⭐ 28K) - OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them.. MPL-2.0 +
OCRmyPDF (πŸ₯‡38 Β· ⭐ 28K Β· πŸ“ˆ) - OCRmyPDF adds an OCR text layer to scanned PDF files, allowing.. MPL-2.0 -- [GitHub](https://github.com/ocrmypdf/OCRmyPDF) (πŸ‘¨β€πŸ’» 110 Β· πŸ”€ 1.8K Β· πŸ“₯ 11K Β· πŸ“¦ 1.3K Β· πŸ“‹ 1.2K - 10% open Β· ⏱️ 06.04.2025): +- [GitHub](https://github.com/ocrmypdf/OCRmyPDF) (πŸ‘¨β€πŸ’» 110 Β· πŸ”€ 1.9K Β· πŸ“₯ 11K Β· πŸ“¦ 1.3K Β· πŸ“‹ 1.2K - 10% open Β· ⏱️ 21.04.2025): ``` git clone https://github.com/ocrmypdf/OCRmyPDF ``` -- [PyPi](https://pypi.org/project/ocrmypdf) (πŸ“₯ 230K / month Β· πŸ“¦ 42 Β· ⏱️ 27.02.2025): +- [PyPi](https://pypi.org/project/ocrmypdf) (πŸ“₯ 240K / month Β· πŸ“¦ 46 Β· ⏱️ 24.04.2025): ``` pip install ocrmypdf ``` -- [Conda](https://anaconda.org/conda-forge/ocrmypdf) (πŸ“₯ 96K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/ocrmypdf) (πŸ“₯ 96K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge ocrmypdf ```
EasyOCR (πŸ₯ˆ34 Β· ⭐ 26K Β· πŸ’€) - Ready-to-use OCR with 80+ supported languages and all popular.. Apache-2 -- [GitHub](https://github.com/JaidedAI/EasyOCR) (πŸ‘¨β€πŸ’» 130 Β· πŸ”€ 3.2K Β· πŸ“₯ 20M Β· πŸ“¦ 13K Β· πŸ“‹ 1.1K - 43% open Β· ⏱️ 24.09.2024): +- [GitHub](https://github.com/JaidedAI/EasyOCR) (πŸ‘¨β€πŸ’» 130 Β· πŸ”€ 3.3K Β· πŸ“₯ 20M Β· πŸ“¦ 14K Β· πŸ“‹ 1.1K - 43% open Β· ⏱️ 24.09.2024): ``` git clone https://github.com/JaidedAI/EasyOCR ``` -- [PyPi](https://pypi.org/project/easyocr) (πŸ“₯ 820K / month Β· πŸ“¦ 250 Β· ⏱️ 24.09.2024): +- [PyPi](https://pypi.org/project/easyocr) (πŸ“₯ 850K / month Β· πŸ“¦ 250 Β· ⏱️ 24.09.2024): ``` pip install easyocr ``` @@ -3972,7 +3987,7 @@ _Libraries for optical character recognition (OCR) and text extraction from imag ``` pip install pytesseract ``` -- [Conda](https://anaconda.org/conda-forge/pytesseract) (πŸ“₯ 650K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pytesseract) (πŸ“₯ 660K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pytesseract ``` @@ -3984,11 +3999,11 @@ _Libraries for optical character recognition (OCR) and text extraction from imag ``` git clone https://github.com/sirfz/tesserocr ``` -- [PyPi](https://pypi.org/project/tesserocr) (πŸ“₯ 110K / month Β· πŸ“¦ 43 Β· ⏱️ 12.02.2025): +- [PyPi](https://pypi.org/project/tesserocr) (πŸ“₯ 120K / month Β· πŸ“¦ 43 Β· ⏱️ 12.02.2025): ``` pip install tesserocr ``` -- [Conda](https://anaconda.org/conda-forge/tesserocr) (πŸ“₯ 240K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/tesserocr) (πŸ“₯ 250K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge tesserocr ``` @@ -4000,7 +4015,7 @@ _Libraries for optical character recognition (OCR) and text extraction from imag ``` git clone https://github.com/open-mmlab/mmocr ``` -- [PyPi](https://pypi.org/project/mmocr) (πŸ“₯ 5K / month Β· πŸ“¦ 4 Β· ⏱️ 05.05.2022): +- [PyPi](https://pypi.org/project/mmocr) (πŸ“₯ 4.8K / month Β· πŸ“¦ 4 Β· ⏱️ 05.05.2022): ``` pip install mmocr ``` @@ -4068,44 +4083,44 @@ _Libraries that provide capabilities to distribute and parallelize machine learn
Ray (πŸ₯‡47 Β· ⭐ 37K) - Ray is an AI compute engine. Ray consists of a core distributed runtime.. Apache-2 -- [GitHub](https://github.com/ray-project/ray) (πŸ‘¨β€πŸ’» 1.2K Β· πŸ”€ 6.2K Β· πŸ“₯ 250 Β· πŸ“¦ 23K Β· πŸ“‹ 21K - 21% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/ray-project/ray) (πŸ‘¨β€πŸ’» 1.2K Β· πŸ”€ 6.2K Β· πŸ“₯ 250 Β· πŸ“¦ 23K Β· πŸ“‹ 21K - 21% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/ray-project/ray ``` -- [PyPi](https://pypi.org/project/ray) (πŸ“₯ 7M / month Β· πŸ“¦ 920 Β· ⏱️ 27.03.2025): +- [PyPi](https://pypi.org/project/ray) (πŸ“₯ 6.7M / month Β· πŸ“¦ 920 Β· ⏱️ 27.03.2025): ``` pip install ray ``` -- [Conda](https://anaconda.org/conda-forge/ray-tune) (πŸ“₯ 740K Β· ⏱️ 29.03.2025): +- [Conda](https://anaconda.org/conda-forge/ray-tune) (πŸ“₯ 740K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge ray-tune ```
dask (πŸ₯‡44 Β· ⭐ 13K) - Parallel computing with task scheduling. BSD-3 -- [GitHub](https://github.com/dask/dask) (πŸ‘¨β€πŸ’» 620 Β· πŸ”€ 1.8K Β· πŸ“¦ 73K Β· πŸ“‹ 5.5K - 20% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/dask/dask) (πŸ‘¨β€πŸ’» 620 Β· πŸ”€ 1.8K Β· πŸ“¦ 73K Β· πŸ“‹ 5.5K - 20% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/dask/dask ``` -- [PyPi](https://pypi.org/project/dask) (πŸ“₯ 11M / month Β· πŸ“¦ 2.8K Β· ⏱️ 21.03.2025): +- [PyPi](https://pypi.org/project/dask) (πŸ“₯ 11M / month Β· πŸ“¦ 2.9K Β· ⏱️ 22.04.2025): ``` pip install dask ``` -- [Conda](https://anaconda.org/conda-forge/dask) (πŸ“₯ 13M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/dask) (πŸ“₯ 13M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge dask ```
DeepSpeed (πŸ₯‡41 Β· ⭐ 38K) - DeepSpeed is a deep learning optimization library that makes.. Apache-2 -- [GitHub](https://github.com/deepspeedai/DeepSpeed) (πŸ‘¨β€πŸ’» 380 Β· πŸ”€ 4.3K Β· πŸ“¦ 12K Β· πŸ“‹ 3.1K - 33% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/deepspeedai/DeepSpeed) (πŸ‘¨β€πŸ’» 380 Β· πŸ”€ 4.3K Β· πŸ“¦ 13K Β· πŸ“‹ 3.1K - 33% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/microsoft/DeepSpeed ``` -- [PyPi](https://pypi.org/project/deepspeed) (πŸ“₯ 650K / month Β· πŸ“¦ 270 Β· ⏱️ 16.04.2025): +- [PyPi](https://pypi.org/project/deepspeed) (πŸ“₯ 670K / month Β· πŸ“¦ 270 Β· ⏱️ 18.04.2025): ``` pip install deepspeed ``` @@ -4116,32 +4131,32 @@ _Libraries that provide capabilities to distribute and parallelize machine learn
dask.distributed (πŸ₯‡39 Β· ⭐ 1.6K) - A distributed task scheduler for Dask. BSD-3 -- [GitHub](https://github.com/dask/distributed) (πŸ‘¨β€πŸ’» 330 Β· πŸ”€ 730 Β· πŸ“¦ 40K Β· πŸ“‹ 4K - 38% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/dask/distributed) (πŸ‘¨β€πŸ’» 340 Β· πŸ”€ 730 Β· πŸ“¦ 40K Β· πŸ“‹ 4K - 38% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/dask/distributed ``` -- [PyPi](https://pypi.org/project/distributed) (πŸ“₯ 4M / month Β· πŸ“¦ 940 Β· ⏱️ 21.03.2025): +- [PyPi](https://pypi.org/project/distributed) (πŸ“₯ 3.9M / month Β· πŸ“¦ 960 Β· ⏱️ 22.04.2025): ``` pip install distributed ``` -- [Conda](https://anaconda.org/conda-forge/distributed) (πŸ“₯ 17M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/distributed) (πŸ“₯ 17M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge distributed ```
-
metrics (πŸ₯ˆ36 Β· ⭐ 2.2K) - Machine learning metrics for distributed, scalable PyTorch.. Apache-2 +
metrics (πŸ₯ˆ36 Β· ⭐ 2.3K) - Machine learning metrics for distributed, scalable PyTorch.. Apache-2 -- [GitHub](https://github.com/Lightning-AI/torchmetrics) (πŸ‘¨β€πŸ’» 270 Β· πŸ”€ 420 Β· πŸ“₯ 6.5K Β· πŸ“¦ 40K Β· πŸ“‹ 940 - 7% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/Lightning-AI/torchmetrics) (πŸ‘¨β€πŸ’» 270 Β· πŸ”€ 420 Β· πŸ“₯ 6.5K Β· πŸ“¦ 41K Β· πŸ“‹ 940 - 7% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/Lightning-AI/metrics ``` -- [PyPi](https://pypi.org/project/metrics) (πŸ“₯ 5.4K / month Β· πŸ“¦ 4 Β· ⏱️ 26.02.2025): +- [PyPi](https://pypi.org/project/metrics) (πŸ“₯ 6.5K / month Β· πŸ“¦ 4 Β· ⏱️ 26.02.2025): ``` pip install metrics ``` -- [Conda](https://anaconda.org/conda-forge/torchmetrics) (πŸ“₯ 1.9M Β· ⏱️ 08.04.2025): +- [Conda](https://anaconda.org/conda-forge/torchmetrics) (πŸ“₯ 1.9M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge torchmetrics ``` @@ -4153,7 +4168,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn ``` git clone https://github.com/horovod/horovod ``` -- [PyPi](https://pypi.org/project/horovod) (πŸ“₯ 94K / month Β· πŸ“¦ 34 Β· ⏱️ 12.06.2023): +- [PyPi](https://pypi.org/project/horovod) (πŸ“₯ 93K / month Β· πŸ“¦ 34 Β· ⏱️ 12.06.2023): ``` pip install horovod ``` @@ -4172,7 +4187,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn
ColossalAI (πŸ₯ˆ32 Β· ⭐ 41K) - Making large AI models cheaper, faster and more accessible. Apache-2 -- [GitHub](https://github.com/hpcaitech/ColossalAI) (πŸ‘¨β€πŸ’» 200 Β· πŸ”€ 4.5K Β· πŸ“¦ 500 Β· πŸ“‹ 1.8K - 26% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/hpcaitech/ColossalAI) (πŸ‘¨β€πŸ’» 200 Β· πŸ”€ 4.5K Β· πŸ“¦ 500 Β· πŸ“‹ 1.8K - 26% open Β· ⏱️ 18.04.2025): ``` git clone https://github.com/hpcaitech/colossalai @@ -4180,12 +4195,12 @@ _Libraries that provide capabilities to distribute and parallelize machine learn
BigDL (πŸ₯ˆ32 Β· ⭐ 7.8K) - Accelerate local LLM inference and finetuning (LLaMA, Mistral,.. Apache-2 -- [GitHub](https://github.com/intel/ipex-llm) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 1.3K Β· πŸ“₯ 9.7K Β· πŸ“‹ 2.9K - 39% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/intel/ipex-llm) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 1.3K Β· πŸ“₯ 680 Β· πŸ“‹ 2.9K - 39% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/intel-analytics/BigDL ``` -- [PyPi](https://pypi.org/project/bigdl) (πŸ“₯ 26K / month Β· πŸ“¦ 2 Β· ⏱️ 24.03.2024): +- [PyPi](https://pypi.org/project/bigdl) (πŸ“₯ 27K / month Β· πŸ“¦ 2 Β· ⏱️ 24.03.2024): ``` pip install bigdl ``` @@ -4200,78 +4215,90 @@ _Libraries that provide capabilities to distribute and parallelize machine learn
FairScale (πŸ₯ˆ32 Β· ⭐ 3.3K) - PyTorch extensions for high performance and large scale training. BSD-3 -- [GitHub](https://github.com/facebookresearch/fairscale) (πŸ‘¨β€πŸ’» 76 Β· πŸ”€ 290 Β· πŸ“¦ 8K Β· πŸ“‹ 390 - 26% open Β· ⏱️ 12.01.2025): +- [GitHub](https://github.com/facebookresearch/fairscale) (πŸ‘¨β€πŸ’» 76 Β· πŸ”€ 290 Β· πŸ“¦ 8.1K Β· πŸ“‹ 390 - 26% open Β· ⏱️ 12.01.2025): ``` git clone https://github.com/facebookresearch/fairscale ``` -- [PyPi](https://pypi.org/project/fairscale) (πŸ“₯ 530K / month Β· πŸ“¦ 150 Β· ⏱️ 11.12.2022): +- [PyPi](https://pypi.org/project/fairscale) (πŸ“₯ 520K / month Β· πŸ“¦ 150 Β· ⏱️ 11.12.2022): ``` pip install fairscale ``` -- [Conda](https://anaconda.org/conda-forge/fairscale) (πŸ“₯ 430K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/fairscale) (πŸ“₯ 440K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge fairscale ```
mpi4py (πŸ₯ˆ31 Β· ⭐ 850) - Python bindings for MPI. BSD-3 -- [GitHub](https://github.com/mpi4py/mpi4py) (πŸ‘¨β€πŸ’» 27 Β· πŸ”€ 120 Β· πŸ“₯ 32K Β· πŸ“‹ 200 - 2% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/mpi4py/mpi4py) (πŸ‘¨β€πŸ’» 27 Β· πŸ”€ 120 Β· πŸ“₯ 32K Β· πŸ“‹ 200 - 2% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/mpi4py/mpi4py ``` -- [PyPi](https://pypi.org/project/mpi4py) (πŸ“₯ 430K / month Β· πŸ“¦ 830 Β· ⏱️ 13.02.2025): +- [PyPi](https://pypi.org/project/mpi4py) (πŸ“₯ 420K / month Β· πŸ“¦ 830 Β· ⏱️ 13.02.2025): ``` pip install mpi4py ``` -- [Conda](https://anaconda.org/conda-forge/mpi4py) (πŸ“₯ 3.7M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/mpi4py) (πŸ“₯ 3.7M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge mpi4py ```
SynapseML (πŸ₯ˆ30 Β· ⭐ 5.1K) - Simple and Distributed Machine Learning. MIT -- [GitHub](https://github.com/microsoft/SynapseML) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 840 Β· πŸ“‹ 800 - 49% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/microsoft/SynapseML) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 840 Β· πŸ“‹ 800 - 49% open Β· ⏱️ 19.04.2025): ``` git clone https://github.com/microsoft/SynapseML ``` -- [PyPi](https://pypi.org/project/synapseml) (πŸ“₯ 610K / month Β· πŸ“¦ 7 Β· ⏱️ 17.04.2025): +- [PyPi](https://pypi.org/project/synapseml) (πŸ“₯ 590K / month Β· πŸ“¦ 7 Β· ⏱️ 17.04.2025): ``` pip install synapseml ```
-
Submit it (πŸ₯ˆ29 Β· ⭐ 1.4K Β· πŸ’€) - Python 3.8+ toolbox for submitting jobs to Slurm. MIT +
dask-ml (πŸ₯ˆ29 Β· ⭐ 930) - Scalable Machine Learning with Dask. BSD-3 + +- [GitHub](https://github.com/dask/dask-ml) (πŸ‘¨β€πŸ’» 80 Β· πŸ”€ 260 Β· πŸ“¦ 1.2K Β· πŸ“‹ 550 - 51% open Β· ⏱️ 07.02.2025): + + ``` + git clone https://github.com/dask/dask-ml + ``` +- [PyPi](https://pypi.org/project/dask-ml) (πŸ“₯ 120K / month Β· πŸ“¦ 100 Β· ⏱️ 08.02.2025): + ``` + pip install dask-ml + ``` +- [Conda](https://anaconda.org/conda-forge/dask-ml) (πŸ“₯ 970K Β· ⏱️ 22.04.2025): + ``` + conda install -c conda-forge dask-ml + ``` +
+
Submit it (πŸ₯‰28 Β· ⭐ 1.4K) - Python 3.8+ toolbox for submitting jobs to Slurm. MIT -- [GitHub](https://github.com/facebookincubator/submitit) (πŸ‘¨β€πŸ’» 25 Β· πŸ”€ 130 Β· πŸ“¦ 4.3K Β· πŸ“‹ 130 - 39% open Β· ⏱️ 18.09.2024): +- [GitHub](https://github.com/facebookincubator/submitit) (πŸ‘¨β€πŸ’» 26 Β· πŸ”€ 130 Β· πŸ“¦ 4.3K Β· πŸ“‹ 130 - 39% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/facebookincubator/submitit ``` -- [PyPi](https://pypi.org/project/submitit) (πŸ“₯ 510K / month Β· πŸ“¦ 49 Β· ⏱️ 18.09.2024): +- [PyPi](https://pypi.org/project/submitit) (πŸ“₯ 470K / month Β· πŸ“¦ 49 Β· ⏱️ 18.09.2024): ``` pip install submitit ``` -- [Conda](https://anaconda.org/conda-forge/submitit) (πŸ“₯ 55K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/submitit) (πŸ“₯ 56K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge submitit ```
-
dask-ml (πŸ₯ˆ29 Β· ⭐ 930) - Scalable Machine Learning with Dask. BSD-3 +
Hivemind (πŸ₯‰27 Β· ⭐ 2.2K Β· πŸ“ˆ) - Decentralized deep learning in PyTorch. Built to train models on.. MIT -- [GitHub](https://github.com/dask/dask-ml) (πŸ‘¨β€πŸ’» 80 Β· πŸ”€ 260 Β· πŸ“¦ 1.2K Β· πŸ“‹ 550 - 51% open Β· ⏱️ 07.02.2025): +- [GitHub](https://github.com/learning-at-home/hivemind) (πŸ‘¨β€πŸ’» 34 Β· πŸ”€ 180 Β· πŸ“¦ 130 Β· πŸ“‹ 190 - 43% open Β· ⏱️ 19.04.2025): ``` - git clone https://github.com/dask/dask-ml - ``` -- [PyPi](https://pypi.org/project/dask-ml) (πŸ“₯ 120K / month Β· πŸ“¦ 100 Β· ⏱️ 08.02.2025): - ``` - pip install dask-ml + git clone https://github.com/learning-at-home/hivemind ``` -- [Conda](https://anaconda.org/conda-forge/dask-ml) (πŸ“₯ 970K Β· ⏱️ 25.03.2025): +- [PyPi](https://pypi.org/project/hivemind) (πŸ“₯ 4.3K / month Β· πŸ“¦ 12 Β· ⏱️ 20.04.2025): ``` - conda install -c conda-forge dask-ml + pip install hivemind ```
Apache Singa (πŸ₯‰25 Β· ⭐ 3.4K) - a distributed deep learning platform. Apache-2 @@ -4281,7 +4308,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn ``` git clone https://github.com/apache/singa ``` -- [Conda](https://anaconda.org/nusdbsystem/singa) (πŸ“₯ 970 Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/nusdbsystem/singa) (πŸ“₯ 980 Β· ⏱️ 25.03.2025): ``` conda install -c nusdbsystem singa ``` @@ -4290,21 +4317,9 @@ _Libraries that provide capabilities to distribute and parallelize machine learn docker pull apache/singa ```
-
Hivemind (πŸ₯‰25 Β· ⭐ 2.2K) - Decentralized deep learning in PyTorch. Built to train models on.. MIT - -- [GitHub](https://github.com/learning-at-home/hivemind) (πŸ‘¨β€πŸ’» 34 Β· πŸ”€ 170 Β· πŸ“¦ 120 Β· πŸ“‹ 180 - 43% open Β· ⏱️ 17.03.2025): - - ``` - git clone https://github.com/learning-at-home/hivemind - ``` -- [PyPi](https://pypi.org/project/hivemind) (πŸ“₯ 3.7K / month Β· πŸ“¦ 10 Β· ⏱️ 31.08.2023): - ``` - pip install hivemind - ``` -
MMLSpark (πŸ₯‰23 Β· ⭐ 5.1K) - Simple and Distributed Machine Learning. MIT -- [GitHub](https://github.com/microsoft/SynapseML) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 840 Β· πŸ“‹ 800 - 49% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/microsoft/SynapseML) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 840 Β· πŸ“‹ 800 - 49% open Β· ⏱️ 19.04.2025): ``` git clone https://github.com/microsoft/SynapseML @@ -4321,7 +4336,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn ``` git clone https://github.com/intel-analytics/analytics-zoo ``` -- [PyPi](https://pypi.org/project/analytics-zoo) (πŸ“₯ 1.2K / month Β· πŸ“¦ 1 Β· ⏱️ 22.08.2022): +- [PyPi](https://pypi.org/project/analytics-zoo) (πŸ“₯ 1.4K / month Β· πŸ“¦ 1 Β· ⏱️ 22.08.2022): ``` pip install analytics-zoo ``` @@ -4335,13 +4350,13 @@ _Libraries that provide capabilities to distribute and parallelize machine learn - Elephas (πŸ₯‰25 Β· ⭐ 1.6K Β· πŸ’€) - Distributed Deep learning with Keras & Spark. MIT keras - BytePS (πŸ₯‰22 Β· ⭐ 3.7K Β· πŸ’€) - A high performance and generic framework for distributed DNN.. Apache-2 - Mesh (πŸ₯‰22 Β· ⭐ 1.6K Β· πŸ’€) - Mesh TensorFlow: Model Parallelism Made Easier. Apache-2 +- sk-dist (πŸ₯‰21 Β· ⭐ 280 Β· πŸ’€) - Distributed scikit-learn meta-estimators in PySpark. Apache-2 - somoclu (πŸ₯‰21 Β· ⭐ 270 Β· πŸ’€) - Massively parallel self-organizing maps: accelerate training on.. MIT -- sk-dist (πŸ₯‰20 Β· ⭐ 280 Β· πŸ’€) - Distributed scikit-learn meta-estimators in PySpark. Apache-2 - launchpad (πŸ₯‰19 Β· ⭐ 320 Β· πŸ’€) - Launchpad is a library that simplifies writing.. Apache-2 - mesh-transformer-jax (πŸ₯‰18 Β· ⭐ 6.3K Β· πŸ’€) - Model parallel transformers in JAX and Haiku. Apache-2 - bluefog (πŸ₯‰18 Β· ⭐ 290 Β· πŸ’€) - Distributed and decentralized training framework for PyTorch.. Apache-2 - Fiber (πŸ₯‰17 Β· ⭐ 1K Β· πŸ’€) - Distributed Computing for AI Made Simple. Apache-2 -- parallelformers (πŸ₯‰17 Β· ⭐ 780 Β· πŸ’€) - Parallelformers: An Efficient Model Parallelization.. Apache-2 +- parallelformers (πŸ₯‰17 Β· ⭐ 790 Β· πŸ’€) - Parallelformers: An Efficient Model Parallelization.. Apache-2 - TensorFrames (πŸ₯‰15 Β· ⭐ 720 Β· πŸ’€) - Tensorflow wrapper for DataFrames on Apache Spark. Apache-2 - LazyCluster (πŸ₯‰15 Β· ⭐ 49 Β· πŸ’€) - Distributed machine learning made simple. Apache-2 - autodist (πŸ₯‰12 Β· ⭐ 130 Β· πŸ’€) - Simple Distributed Deep Learning on TensorFlow. Apache-2 @@ -4355,34 +4370,34 @@ _Libraries that provide capabilities to distribute and parallelize machine learn _Libraries for hyperparameter optimization, automl and neural architecture search._ -
Optuna (πŸ₯‡43 Β· ⭐ 12K Β· πŸ“ˆ) - A hyperparameter optimization framework. MIT +
Optuna (πŸ₯‡43 Β· ⭐ 12K) - A hyperparameter optimization framework. MIT -- [GitHub](https://github.com/optuna/optuna) (πŸ‘¨β€πŸ’» 290 Β· πŸ”€ 1.1K Β· πŸ“¦ 25K Β· πŸ“‹ 1.7K - 3% open Β· ⏱️ 15.04.2025): +- [GitHub](https://github.com/optuna/optuna) (πŸ‘¨β€πŸ’» 290 Β· πŸ”€ 1.1K Β· πŸ“¦ 25K Β· πŸ“‹ 1.7K - 3% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/optuna/optuna ``` -- [PyPi](https://pypi.org/project/optuna) (πŸ“₯ 3.9M / month Β· πŸ“¦ 1.2K Β· ⏱️ 14.04.2025): +- [PyPi](https://pypi.org/project/optuna) (πŸ“₯ 4M / month Β· πŸ“¦ 1.2K Β· ⏱️ 14.04.2025): ``` pip install optuna ``` -- [Conda](https://anaconda.org/conda-forge/optuna) (πŸ“₯ 2.5M Β· ⏱️ 15.04.2025): +- [Conda](https://anaconda.org/conda-forge/optuna) (πŸ“₯ 2.6M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge optuna ```
-
AutoGluon (πŸ₯‡36 Β· ⭐ 8.7K) - Fast and Accurate ML in 3 Lines of Code. Apache-2 +
AutoGluon (πŸ₯‡36 Β· ⭐ 8.8K) - Fast and Accurate ML in 3 Lines of Code. Apache-2 -- [GitHub](https://github.com/autogluon/autogluon) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 990 Β· πŸ“¦ 1.1K Β· πŸ“‹ 1.6K - 24% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/autogluon/autogluon) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 1K Β· πŸ“¦ 1.1K Β· πŸ“‹ 1.6K - 24% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/autogluon/autogluon ``` -- [PyPi](https://pypi.org/project/autogluon) (πŸ“₯ 210K / month Β· πŸ“¦ 31 Β· ⏱️ 17.04.2025): +- [PyPi](https://pypi.org/project/autogluon) (πŸ“₯ 220K / month Β· πŸ“¦ 31 Β· ⏱️ 24.04.2025): ``` pip install autogluon ``` -- [Conda](https://anaconda.org/conda-forge/autogluon) (πŸ“₯ 33K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/autogluon) (πŸ“₯ 33K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge autogluon ``` @@ -4393,7 +4408,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc
Ax (πŸ₯‡36 Β· ⭐ 2.5K) - Adaptive Experimentation Platform. MIT -- [GitHub](https://github.com/facebook/Ax) (πŸ‘¨β€πŸ’» 180 Β· πŸ”€ 320 Β· πŸ“¦ 940 Β· πŸ“‹ 850 - 10% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/facebook/Ax) (πŸ‘¨β€πŸ’» 180 Β· πŸ”€ 320 Β· πŸ“¦ 950 Β· πŸ“‹ 850 - 10% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/facebook/Ax @@ -4402,67 +4417,67 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc ``` pip install ax-platform ``` -- [Conda](https://anaconda.org/conda-forge/ax-platform) (πŸ“₯ 37K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/ax-platform) (πŸ“₯ 37K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge ax-platform ```
Hyperopt (πŸ₯‡34 Β· ⭐ 7.4K) - Distributed Asynchronous Hyperparameter Optimization in Python. BSD-3 -- [GitHub](https://github.com/hyperopt/hyperopt) (πŸ‘¨β€πŸ’» 100 Β· πŸ”€ 1.1K Β· πŸ“¦ 20K Β· πŸ“‹ 740 - 19% open Β· ⏱️ 27.12.2024): +- [GitHub](https://github.com/hyperopt/hyperopt) (πŸ‘¨β€πŸ’» 100 Β· πŸ”€ 1.1K Β· πŸ“¦ 21K Β· πŸ“‹ 750 - 19% open Β· ⏱️ 27.12.2024): ``` git clone https://github.com/hyperopt/hyperopt ``` -- [PyPi](https://pypi.org/project/hyperopt) (πŸ“₯ 2.4M / month Β· πŸ“¦ 450 Β· ⏱️ 17.11.2021): +- [PyPi](https://pypi.org/project/hyperopt) (πŸ“₯ 2.3M / month Β· πŸ“¦ 450 Β· ⏱️ 17.11.2021): ``` pip install hyperopt ``` -- [Conda](https://anaconda.org/conda-forge/hyperopt) (πŸ“₯ 830K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/hyperopt) (πŸ“₯ 830K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge hyperopt ```
BoTorch (πŸ₯‡34 Β· ⭐ 3.2K) - Bayesian optimization in PyTorch. MIT -- [GitHub](https://github.com/pytorch/botorch) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 410 Β· πŸ“¦ 1.4K Β· πŸ“‹ 580 - 13% open Β· ⏱️ 15.04.2025): +- [GitHub](https://github.com/pytorch/botorch) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 410 Β· πŸ“¦ 1.5K Β· πŸ“‹ 580 - 13% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/pytorch/botorch ``` -- [PyPi](https://pypi.org/project/botorch) (πŸ“₯ 200K / month Β· πŸ“¦ 100 Β· ⏱️ 03.02.2025): +- [PyPi](https://pypi.org/project/botorch) (πŸ“₯ 210K / month Β· πŸ“¦ 100 Β· ⏱️ 03.02.2025): ``` pip install botorch ``` -- [Conda](https://anaconda.org/conda-forge/botorch) (πŸ“₯ 150K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/botorch) (πŸ“₯ 150K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge botorch ```
Bayesian Optimization (πŸ₯‡33 Β· ⭐ 8.2K) - A Python implementation of global optimization with.. MIT -- [GitHub](https://github.com/bayesian-optimization/BayesianOptimization) (πŸ‘¨β€πŸ’» 48 Β· πŸ”€ 1.6K Β· πŸ“₯ 180 Β· πŸ“¦ 3.6K Β· πŸ“‹ 380 - 1% open Β· ⏱️ 17.03.2025): +- [GitHub](https://github.com/bayesian-optimization/BayesianOptimization) (πŸ‘¨β€πŸ’» 48 Β· πŸ”€ 1.6K Β· πŸ“₯ 180 Β· πŸ“¦ 3.6K Β· πŸ“‹ 380 - 1% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/fmfn/BayesianOptimization ``` -- [PyPi](https://pypi.org/project/bayesian-optimization) (πŸ“₯ 390K / month Β· πŸ“¦ 150 Β· ⏱️ 27.12.2024): +- [PyPi](https://pypi.org/project/bayesian-optimization) (πŸ“₯ 440K / month Β· πŸ“¦ 150 Β· ⏱️ 27.12.2024): ``` pip install bayesian-optimization ```
nevergrad (πŸ₯‡33 Β· ⭐ 4K) - A Python toolbox for performing gradient-free optimization. MIT -- [GitHub](https://github.com/facebookresearch/nevergrad) (πŸ‘¨β€πŸ’» 58 Β· πŸ”€ 360 Β· πŸ“¦ 880 Β· πŸ“‹ 310 - 40% open Β· ⏱️ 14.04.2025): +- [GitHub](https://github.com/facebookresearch/nevergrad) (πŸ‘¨β€πŸ’» 58 Β· πŸ”€ 360 Β· πŸ“¦ 890 Β· πŸ“‹ 310 - 40% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/facebookresearch/nevergrad ``` -- [PyPi](https://pypi.org/project/nevergrad) (πŸ“₯ 130K / month Β· πŸ“¦ 72 Β· ⏱️ 03.04.2025): +- [PyPi](https://pypi.org/project/nevergrad) (πŸ“₯ 130K / month Β· πŸ“¦ 72 Β· ⏱️ 23.04.2025): ``` pip install nevergrad ``` -- [Conda](https://anaconda.org/conda-forge/nevergrad) (πŸ“₯ 61K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/nevergrad) (πŸ“₯ 61K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge nevergrad ``` @@ -4474,18 +4489,18 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc ``` git clone https://github.com/alteryx/featuretools ``` -- [PyPi](https://pypi.org/project/featuretools) (πŸ“₯ 87K / month Β· πŸ“¦ 74 Β· ⏱️ 14.05.2024): +- [PyPi](https://pypi.org/project/featuretools) (πŸ“₯ 90K / month Β· πŸ“¦ 74 Β· ⏱️ 14.05.2024): ``` pip install featuretools ``` -- [Conda](https://anaconda.org/conda-forge/featuretools) (πŸ“₯ 240K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/featuretools) (πŸ“₯ 240K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge featuretools ```
AutoKeras (πŸ₯ˆ31 Β· ⭐ 9.2K) - AutoML library for deep learning. Apache-2 -- [GitHub](https://github.com/keras-team/autokeras) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 1.4K Β· πŸ“₯ 19K Β· πŸ“¦ 830 Β· πŸ“‹ 910 - 16% open Β· ⏱️ 16.12.2024): +- [GitHub](https://github.com/keras-team/autokeras) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 1.4K Β· πŸ“₯ 19K Β· πŸ“¦ 840 Β· πŸ“‹ 910 - 16% open Β· ⏱️ 16.12.2024): ``` git clone https://github.com/keras-team/autokeras @@ -4497,16 +4512,16 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc
Keras Tuner (πŸ₯ˆ31 Β· ⭐ 2.9K Β· πŸ’€) - A Hyperparameter Tuning Library for Keras. Apache-2 -- [GitHub](https://github.com/keras-team/keras-tuner) (πŸ‘¨β€πŸ’» 61 Β· πŸ”€ 400 Β· πŸ“¦ 5.6K Β· πŸ“‹ 500 - 44% open Β· ⏱️ 24.06.2024): +- [GitHub](https://github.com/keras-team/keras-tuner) (πŸ‘¨β€πŸ’» 61 Β· πŸ”€ 400 Β· πŸ“¦ 5.7K Β· πŸ“‹ 500 - 44% open Β· ⏱️ 24.06.2024): ``` git clone https://github.com/keras-team/keras-tuner ``` -- [PyPi](https://pypi.org/project/keras-tuner) (πŸ“₯ 340K / month Β· πŸ“¦ 120 Β· ⏱️ 04.03.2024): +- [PyPi](https://pypi.org/project/keras-tuner) (πŸ“₯ 350K / month Β· πŸ“¦ 120 Β· ⏱️ 04.03.2024): ``` pip install keras-tuner ``` -- [Conda](https://anaconda.org/conda-forge/keras-tuner) (πŸ“₯ 54K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/keras-tuner) (πŸ“₯ 55K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge keras-tuner ``` @@ -4518,11 +4533,11 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc ``` git clone https://github.com/mljar/mljar-supervised ``` -- [PyPi](https://pypi.org/project/mljar-supervised) (πŸ“₯ 9.4K / month Β· πŸ“¦ 6 Β· ⏱️ 01.04.2025): +- [PyPi](https://pypi.org/project/mljar-supervised) (πŸ“₯ 9.5K / month Β· πŸ“¦ 6 Β· ⏱️ 01.04.2025): ``` pip install mljar-supervised ``` -- [Conda](https://anaconda.org/conda-forge/mljar-supervised) (πŸ“₯ 40K Β· ⏱️ 26.03.2025): +- [Conda](https://anaconda.org/conda-forge/mljar-supervised) (πŸ“₯ 40K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge mljar-supervised ``` @@ -4534,11 +4549,11 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc ``` git clone https://github.com/shankarpandala/lazypredict ``` -- [PyPi](https://pypi.org/project/lazypredict) (πŸ“₯ 20K / month Β· πŸ“¦ 8 Β· ⏱️ 05.04.2025): +- [PyPi](https://pypi.org/project/lazypredict) (πŸ“₯ 21K / month Β· πŸ“¦ 8 Β· ⏱️ 05.04.2025): ``` pip install lazypredict ``` -- [Conda](https://anaconda.org/conda-forge/lazypredict) (πŸ“₯ 4.5K Β· ⏱️ 07.04.2025): +- [Conda](https://anaconda.org/conda-forge/lazypredict) (πŸ“₯ 4.6K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge lazypredict ``` @@ -4550,19 +4565,19 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc ``` git clone https://github.com/autonomio/talos ``` -- [PyPi](https://pypi.org/project/talos) (πŸ“₯ 2.1K / month Β· πŸ“¦ 8 Β· ⏱️ 21.04.2024): +- [PyPi](https://pypi.org/project/talos) (πŸ“₯ 2K / month Β· πŸ“¦ 8 Β· ⏱️ 21.04.2024): ``` pip install talos ```
-
FEDOT (πŸ₯ˆ25 Β· ⭐ 660) - Automated modeling and machine learning framework FEDOT. BSD-3 +
FEDOT (πŸ₯ˆ25 Β· ⭐ 670) - Automated modeling and machine learning framework FEDOT. BSD-3 - [GitHub](https://github.com/aimclub/FEDOT) (πŸ‘¨β€πŸ’» 38 Β· πŸ”€ 88 Β· πŸ“¦ 60 Β· πŸ“‹ 570 - 11% open Β· ⏱️ 31.03.2025): ``` git clone https://github.com/nccr-itmo/FEDOT ``` -- [PyPi](https://pypi.org/project/fedot) (πŸ“₯ 1.7K / month Β· πŸ“¦ 7 Β· ⏱️ 10.03.2025): +- [PyPi](https://pypi.org/project/fedot) (πŸ“₯ 2K / month Β· πŸ“¦ 7 Β· ⏱️ 10.03.2025): ``` pip install fedot ``` @@ -4574,19 +4589,19 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc ``` git clone https://github.com/AutoViML/featurewiz ``` -- [PyPi](https://pypi.org/project/featurewiz) (πŸ“₯ 15K / month Β· πŸ“¦ 4 Β· ⏱️ 19.02.2025): +- [PyPi](https://pypi.org/project/featurewiz) (πŸ“₯ 16K / month Β· πŸ“¦ 4 Β· ⏱️ 19.02.2025): ``` pip install featurewiz ```
-
Hyperactive (πŸ₯‰23 Β· ⭐ 520) - An optimization and data collection toolbox for convenient and fast.. MIT +
Hyperactive (πŸ₯‰22 Β· ⭐ 520) - An optimization and data collection toolbox for convenient and fast.. MIT -- [GitHub](https://github.com/SimonBlanke/Hyperactive) (πŸ‘¨β€πŸ’» 12 Β· πŸ”€ 46 Β· πŸ“₯ 310 Β· πŸ“¦ 37 Β· πŸ“‹ 79 - 18% open Β· ⏱️ 15.04.2025): +- [GitHub](https://github.com/SimonBlanke/Hyperactive) (πŸ‘¨β€πŸ’» 12 Β· πŸ”€ 47 Β· πŸ“₯ 310 Β· πŸ“¦ 37 Β· πŸ“‹ 79 - 18% open Β· ⏱️ 15.04.2025): ``` git clone https://github.com/SimonBlanke/Hyperactive ``` -- [PyPi](https://pypi.org/project/hyperactive) (πŸ“₯ 3.7K / month Β· πŸ“¦ 13 Β· ⏱️ 15.08.2024): +- [PyPi](https://pypi.org/project/hyperactive) (πŸ“₯ 3.4K / month Β· πŸ“¦ 13 Β· ⏱️ 15.08.2024): ``` pip install hyperactive ``` @@ -4598,7 +4613,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc ``` git clone https://github.com/AutoViML/Auto_ViML ``` -- [PyPi](https://pypi.org/project/autoviml) (πŸ“₯ 7K / month Β· πŸ“¦ 3 Β· ⏱️ 30.01.2025): +- [PyPi](https://pypi.org/project/autoviml) (πŸ“₯ 6.5K / month Β· πŸ“¦ 3 Β· ⏱️ 30.01.2025): ``` pip install autoviml ``` @@ -4610,19 +4625,19 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc ``` git clone https://github.com/ScottfreeLLC/AlphaPy ``` -- [PyPi](https://pypi.org/project/alphapy) (πŸ“₯ 770 / month Β· ⏱️ 29.08.2020): +- [PyPi](https://pypi.org/project/alphapy) (πŸ“₯ 800 / month Β· ⏱️ 29.08.2020): ``` pip install alphapy ```
-
opytimizer (πŸ₯‰18 Β· ⭐ 610 Β· πŸ’€) - Opytimizer is a Python library consisting of meta-heuristic.. Apache-2 +
opytimizer (πŸ₯‰18 Β· ⭐ 620 Β· πŸ’€) - Opytimizer is a Python library consisting of meta-heuristic.. Apache-2 - [GitHub](https://github.com/gugarosa/opytimizer) (πŸ‘¨β€πŸ’» 4 Β· πŸ”€ 42 Β· πŸ“¦ 21 Β· ⏱️ 18.08.2024): ``` git clone https://github.com/gugarosa/opytimizer ``` -- [PyPi](https://pypi.org/project/opytimizer) (πŸ“₯ 840 / month Β· ⏱️ 18.08.2024): +- [PyPi](https://pypi.org/project/opytimizer) (πŸ“₯ 860 / month Β· ⏱️ 18.08.2024): ``` pip install opytimizer ``` @@ -4633,8 +4648,8 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc - scikit-optimize (πŸ₯‡33 Β· ⭐ 2.8K Β· πŸ’€) - Sequential model-based optimization with a.. BSD-3 - NNI (πŸ₯ˆ31 Β· ⭐ 14K Β· πŸ’€) - An open source AutoML toolkit for automate machine learning lifecycle,.. MIT - auto-sklearn (πŸ₯ˆ31 Β· ⭐ 7.8K Β· πŸ’€) - Automated Machine Learning with scikit-learn. BSD-3 -- SMAC3 (πŸ₯ˆ28 Β· ⭐ 1.1K) - SMAC3: A Versatile Bayesian Optimization Package for.. ❗️BSD-1-Clause - Hyperas (πŸ₯ˆ27 Β· ⭐ 2.2K Β· πŸ’€) - Keras + Hyperopt: A very simple wrapper for convenient.. MIT +- SMAC3 (πŸ₯ˆ27 Β· ⭐ 1.2K) - SMAC3: A Versatile Bayesian Optimization Package for.. ❗️BSD-1-Clause - GPyOpt (πŸ₯ˆ25 Β· ⭐ 940 Β· πŸ’€) - Gaussian Process Optimization using GPy. BSD-3 - lightwood (πŸ₯ˆ25 Β· ⭐ 460) - Lightwood is Legos for Machine Learning. ❗️GPL-3.0 - AdaNet (πŸ₯‰24 Β· ⭐ 3.5K Β· πŸ’€) - Fast and flexible AutoML with learning guarantees. Apache-2 @@ -4643,9 +4658,9 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc - Orion (πŸ₯‰23 Β· ⭐ 290 Β· πŸ’€) - Asynchronous Distributed Hyperparameter Optimization. BSD-3 - igel (πŸ₯‰21 Β· ⭐ 3.1K Β· πŸ’€) - a delightful machine learning tool that allows you to train, test, and.. MIT - MLBox (πŸ₯‰21 Β· ⭐ 1.5K Β· πŸ’€) - MLBox is a powerful Automated Machine Learning python library. ❗️BSD-1-Clause +- sklearn-deap (πŸ₯‰21 Β· ⭐ 770 Β· πŸ’€) - Use evolutionary algorithms instead of gridsearch in.. MIT - Test Tube (πŸ₯‰21 Β· ⭐ 740 Β· πŸ’€) - Python library to easily log experiments and parallelize.. MIT - Neuraxle (πŸ₯‰21 Β· ⭐ 610 Β· πŸ’€) - The worlds cleanest AutoML library - Do hyperparameter tuning.. Apache-2 -- sklearn-deap (πŸ₯‰20 Β· ⭐ 770 Β· πŸ’€) - Use evolutionary algorithms instead of gridsearch in.. MIT - optunity (πŸ₯‰20 Β· ⭐ 420 Β· πŸ’€) - optimization routines for hyperparameter tuning. BSD-3 - Dragonfly (πŸ₯‰19 Β· ⭐ 880 Β· πŸ’€) - An open source python library for scalable Bayesian optimisation. MIT - Auto Tune Models (πŸ₯‰19 Β· ⭐ 530 Β· πŸ’€) - Auto Tune Models - A multi-tenant, multi-data system for.. MIT @@ -4671,14 +4686,14 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc _Libraries for building and evaluating reinforcement learning & agent-based systems._ -
FinRL (πŸ₯‡32 Β· ⭐ 11K) - FinRL: Financial Reinforcement Learning. MIT +
FinRL (πŸ₯‡32 Β· ⭐ 12K) - FinRL: Financial Reinforcement Learning. MIT -- [GitHub](https://github.com/AI4Finance-Foundation/FinRL) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 2.6K Β· πŸ“¦ 81 Β· πŸ“‹ 740 - 34% open Β· ⏱️ 11.04.2025): +- [GitHub](https://github.com/AI4Finance-Foundation/FinRL) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 2.6K Β· πŸ“¦ 86 Β· πŸ“‹ 740 - 34% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/AI4Finance-Foundation/FinRL ``` -- [PyPi](https://pypi.org/project/finrl) (πŸ“₯ 2.8K / month Β· ⏱️ 08.01.2022): +- [PyPi](https://pypi.org/project/finrl) (πŸ“₯ 3.1K / month Β· ⏱️ 08.01.2022): ``` pip install finrl ``` @@ -4690,37 +4705,37 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst ``` git clone https://github.com/mwydmuch/ViZDoom ``` -- [PyPi](https://pypi.org/project/vizdoom) (πŸ“₯ 5.9K / month Β· πŸ“¦ 15 Β· ⏱️ 20.08.2024): +- [PyPi](https://pypi.org/project/vizdoom) (πŸ“₯ 6K / month Β· πŸ“¦ 15 Β· ⏱️ 20.08.2024): ``` pip install vizdoom ```
-
Acme (πŸ₯ˆ28 Β· ⭐ 3.6K) - A library of reinforcement learning components and agents. Apache-2 +
TF-Agents (πŸ₯ˆ28 Β· ⭐ 2.9K) - TF-Agents: A reliable, scalable and easy to use TensorFlow.. Apache-2 -- [GitHub](https://github.com/google-deepmind/acme) (πŸ‘¨β€πŸ’» 86 Β· πŸ”€ 460 Β· πŸ“¦ 240 Β· πŸ“‹ 270 - 23% open Β· ⏱️ 14.01.2025): +- [GitHub](https://github.com/tensorflow/agents) (πŸ‘¨β€πŸ’» 150 Β· πŸ”€ 720 Β· πŸ“‹ 680 - 30% open Β· ⏱️ 12.03.2025): ``` - git clone https://github.com/deepmind/acme - ``` -- [PyPi](https://pypi.org/project/dm-acme) (πŸ“₯ 2.9K / month Β· πŸ“¦ 3 Β· ⏱️ 10.02.2022): - ``` - pip install dm-acme + git clone https://github.com/tensorflow/agents ``` -- [Conda](https://anaconda.org/conda-forge/dm-acme) (πŸ“₯ 12K Β· ⏱️ 25.03.2025): +- [PyPi](https://pypi.org/project/tf-agents) (πŸ“₯ 35K / month Β· πŸ“¦ 14 Β· ⏱️ 14.12.2023): ``` - conda install -c conda-forge dm-acme + pip install tf-agents ```
-
TF-Agents (πŸ₯ˆ28 Β· ⭐ 2.9K) - TF-Agents: A reliable, scalable and easy to use TensorFlow.. Apache-2 +
Acme (πŸ₯ˆ27 Β· ⭐ 3.7K) - A library of reinforcement learning components and agents. Apache-2 -- [GitHub](https://github.com/tensorflow/agents) (πŸ‘¨β€πŸ’» 150 Β· πŸ”€ 720 Β· πŸ“‹ 680 - 30% open Β· ⏱️ 12.03.2025): +- [GitHub](https://github.com/google-deepmind/acme) (πŸ‘¨β€πŸ’» 87 Β· πŸ”€ 460 Β· πŸ“¦ 240 Β· πŸ“‹ 270 - 23% open Β· ⏱️ 18.04.2025): ``` - git clone https://github.com/tensorflow/agents + git clone https://github.com/deepmind/acme ``` -- [PyPi](https://pypi.org/project/tf-agents) (πŸ“₯ 38K / month Β· πŸ“¦ 14 Β· ⏱️ 14.12.2023): +- [PyPi](https://pypi.org/project/dm-acme) (πŸ“₯ 3.4K / month Β· πŸ“¦ 3 Β· ⏱️ 10.02.2022): ``` - pip install tf-agents + pip install dm-acme + ``` +- [Conda](https://anaconda.org/conda-forge/dm-acme) (πŸ“₯ 12K Β· ⏱️ 22.04.2025): + ``` + conda install -c conda-forge dm-acme ```
Dopamine (πŸ₯ˆ26 Β· ⭐ 11K) - Dopamine is a research framework for fast prototyping of.. Apache-2 @@ -4730,7 +4745,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst ``` git clone https://github.com/google/dopamine ``` -- [PyPi](https://pypi.org/project/dopamine-rl) (πŸ“₯ 31K / month Β· πŸ“¦ 10 Β· ⏱️ 31.10.2024): +- [PyPi](https://pypi.org/project/dopamine-rl) (πŸ“₯ 30K / month Β· πŸ“¦ 10 Β· ⏱️ 31.10.2024): ``` pip install dopamine-rl ``` @@ -4742,31 +4757,31 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst ``` git clone https://github.com/tensorforce/tensorforce ``` -- [PyPi](https://pypi.org/project/tensorforce) (πŸ“₯ 630 / month Β· πŸ“¦ 4 Β· ⏱️ 30.08.2021): +- [PyPi](https://pypi.org/project/tensorforce) (πŸ“₯ 720 / month Β· πŸ“¦ 4 Β· ⏱️ 30.08.2021): ``` pip install tensorforce ```
-
PARL (πŸ₯‰24 Β· ⭐ 3.4K) - A high-performance distributed training framework for Reinforcement.. Apache-2 +
PARL (πŸ₯‰25 Β· ⭐ 3.4K) - A high-performance distributed training framework for Reinforcement.. Apache-2 - [GitHub](https://github.com/PaddlePaddle/PARL) (πŸ‘¨β€πŸ’» 46 Β· πŸ”€ 820 Β· πŸ“¦ 130 Β· πŸ“‹ 550 - 24% open Β· ⏱️ 24.01.2025): ``` git clone https://github.com/PaddlePaddle/PARL ``` -- [PyPi](https://pypi.org/project/parl) (πŸ“₯ 1.4K / month Β· πŸ“¦ 1 Β· ⏱️ 13.05.2022): +- [PyPi](https://pypi.org/project/parl) (πŸ“₯ 1.3K / month Β· πŸ“¦ 1 Β· ⏱️ 13.05.2022): ``` pip install parl ```
RLax (πŸ₯‰24 Β· ⭐ 1.3K) - A library of reinforcement learning building blocks in JAX. Apache-2 -- [GitHub](https://github.com/google-deepmind/rlax) (πŸ‘¨β€πŸ’» 22 Β· πŸ”€ 91 Β· πŸ“¦ 320 Β· πŸ“‹ 27 - 33% open Β· ⏱️ 14.04.2025): +- [GitHub](https://github.com/google-deepmind/rlax) (πŸ‘¨β€πŸ’» 22 Β· πŸ”€ 91 Β· πŸ“¦ 330 Β· πŸ“‹ 27 - 33% open Β· ⏱️ 14.04.2025): ``` git clone https://github.com/deepmind/rlax ``` -- [PyPi](https://pypi.org/project/rlax) (πŸ“₯ 18K / month Β· πŸ“¦ 11 Β· ⏱️ 09.01.2023): +- [PyPi](https://pypi.org/project/rlax) (πŸ“₯ 17K / month Β· πŸ“¦ 11 Β· ⏱️ 09.01.2023): ``` pip install rlax ``` @@ -4790,12 +4805,12 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst ``` git clone https://github.com/facebookresearch/ReAgent ``` -- [PyPi](https://pypi.org/project/reagent) (πŸ“₯ 77 / month Β· ⏱️ 27.05.2020): +- [PyPi](https://pypi.org/project/reagent) (πŸ“₯ 71 / month Β· ⏱️ 27.05.2020): ``` pip install reagent ```
-
rliable (πŸ₯‰14 Β· ⭐ 820 Β· πŸ’€) - [NeurIPS21 Outstanding Paper] Library for reliable evaluation on.. Apache-2 +
rliable (πŸ₯‰14 Β· ⭐ 830 Β· πŸ’€) - [NeurIPS21 Outstanding Paper] Library for reliable evaluation on.. Apache-2 - [GitHub](https://github.com/google-research/rliable) (πŸ‘¨β€πŸ’» 10 Β· πŸ”€ 49 Β· πŸ“¦ 200 Β· πŸ“‹ 20 - 15% open Β· ⏱️ 12.08.2024): @@ -4809,7 +4824,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst
Show 12 hidden projects... -- OpenAI Gym (πŸ₯‡41 Β· ⭐ 36K Β· πŸ’€) - A toolkit for developing and comparing reinforcement learning.. MIT +- OpenAI Gym (πŸ₯‡42 Β· ⭐ 36K Β· πŸ’€) - A toolkit for developing and comparing reinforcement learning.. MIT - baselines (πŸ₯ˆ28 Β· ⭐ 16K Β· πŸ’€) - OpenAI Baselines: high-quality implementations of reinforcement.. MIT - TensorLayer (πŸ₯ˆ27 Β· ⭐ 7.4K Β· πŸ’€) - Deep Learning and Reinforcement Learning Library for.. Apache-2 - keras-rl (πŸ₯ˆ27 Β· ⭐ 5.5K Β· πŸ’€) - Deep Reinforcement Learning for Keras. MIT @@ -4830,42 +4845,42 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst _Libraries for building and evaluating recommendation systems._ -
Recommenders (πŸ₯‡32 Β· ⭐ 20K) - Best Practices on Recommendation Systems. MIT +
Recommenders (πŸ₯‡33 Β· ⭐ 20K) - Best Practices on Recommendation Systems. MIT -- [GitHub](https://github.com/recommenders-team/recommenders) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 3.2K Β· πŸ“₯ 720 Β· πŸ“¦ 160 Β· πŸ“‹ 880 - 18% open Β· ⏱️ 19.01.2025): +- [GitHub](https://github.com/recommenders-team/recommenders) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 3.2K Β· πŸ“₯ 730 Β· πŸ“¦ 160 Β· πŸ“‹ 880 - 18% open Β· ⏱️ 19.01.2025): ``` git clone https://github.com/microsoft/recommenders ``` -- [PyPi](https://pypi.org/project/recommenders) (πŸ“₯ 20K / month Β· πŸ“¦ 4 Β· ⏱️ 24.12.2024): +- [PyPi](https://pypi.org/project/recommenders) (πŸ“₯ 21K / month Β· πŸ“¦ 4 Β· ⏱️ 24.12.2024): ``` pip install recommenders ```
torchrec (πŸ₯‡31 Β· ⭐ 2.1K) - Pytorch domain library for recommendation systems. BSD-3 -- [GitHub](https://github.com/pytorch/torchrec) (πŸ‘¨β€πŸ’» 340 Β· πŸ”€ 480 Β· πŸ“¦ 200 Β· πŸ“‹ 480 - 71% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/pytorch/torchrec) (πŸ‘¨β€πŸ’» 340 Β· πŸ”€ 480 Β· πŸ“¦ 200 Β· πŸ“‹ 480 - 71% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/pytorch/torchrec ``` -- [PyPi](https://pypi.org/project/torchrec-nightly-cpu) (πŸ“₯ 2.2K / month Β· ⏱️ 12.05.2022): +- [PyPi](https://pypi.org/project/torchrec-nightly-cpu) (πŸ“₯ 2.9K / month Β· ⏱️ 12.05.2022): ``` pip install torchrec-nightly-cpu ```
-
Cornac (πŸ₯ˆ29 Β· ⭐ 940) - A Comparative Framework for Multimodal Recommender Systems. Apache-2 +
Cornac (πŸ₯ˆ29 Β· ⭐ 950) - A Comparative Framework for Multimodal Recommender Systems. Apache-2 -- [GitHub](https://github.com/PreferredAI/cornac) (πŸ‘¨β€πŸ’» 24 Β· πŸ”€ 150 Β· πŸ“¦ 270 Β· πŸ“‹ 160 - 15% open Β· ⏱️ 15.04.2025): +- [GitHub](https://github.com/PreferredAI/cornac) (πŸ‘¨β€πŸ’» 24 Β· πŸ”€ 150 Β· πŸ“¦ 280 Β· πŸ“‹ 160 - 15% open Β· ⏱️ 21.04.2025): ``` git clone https://github.com/PreferredAI/cornac ``` -- [PyPi](https://pypi.org/project/cornac) (πŸ“₯ 35K / month Β· πŸ“¦ 18 Β· ⏱️ 15.04.2025): +- [PyPi](https://pypi.org/project/cornac) (πŸ“₯ 42K / month Β· πŸ“¦ 18 Β· ⏱️ 15.04.2025): ``` pip install cornac ``` -- [Conda](https://anaconda.org/conda-forge/cornac) (πŸ“₯ 800K Β· ⏱️ 15.04.2025): +- [Conda](https://anaconda.org/conda-forge/cornac) (πŸ“₯ 800K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge cornac ``` @@ -4881,19 +4896,19 @@ _Libraries for building and evaluating recommendation systems._ ``` pip install scikit-surprise ``` -- [Conda](https://anaconda.org/conda-forge/scikit-surprise) (πŸ“₯ 480K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/scikit-surprise) (πŸ“₯ 480K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge scikit-surprise ```
RecBole (πŸ₯‰27 Β· ⭐ 3.7K) - A unified, comprehensive and efficient recommendation library. MIT -- [GitHub](https://github.com/RUCAIBox/RecBole) (πŸ‘¨β€πŸ’» 79 Β· πŸ”€ 650 Β· πŸ“‹ 1K - 29% open Β· ⏱️ 24.02.2025): +- [GitHub](https://github.com/RUCAIBox/RecBole) (πŸ‘¨β€πŸ’» 79 Β· πŸ”€ 660 Β· πŸ“‹ 1K - 29% open Β· ⏱️ 24.02.2025): ``` git clone https://github.com/RUCAIBox/RecBole ``` -- [PyPi](https://pypi.org/project/recbole) (πŸ“₯ 51K / month Β· πŸ“¦ 2 Β· ⏱️ 24.02.2025): +- [PyPi](https://pypi.org/project/recbole) (πŸ“₯ 58K / month Β· πŸ“¦ 2 Β· ⏱️ 24.02.2025): ``` pip install recbole ``` @@ -4955,23 +4970,23 @@ _Libraries for encrypted and privacy-preserving machine learning using methods l ``` git clone https://github.com/pytorch/opacus ``` -- [PyPi](https://pypi.org/project/opacus) (πŸ“₯ 93K / month Β· πŸ“¦ 42 Β· ⏱️ 18.02.2025): +- [PyPi](https://pypi.org/project/opacus) (πŸ“₯ 92K / month Β· πŸ“¦ 42 Β· ⏱️ 18.02.2025): ``` pip install opacus ``` -- [Conda](https://anaconda.org/conda-forge/opacus) (πŸ“₯ 23K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/opacus) (πŸ“₯ 23K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge opacus ```
TensorFlow Privacy (πŸ₯ˆ25 Β· ⭐ 2K) - Library for training machine learning models with.. Apache-2 -- [GitHub](https://github.com/tensorflow/privacy) (πŸ‘¨β€πŸ’» 60 Β· πŸ”€ 450 Β· πŸ“₯ 190 Β· πŸ“‹ 210 - 55% open Β· ⏱️ 26.03.2025): +- [GitHub](https://github.com/tensorflow/privacy) (πŸ‘¨β€πŸ’» 60 Β· πŸ”€ 450 Β· πŸ“₯ 190 Β· πŸ“‹ 210 - 55% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/tensorflow/privacy ``` -- [PyPi](https://pypi.org/project/tensorflow-privacy) (πŸ“₯ 23K / month Β· πŸ“¦ 21 Β· ⏱️ 14.02.2024): +- [PyPi](https://pypi.org/project/tensorflow-privacy) (πŸ“₯ 22K / month Β· πŸ“¦ 21 Β· ⏱️ 14.02.2024): ``` pip install tensorflow-privacy ``` @@ -4983,19 +4998,19 @@ _Libraries for encrypted and privacy-preserving machine learning using methods l ``` git clone https://github.com/tf-encrypted/tf-encrypted ``` -- [PyPi](https://pypi.org/project/tf-encrypted) (πŸ“₯ 1.4K / month Β· πŸ“¦ 9 Β· ⏱️ 16.11.2022): +- [PyPi](https://pypi.org/project/tf-encrypted) (πŸ“₯ 2K / month Β· πŸ“¦ 9 Β· ⏱️ 16.11.2022): ``` pip install tf-encrypted ```
CrypTen (πŸ₯‰24 Β· ⭐ 1.6K) - A framework for Privacy Preserving Machine Learning. MIT -- [GitHub](https://github.com/facebookresearch/CrypTen) (πŸ‘¨β€πŸ’» 39 Β· πŸ”€ 280 Β· πŸ“¦ 56 Β· πŸ“‹ 280 - 28% open Β· ⏱️ 23.11.2024): +- [GitHub](https://github.com/facebookresearch/CrypTen) (πŸ‘¨β€πŸ’» 39 Β· πŸ”€ 280 Β· πŸ“¦ 57 Β· πŸ“‹ 280 - 28% open Β· ⏱️ 23.11.2024): ``` git clone https://github.com/facebookresearch/CrypTen ``` -- [PyPi](https://pypi.org/project/crypten) (πŸ“₯ 690 / month Β· πŸ“¦ 1 Β· ⏱️ 08.12.2022): +- [PyPi](https://pypi.org/project/crypten) (πŸ“₯ 770 / month Β· πŸ“¦ 1 Β· ⏱️ 08.12.2022): ``` pip install crypten ``` @@ -5026,21 +5041,21 @@ _Libraries to organize, track, and visualize machine learning experiments._
mlflow (πŸ₯‡44 Β· ⭐ 20K) - Open source platform for the machine learning lifecycle. Apache-2 -- [GitHub](https://github.com/mlflow/mlflow) (πŸ‘¨β€πŸ’» 840 Β· πŸ”€ 4.5K Β· πŸ“¦ 58K Β· πŸ“‹ 4.6K - 39% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/mlflow/mlflow) (πŸ‘¨β€πŸ’» 840 Β· πŸ”€ 4.5K Β· πŸ“¦ 58K Β· πŸ“‹ 4.6K - 39% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/mlflow/mlflow ``` -- [PyPi](https://pypi.org/project/mlflow) (πŸ“₯ 15M / month Β· πŸ“¦ 1K Β· ⏱️ 16.04.2025): +- [PyPi](https://pypi.org/project/mlflow) (πŸ“₯ 16M / month Β· πŸ“¦ 1.1K Β· ⏱️ 24.04.2025): ``` pip install mlflow ``` -- [Conda](https://anaconda.org/conda-forge/mlflow) (πŸ“₯ 3.1M Β· ⏱️ 03.04.2025): +- [Conda](https://anaconda.org/conda-forge/mlflow) (πŸ“₯ 3.1M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge mlflow ```
-
Tensorboard (πŸ₯‡43 Β· ⭐ 6.8K) - TensorFlows Visualization Toolkit. Apache-2 +
Tensorboard (πŸ₯‡43 Β· ⭐ 6.9K) - TensorFlows Visualization Toolkit. Apache-2 - [GitHub](https://github.com/tensorflow/tensorboard) (πŸ‘¨β€πŸ’» 320 Β· πŸ”€ 1.7K Β· πŸ“¦ 310K Β· πŸ“‹ 1.9K - 35% open Β· ⏱️ 16.04.2025): @@ -5051,55 +5066,55 @@ _Libraries to organize, track, and visualize machine learning experiments._ ``` pip install tensorboard ``` -- [Conda](https://anaconda.org/conda-forge/tensorboard) (πŸ“₯ 5.5M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/tensorboard) (πŸ“₯ 5.5M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge tensorboard ```
wandb client (πŸ₯‡42 Β· ⭐ 9.8K) - The AI developer platform. Use Weights & Biases to train and fine-.. MIT -- [GitHub](https://github.com/wandb/wandb) (πŸ‘¨β€πŸ’» 210 Β· πŸ”€ 730 Β· πŸ“₯ 680 Β· πŸ“¦ 74K Β· πŸ“‹ 3.5K - 18% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/wandb/wandb) (πŸ‘¨β€πŸ’» 210 Β· πŸ”€ 730 Β· πŸ“₯ 690 Β· πŸ“¦ 75K Β· πŸ“‹ 3.6K - 17% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/wandb/client ``` -- [PyPi](https://pypi.org/project/wandb) (πŸ“₯ 18M / month Β· πŸ“¦ 1.8K Β· ⏱️ 01.04.2025): +- [PyPi](https://pypi.org/project/wandb) (πŸ“₯ 17M / month Β· πŸ“¦ 1.8K Β· ⏱️ 22.04.2025): ``` pip install wandb ``` -- [Conda](https://anaconda.org/conda-forge/wandb) (πŸ“₯ 1M Β· ⏱️ 02.04.2025): +- [Conda](https://anaconda.org/conda-forge/wandb) (πŸ“₯ 1M Β· ⏱️ 23.04.2025): ``` conda install -c conda-forge wandb ```
DVC (πŸ₯‡41 Β· ⭐ 14K) - Data Versioning and ML Experiments. Apache-2 -- [GitHub](https://github.com/iterative/dvc) (πŸ‘¨β€πŸ’» 310 Β· πŸ”€ 1.2K Β· πŸ“¦ 23K Β· πŸ“‹ 4.8K - 5% open Β· ⏱️ 10.04.2025): +- [GitHub](https://github.com/iterative/dvc) (πŸ‘¨β€πŸ’» 310 Β· πŸ”€ 1.2K Β· πŸ“¦ 23K Β· πŸ“‹ 4.8K - 5% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/iterative/dvc ``` -- [PyPi](https://pypi.org/project/dvc) (πŸ“₯ 930K / month Β· πŸ“¦ 140 Β· ⏱️ 15.02.2025): +- [PyPi](https://pypi.org/project/dvc) (πŸ“₯ 790K / month Β· πŸ“¦ 140 Β· ⏱️ 15.02.2025): ``` pip install dvc ``` -- [Conda](https://anaconda.org/conda-forge/dvc) (πŸ“₯ 2.7M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/dvc) (πŸ“₯ 2.8M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge dvc ```
SageMaker SDK (πŸ₯ˆ40 Β· ⭐ 2.2K) - A library for training and deploying machine learning.. Apache-2 -- [GitHub](https://github.com/aws/sagemaker-python-sdk) (πŸ‘¨β€πŸ’» 480 Β· πŸ”€ 1.2K Β· πŸ“¦ 5.7K Β· πŸ“‹ 1.6K - 20% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/aws/sagemaker-python-sdk) (πŸ‘¨β€πŸ’» 480 Β· πŸ”€ 1.2K Β· πŸ“¦ 5.8K Β· πŸ“‹ 1.6K - 20% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/aws/sagemaker-python-sdk ``` -- [PyPi](https://pypi.org/project/sagemaker) (πŸ“₯ 24M / month Β· πŸ“¦ 180 Β· ⏱️ 16.04.2025): +- [PyPi](https://pypi.org/project/sagemaker) (πŸ“₯ 23M / month Β· πŸ“¦ 180 Β· ⏱️ 23.04.2025): ``` pip install sagemaker ``` -- [Conda](https://anaconda.org/conda-forge/sagemaker-python-sdk) (πŸ“₯ 1.5M Β· ⏱️ 16.04.2025): +- [Conda](https://anaconda.org/conda-forge/sagemaker-python-sdk) (πŸ“₯ 1.5M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge sagemaker-python-sdk ``` @@ -5115,91 +5130,91 @@ _Libraries to organize, track, and visualize machine learning experiments._ ``` pip install pycaret ``` -- [Conda](https://anaconda.org/conda-forge/pycaret) (πŸ“₯ 67K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pycaret) (πŸ“₯ 68K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pycaret ```
Metaflow (πŸ₯ˆ36 Β· ⭐ 8.7K) - Build, Manage and Deploy AI/ML Systems. Apache-2 -- [GitHub](https://github.com/Netflix/metaflow) (πŸ‘¨β€πŸ’» 100 Β· πŸ”€ 820 Β· πŸ“¦ 850 Β· πŸ“‹ 780 - 42% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/Netflix/metaflow) (πŸ‘¨β€πŸ’» 100 Β· πŸ”€ 820 Β· πŸ“¦ 890 Β· πŸ“‹ 790 - 42% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/Netflix/metaflow ``` -- [PyPi](https://pypi.org/project/metaflow) (πŸ“₯ 280K / month Β· πŸ“¦ 52 Β· ⏱️ 29.03.2025): +- [PyPi](https://pypi.org/project/metaflow) (πŸ“₯ 290K / month Β· πŸ“¦ 52 Β· ⏱️ 22.04.2025): ``` pip install metaflow ``` -- [Conda](https://anaconda.org/conda-forge/metaflow) (πŸ“₯ 280K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/metaflow) (πŸ“₯ 290K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge metaflow ```
+
ClearML (πŸ₯ˆ34 Β· ⭐ 6K) - ClearML - Auto-Magical CI/CD to streamline your AI workload... Apache-2 + +- [GitHub](https://github.com/clearml/clearml) (πŸ‘¨β€πŸ’» 100 Β· πŸ”€ 670 Β· πŸ“₯ 3.2K Β· πŸ“¦ 1.7K Β· πŸ“‹ 1.1K - 43% open Β· ⏱️ 24.04.2025): + + ``` + git clone https://github.com/allegroai/clearml + ``` +- [PyPi](https://pypi.org/project/clearml) (πŸ“₯ 360K / month Β· πŸ“¦ 55 Β· ⏱️ 20.04.2025): + ``` + pip install clearml + ``` +- [Docker Hub](https://hub.docker.com/r/allegroai/trains) (πŸ“₯ 30K Β· ⏱️ 05.10.2020): + ``` + docker pull allegroai/trains + ``` +
snakemake (πŸ₯ˆ34 Β· ⭐ 2.5K) - This is the development home of the workflow management system.. MIT -- [GitHub](https://github.com/snakemake/snakemake) (πŸ‘¨β€πŸ’» 370 Β· πŸ”€ 590 Β· πŸ“¦ 2.3K Β· πŸ“‹ 2K - 60% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/snakemake/snakemake) (πŸ‘¨β€πŸ’» 370 Β· πŸ”€ 590 Β· πŸ“¦ 2.3K Β· πŸ“‹ 2K - 60% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/snakemake/snakemake ``` -- [PyPi](https://pypi.org/project/snakemake) (πŸ“₯ 66K / month Β· πŸ“¦ 280 Β· ⏱️ 16.04.2025): +- [PyPi](https://pypi.org/project/snakemake) (πŸ“₯ 76K / month Β· πŸ“¦ 280 Β· ⏱️ 24.04.2025): ``` pip install snakemake ``` -- [Conda](https://anaconda.org/bioconda/snakemake) (πŸ“₯ 1.4M Β· ⏱️ 16.04.2025): +- [Conda](https://anaconda.org/bioconda/snakemake) (πŸ“₯ 1.4M Β· ⏱️ 22.04.2025): ``` conda install -c bioconda snakemake ```
tensorboardX (πŸ₯ˆ33 Β· ⭐ 7.9K) - tensorboard for pytorch (and chainer, mxnet, numpy, ...). MIT -- [GitHub](https://github.com/lanpa/tensorboardX) (πŸ‘¨β€πŸ’» 82 Β· πŸ”€ 860 Β· πŸ“₯ 480 Β· πŸ“¦ 56K Β· πŸ“‹ 460 - 17% open Β· ⏱️ 01.01.2025): +- [GitHub](https://github.com/lanpa/tensorboardX) (πŸ‘¨β€πŸ’» 85 Β· πŸ”€ 860 Β· πŸ“₯ 480 Β· πŸ“¦ 57K Β· πŸ“‹ 460 - 17% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/lanpa/tensorboardX ``` -- [PyPi](https://pypi.org/project/tensorboardX) (πŸ“₯ 2.7M / month Β· πŸ“¦ 620 Β· ⏱️ 20.08.2023): +- [PyPi](https://pypi.org/project/tensorboardX) (πŸ“₯ 2.8M / month Β· πŸ“¦ 620 Β· ⏱️ 20.08.2023): ``` pip install tensorboardX ``` -- [Conda](https://anaconda.org/conda-forge/tensorboardx) (πŸ“₯ 1.3M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/tensorboardx) (πŸ“₯ 1.3M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge tensorboardx ```
kaggle (πŸ₯ˆ33 Β· ⭐ 6.6K) - Official Kaggle API. Apache-2 -- [GitHub](https://github.com/Kaggle/kaggle-api) (πŸ‘¨β€πŸ’» 49 Β· πŸ”€ 1.1K Β· πŸ“¦ 21 Β· πŸ“‹ 510 - 28% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/Kaggle/kaggle-api) (πŸ‘¨β€πŸ’» 49 Β· πŸ”€ 1.2K Β· πŸ“¦ 21 Β· πŸ“‹ 520 - 28% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/Kaggle/kaggle-api ``` -- [PyPi](https://pypi.org/project/kaggle) (πŸ“₯ 380K / month Β· πŸ“¦ 230 Β· ⏱️ 14.03.2025): +- [PyPi](https://pypi.org/project/kaggle) (πŸ“₯ 360K / month Β· πŸ“¦ 230 Β· ⏱️ 14.03.2025): ``` pip install kaggle ``` -- [Conda](https://anaconda.org/conda-forge/kaggle) (πŸ“₯ 220K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/kaggle) (πŸ“₯ 220K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge kaggle ```
-
ClearML (πŸ₯ˆ33 Β· ⭐ 5.9K) - ClearML - Auto-Magical CI/CD to streamline your AI workload... Apache-2 - -- [GitHub](https://github.com/clearml/clearml) (πŸ‘¨β€πŸ’» 100 Β· πŸ”€ 670 Β· πŸ“₯ 3.2K Β· πŸ“¦ 1.7K Β· πŸ“‹ 1.1K - 43% open Β· ⏱️ 14.04.2025): - - ``` - git clone https://github.com/allegroai/clearml - ``` -- [PyPi](https://pypi.org/project/clearml) (πŸ“₯ 360K / month Β· πŸ“¦ 53 Β· ⏱️ 09.03.2025): - ``` - pip install clearml - ``` -- [Docker Hub](https://hub.docker.com/r/allegroai/trains) (πŸ“₯ 30K Β· ⏱️ 05.10.2020): - ``` - docker pull allegroai/trains - ``` -
aim (πŸ₯ˆ33 Β· ⭐ 5.5K) - Aim An easy-to-use & supercharged open-source experiment tracker. Apache-2 - [GitHub](https://github.com/aimhubio/aim) (πŸ‘¨β€πŸ’» 82 Β· πŸ”€ 340 Β· πŸ“¦ 860 Β· πŸ“‹ 1.1K - 36% open Β· ⏱️ 08.04.2025): @@ -5207,11 +5222,11 @@ _Libraries to organize, track, and visualize machine learning experiments._ ``` git clone https://github.com/aimhubio/aim ``` -- [PyPi](https://pypi.org/project/aim) (πŸ“₯ 180K / month Β· πŸ“¦ 41 Β· ⏱️ 16.04.2025): +- [PyPi](https://pypi.org/project/aim) (πŸ“₯ 180K / month Β· πŸ“¦ 41 Β· ⏱️ 23.04.2025): ``` pip install aim ``` -- [Conda](https://anaconda.org/conda-forge/aim) (πŸ“₯ 120K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/aim) (πŸ“₯ 120K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge aim ``` @@ -5223,11 +5238,11 @@ _Libraries to organize, track, and visualize machine learning experiments._ ``` git clone https://github.com/IDSIA/sacred ``` -- [PyPi](https://pypi.org/project/sacred) (πŸ“₯ 29K / month Β· πŸ“¦ 60 Β· ⏱️ 26.11.2024): +- [PyPi](https://pypi.org/project/sacred) (πŸ“₯ 30K / month Β· πŸ“¦ 60 Β· ⏱️ 26.11.2024): ``` pip install sacred ``` -- [Conda](https://anaconda.org/conda-forge/sacred) (πŸ“₯ 8.5K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/sacred) (πŸ“₯ 8.6K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge sacred ``` @@ -5239,83 +5254,83 @@ _Libraries to organize, track, and visualize machine learning experiments._ ``` git clone https://github.com/Azure/MachineLearningNotebooks ``` -- [PyPi](https://pypi.org/project/azureml-sdk) (πŸ“₯ 280K / month Β· πŸ“¦ 31 Β· ⏱️ 11.04.2025): +- [PyPi](https://pypi.org/project/azureml-sdk) (πŸ“₯ 270K / month Β· πŸ“¦ 31 Β· ⏱️ 11.04.2025): ``` pip install azureml-sdk ```
-
Neptune.ai (πŸ₯ˆ30 Β· ⭐ 610 Β· πŸ“ˆ) - The experiment tracker for foundation model training. Apache-2 +
Neptune.ai (πŸ₯ˆ30 Β· ⭐ 610) - The experiment tracker for foundation model training. Apache-2 -- [GitHub](https://github.com/neptune-ai/neptune-client) (πŸ‘¨β€πŸ’» 55 Β· πŸ”€ 65 Β· πŸ“¦ 830 Β· πŸ“‹ 260 - 12% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/neptune-ai/neptune-client) (πŸ‘¨β€πŸ’» 55 Β· πŸ”€ 65 Β· πŸ“¦ 840 Β· πŸ“‹ 260 - 12% open Β· ⏱️ 16.04.2025): ``` git clone https://github.com/neptune-ai/neptune-client ``` -- [PyPi](https://pypi.org/project/neptune-client) (πŸ“₯ 500K / month Β· πŸ“¦ 77 Β· ⏱️ 15.04.2025): +- [PyPi](https://pypi.org/project/neptune-client) (πŸ“₯ 490K / month Β· πŸ“¦ 77 Β· ⏱️ 15.04.2025): ``` pip install neptune-client ``` -- [Conda](https://anaconda.org/conda-forge/neptune-client) (πŸ“₯ 340K Β· ⏱️ 15.04.2025): +- [Conda](https://anaconda.org/conda-forge/neptune-client) (πŸ“₯ 340K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge neptune-client ```
ml-metadata (πŸ₯ˆ28 Β· ⭐ 640) - For recording and retrieving metadata associated with ML.. Apache-2 -- [GitHub](https://github.com/google/ml-metadata) (πŸ‘¨β€πŸ’» 23 Β· πŸ”€ 160 Β· πŸ“₯ 3K Β· πŸ“¦ 680 Β· πŸ“‹ 120 - 39% open Β· ⏱️ 03.04.2025): +- [GitHub](https://github.com/google/ml-metadata) (πŸ‘¨β€πŸ’» 23 Β· πŸ”€ 160 Β· πŸ“₯ 3K Β· πŸ“¦ 690 Β· πŸ“‹ 120 - 39% open Β· ⏱️ 03.04.2025): ``` git clone https://github.com/google/ml-metadata ``` -- [PyPi](https://pypi.org/project/ml-metadata) (πŸ“₯ 95K / month Β· πŸ“¦ 32 Β· ⏱️ 07.04.2025): +- [PyPi](https://pypi.org/project/ml-metadata) (πŸ“₯ 94K / month Β· πŸ“¦ 32 Β· ⏱️ 07.04.2025): ``` pip install ml-metadata ```
-
livelossplot (πŸ₯‰27 Β· ⭐ 1.3K) - Live training loss plot in Jupyter Notebook for Keras,.. MIT +
VisualDL (πŸ₯‰27 Β· ⭐ 4.8K) - Deep Learning Visualization Toolkit. Apache-2 -- [GitHub](https://github.com/stared/livelossplot) (πŸ‘¨β€πŸ’» 17 Β· πŸ”€ 140 Β· πŸ“¦ 1.8K Β· πŸ“‹ 79 - 7% open Β· ⏱️ 03.01.2025): +- [GitHub](https://github.com/PaddlePaddle/VisualDL) (πŸ‘¨β€πŸ’» 36 Β· πŸ”€ 630 Β· πŸ“₯ 510 Β· πŸ“¦ 2 Β· πŸ“‹ 510 - 30% open Β· ⏱️ 22.01.2025): ``` - git clone https://github.com/stared/livelossplot + git clone https://github.com/PaddlePaddle/VisualDL ``` -- [PyPi](https://pypi.org/project/livelossplot) (πŸ“₯ 19K / month Β· πŸ“¦ 16 Β· ⏱️ 03.01.2025): +- [PyPi](https://pypi.org/project/visualdl) (πŸ“₯ 160K / month Β· πŸ“¦ 82 Β· ⏱️ 30.10.2024): ``` - pip install livelossplot + pip install visualdl ```
-
VisualDL (πŸ₯‰26 Β· ⭐ 4.8K) - Deep Learning Visualization Toolkit. Apache-2 +
livelossplot (πŸ₯‰27 Β· ⭐ 1.3K) - Live training loss plot in Jupyter Notebook for Keras,.. MIT -- [GitHub](https://github.com/PaddlePaddle/VisualDL) (πŸ‘¨β€πŸ’» 36 Β· πŸ”€ 630 Β· πŸ“₯ 510 Β· πŸ“¦ 2 Β· πŸ“‹ 510 - 30% open Β· ⏱️ 22.01.2025): +- [GitHub](https://github.com/stared/livelossplot) (πŸ‘¨β€πŸ’» 17 Β· πŸ”€ 140 Β· πŸ“¦ 1.8K Β· πŸ“‹ 79 - 7% open Β· ⏱️ 03.01.2025): ``` - git clone https://github.com/PaddlePaddle/VisualDL + git clone https://github.com/stared/livelossplot ``` -- [PyPi](https://pypi.org/project/visualdl) (πŸ“₯ 170K / month Β· πŸ“¦ 82 Β· ⏱️ 30.10.2024): +- [PyPi](https://pypi.org/project/livelossplot) (πŸ“₯ 20K / month Β· πŸ“¦ 16 Β· ⏱️ 03.01.2025): ``` - pip install visualdl + pip install livelossplot ```
-
Labml (πŸ₯‰26 Β· ⭐ 2.1K) - Monitor deep learning model training and hardware usage from your mobile.. MIT +
Labml (πŸ₯‰26 Β· ⭐ 2.2K) - Monitor deep learning model training and hardware usage from your mobile.. MIT - [GitHub](https://github.com/labmlai/labml) (πŸ‘¨β€πŸ’» 9 Β· πŸ”€ 140 Β· πŸ“¦ 220 Β· πŸ“‹ 50 - 12% open Β· ⏱️ 10.04.2025): ``` git clone https://github.com/labmlai/labml ``` -- [PyPi](https://pypi.org/project/labml) (πŸ“₯ 4.7K / month Β· πŸ“¦ 14 Β· ⏱️ 15.09.2024): +- [PyPi](https://pypi.org/project/labml) (πŸ“₯ 5.1K / month Β· πŸ“¦ 14 Β· ⏱️ 15.09.2024): ``` pip install labml ```
quinn (πŸ₯‰26 Β· ⭐ 670) - pyspark methods to enhance developer productivity. Apache-2 -- [GitHub](https://github.com/mrpowers-io/quinn) (πŸ‘¨β€πŸ’» 31 Β· πŸ”€ 98 Β· πŸ“₯ 57 Β· πŸ“¦ 91 Β· πŸ“‹ 130 - 27% open Β· ⏱️ 06.12.2024): +- [GitHub](https://github.com/mrpowers-io/quinn) (πŸ‘¨β€πŸ’» 31 Β· πŸ”€ 97 Β· πŸ“₯ 57 Β· πŸ“¦ 91 Β· πŸ“‹ 130 - 27% open Β· ⏱️ 06.12.2024): ``` git clone https://github.com/MrPowers/quinn ``` -- [PyPi](https://pypi.org/project/quinn) (πŸ“₯ 650K / month Β· πŸ“¦ 7 Β· ⏱️ 13.02.2024): +- [PyPi](https://pypi.org/project/quinn) (πŸ“₯ 670K / month Β· πŸ“¦ 7 Β· ⏱️ 13.02.2024): ``` pip install quinn ``` @@ -5334,12 +5349,12 @@ _Libraries to organize, track, and visualize machine learning experiments._
gokart (πŸ₯‰25 Β· ⭐ 320) - Gokart solves reproducibility, task dependencies, constraints of good code,.. MIT -- [GitHub](https://github.com/m3dev/gokart) (πŸ‘¨β€πŸ’» 47 Β· πŸ”€ 62 Β· πŸ“¦ 84 Β· πŸ“‹ 98 - 32% open Β· ⏱️ 06.04.2025): +- [GitHub](https://github.com/m3dev/gokart) (πŸ‘¨β€πŸ’» 47 Β· πŸ”€ 62 Β· πŸ“¦ 84 Β· πŸ“‹ 99 - 32% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/m3dev/gokart ``` -- [PyPi](https://pypi.org/project/gokart) (πŸ“₯ 5.6K / month Β· πŸ“¦ 8 Β· ⏱️ 27.02.2025): +- [PyPi](https://pypi.org/project/gokart) (πŸ“₯ 6K / month Β· πŸ“¦ 8 Β· ⏱️ 27.02.2025): ``` pip install gokart ``` @@ -5356,14 +5371,14 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install keepsake ```
-
CometML (πŸ₯‰15) - Supercharging Machine Learning. MIT +
CometML (πŸ₯‰16) - Supercharging Machine Learning. MIT - [GitHub](): ``` git clone https://github.com/comet-ml/examples ``` -- [PyPi](https://pypi.org/project/comet_ml) (πŸ“₯ 400K / month Β· πŸ“¦ 92 Β· ⏱️ 02.04.2025): +- [PyPi](https://pypi.org/project/comet_ml) (πŸ“₯ 520K / month Β· πŸ“¦ 94 Β· ⏱️ 17.04.2025): ``` pip install comet_ml ``` @@ -5389,7 +5404,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ - steppy (πŸ₯‰17 Β· ⭐ 130 Β· πŸ’€) - Lightweight, Python library for fast and reproducible experimentation. MIT - caliban (πŸ₯‰16 Β· ⭐ 500 Β· πŸ’€) - Research workflows made easy, locally and in the Cloud. Apache-2 - ModelChimp (πŸ₯‰13 Β· ⭐ 130 Β· πŸ’€) - Experiment tracking for machine and deep learning projects. BSD-2 -- traintool (πŸ₯‰9 Β· ⭐ 12 Β· πŸ’€) - Train off-the-shelf machine learning models in one.. Apache-2 +- traintool (πŸ₯‰10 Β· ⭐ 12 Β· πŸ’€) - Train off-the-shelf machine learning models in one.. Apache-2

@@ -5401,72 +5416,72 @@ _Libraries to serialize models to files, convert between a variety of model form
triton (πŸ₯‡43 Β· ⭐ 15K) - Development repository for the Triton language and compiler. MIT -- [GitHub](https://github.com/triton-lang/triton) (πŸ‘¨β€πŸ’» 390 Β· πŸ”€ 1.9K Β· πŸ“¦ 62K Β· πŸ“‹ 1.7K - 42% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/triton-lang/triton) (πŸ‘¨β€πŸ’» 390 Β· πŸ”€ 1.9K Β· πŸ“¦ 63K Β· πŸ“‹ 1.7K - 42% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/openai/triton ``` -- [PyPi](https://pypi.org/project/triton) (πŸ“₯ 22M / month Β· πŸ“¦ 400 Β· ⏱️ 09.04.2025): +- [PyPi](https://pypi.org/project/triton) (πŸ“₯ 23M / month Β· πŸ“¦ 400 Β· ⏱️ 09.04.2025): ``` pip install triton ```
onnx (πŸ₯‡42 Β· ⭐ 19K) - Open standard for machine learning interoperability. Apache-2 -- [GitHub](https://github.com/onnx/onnx) (πŸ‘¨β€πŸ’» 340 Β· πŸ”€ 3.7K Β· πŸ“₯ 23K Β· πŸ“¦ 44K Β· πŸ“‹ 3K - 11% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/onnx/onnx) (πŸ‘¨β€πŸ’» 340 Β· πŸ”€ 3.7K Β· πŸ“₯ 23K Β· πŸ“¦ 44K Β· πŸ“‹ 3K - 11% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/onnx/onnx ``` -- [PyPi](https://pypi.org/project/onnx) (πŸ“₯ 6.9M / month Β· πŸ“¦ 1.3K Β· ⏱️ 01.10.2024): +- [PyPi](https://pypi.org/project/onnx) (πŸ“₯ 7M / month Β· πŸ“¦ 1.3K Β· ⏱️ 01.10.2024): ``` pip install onnx ``` -- [Conda](https://anaconda.org/conda-forge/onnx) (πŸ“₯ 1.7M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/onnx) (πŸ“₯ 1.7M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge onnx ```
huggingface_hub (πŸ₯ˆ38 Β· ⭐ 2.5K) - The official Python client for the Huggingface Hub. Apache-2 -- [GitHub](https://github.com/huggingface/huggingface_hub) (πŸ‘¨β€πŸ’» 230 Β· πŸ”€ 670 Β· πŸ“‹ 1.1K - 14% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/huggingface/huggingface_hub) (πŸ‘¨β€πŸ’» 230 Β· πŸ”€ 670 Β· πŸ“‹ 1.1K - 14% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/huggingface/huggingface_hub ``` -- [PyPi](https://pypi.org/project/huggingface_hub) (πŸ“₯ 76M / month Β· πŸ“¦ 2.8K Β· ⏱️ 08.04.2025): +- [PyPi](https://pypi.org/project/huggingface_hub) (πŸ“₯ 79M / month Β· πŸ“¦ 2.8K Β· ⏱️ 08.04.2025): ``` pip install huggingface_hub ``` -- [Conda](https://anaconda.org/conda-forge/huggingface_hub) (πŸ“₯ 3M Β· ⏱️ 08.04.2025): +- [Conda](https://anaconda.org/conda-forge/huggingface_hub) (πŸ“₯ 3.1M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge huggingface_hub ```
BentoML (πŸ₯ˆ35 Β· ⭐ 7.6K) - The easiest way to serve AI apps and models - Build Model Inference.. Apache-2 -- [GitHub](https://github.com/bentoml/BentoML) (πŸ‘¨β€πŸ’» 240 Β· πŸ”€ 830 Β· πŸ“₯ 460 Β· πŸ“¦ 2.6K Β· πŸ“‹ 1.1K - 12% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/bentoml/BentoML) (πŸ‘¨β€πŸ’» 250 Β· πŸ”€ 840 Β· πŸ“₯ 470 Β· πŸ“¦ 2.6K Β· πŸ“‹ 1.1K - 12% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/bentoml/BentoML ``` -- [PyPi](https://pypi.org/project/bentoml) (πŸ“₯ 110K / month Β· πŸ“¦ 39 Β· ⏱️ 17.04.2025): +- [PyPi](https://pypi.org/project/bentoml) (πŸ“₯ 110K / month Β· πŸ“¦ 40 Β· ⏱️ 22.04.2025): ``` pip install bentoml ```
Core ML Tools (πŸ₯ˆ35 Β· ⭐ 4.7K) - Core ML tools contain supporting tools for Core ML model.. BSD-3 -- [GitHub](https://github.com/apple/coremltools) (πŸ‘¨β€πŸ’» 190 Β· πŸ”€ 660 Β· πŸ“₯ 14K Β· πŸ“¦ 4.7K Β· πŸ“‹ 1.5K - 24% open Β· ⏱️ 28.03.2025): +- [GitHub](https://github.com/apple/coremltools) (πŸ‘¨β€πŸ’» 190 Β· πŸ”€ 660 Β· πŸ“₯ 14K Β· πŸ“¦ 4.8K Β· πŸ“‹ 1.5K - 24% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/apple/coremltools ``` -- [PyPi](https://pypi.org/project/coremltools) (πŸ“₯ 350K / month Β· πŸ“¦ 87 Β· ⏱️ 21.01.2025): +- [PyPi](https://pypi.org/project/coremltools) (πŸ“₯ 420K / month Β· πŸ“¦ 87 Β· ⏱️ 21.01.2025): ``` pip install coremltools ``` -- [Conda](https://anaconda.org/conda-forge/coremltools) (πŸ“₯ 94K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/coremltools) (πŸ“₯ 95K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge coremltools ``` @@ -5478,7 +5493,7 @@ _Libraries to serialize models to files, convert between a variety of model form ``` git clone https://github.com/pytorch/serve ``` -- [PyPi](https://pypi.org/project/torchserve) (πŸ“₯ 93K / month Β· πŸ“¦ 24 Β· ⏱️ 30.09.2024): +- [PyPi](https://pypi.org/project/torchserve) (πŸ“₯ 91K / month Β· πŸ“¦ 24 Β· ⏱️ 30.09.2024): ``` pip install torchserve ``` @@ -5491,34 +5506,34 @@ _Libraries to serialize models to files, convert between a variety of model form docker pull pytorch/torchserve ```
-
hls4ml (πŸ₯ˆ30 Β· ⭐ 1.4K) - Machine learning on FPGAs using HLS. Apache-2 +
hls4ml (πŸ₯ˆ30 Β· ⭐ 1.5K) - Machine learning on FPGAs using HLS. Apache-2 - [GitHub](https://github.com/fastmachinelearning/hls4ml) (πŸ‘¨β€πŸ’» 68 Β· πŸ”€ 440 Β· πŸ“¦ 47 Β· πŸ“‹ 470 - 42% open Β· ⏱️ 16.04.2025): ``` git clone https://github.com/fastmachinelearning/hls4ml ``` -- [PyPi](https://pypi.org/project/hls4ml) (πŸ“₯ 2.4K / month Β· πŸ“¦ 1 Β· ⏱️ 17.03.2025): +- [PyPi](https://pypi.org/project/hls4ml) (πŸ“₯ 2.3K / month Β· πŸ“¦ 1 Β· ⏱️ 17.03.2025): ``` pip install hls4ml ``` -- [Conda](https://anaconda.org/conda-forge/hls4ml) (πŸ“₯ 10K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/hls4ml) (πŸ“₯ 10K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge hls4ml ```
Hummingbird (πŸ₯ˆ25 Β· ⭐ 3.4K) - Hummingbird compiles trained ML models into tensor computation for.. MIT -- [GitHub](https://github.com/microsoft/hummingbird) (πŸ‘¨β€πŸ’» 40 Β· πŸ”€ 280 Β· πŸ“₯ 800 Β· πŸ“‹ 330 - 20% open Β· ⏱️ 24.10.2024): +- [GitHub](https://github.com/microsoft/hummingbird) (πŸ‘¨β€πŸ’» 40 Β· πŸ”€ 280 Β· πŸ“₯ 810 Β· πŸ“‹ 330 - 20% open Β· ⏱️ 24.10.2024): ``` git clone https://github.com/microsoft/hummingbird ``` -- [PyPi](https://pypi.org/project/hummingbird-ml) (πŸ“₯ 8.4K / month Β· πŸ“¦ 7 Β· ⏱️ 25.10.2024): +- [PyPi](https://pypi.org/project/hummingbird-ml) (πŸ“₯ 8.6K / month Β· πŸ“¦ 7 Β· ⏱️ 25.10.2024): ``` pip install hummingbird-ml ``` -- [Conda](https://anaconda.org/conda-forge/hummingbird-ml) (πŸ“₯ 57K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/hummingbird-ml) (πŸ“₯ 58K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge hummingbird-ml ``` @@ -5542,7 +5557,7 @@ _Libraries to serialize models to files, convert between a variety of model form ``` git clone https://github.com/riga/tfdeploy ``` -- [PyPi](https://pypi.org/project/tfdeploy) (πŸ“₯ 620 / month Β· ⏱️ 30.03.2017): +- [PyPi](https://pypi.org/project/tfdeploy) (πŸ“₯ 730 / month Β· ⏱️ 30.03.2017): ``` pip install tfdeploy ``` @@ -5570,46 +5585,46 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin
shap (πŸ₯‡42 Β· ⭐ 24K) - A game theoretic approach to explain the output of any machine learning model. MIT -- [GitHub](https://github.com/shap/shap) (πŸ‘¨β€πŸ’» 260 Β· πŸ”€ 3.3K Β· πŸ“¦ 29K Β· πŸ“‹ 2.6K - 25% open Β· ⏱️ 15.04.2025): +- [GitHub](https://github.com/shap/shap) (πŸ‘¨β€πŸ’» 270 Β· πŸ”€ 3.4K Β· πŸ“¦ 30K Β· πŸ“‹ 2.6K - 25% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/slundberg/shap ``` -- [PyPi](https://pypi.org/project/shap) (πŸ“₯ 7.2M / month Β· πŸ“¦ 930 Β· ⏱️ 22.03.2025): +- [PyPi](https://pypi.org/project/shap) (πŸ“₯ 7.4M / month Β· πŸ“¦ 960 Β· ⏱️ 17.04.2025): ``` pip install shap ``` -- [Conda](https://anaconda.org/conda-forge/shap) (πŸ“₯ 5.7M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/shap) (πŸ“₯ 5.8M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge shap ```
-
Netron (πŸ₯‡36 Β· ⭐ 30K) - Visualizer for neural network, deep learning and machine learning.. MIT +
arviz (πŸ₯‡36 Β· ⭐ 1.7K) - Exploratory analysis of Bayesian models with Python. Apache-2 -- [GitHub](https://github.com/lutzroeder/netron) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 2.9K Β· πŸ“₯ 24K Β· πŸ“¦ 13 Β· πŸ“‹ 1.2K - 1% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/arviz-devs/arviz) (πŸ‘¨β€πŸ’» 170 Β· πŸ”€ 430 Β· πŸ“₯ 180 Β· πŸ“¦ 10K Β· πŸ“‹ 890 - 21% open Β· ⏱️ 22.04.2025): ``` - git clone https://github.com/lutzroeder/netron + git clone https://github.com/arviz-devs/arviz ``` -- [PyPi](https://pypi.org/project/netron) (πŸ“₯ 41K / month Β· πŸ“¦ 86 Β· ⏱️ 16.04.2025): +- [PyPi](https://pypi.org/project/arviz) (πŸ“₯ 2M / month Β· πŸ“¦ 360 Β· ⏱️ 06.03.2025): ``` - pip install netron + pip install arviz + ``` +- [Conda](https://anaconda.org/conda-forge/arviz) (πŸ“₯ 2.3M Β· ⏱️ 22.04.2025): + ``` + conda install -c conda-forge arviz ```
-
arviz (πŸ₯‡36 Β· ⭐ 1.7K) - Exploratory analysis of Bayesian models with Python. Apache-2 +
Netron (πŸ₯‡35 Β· ⭐ 30K) - Visualizer for neural network, deep learning and machine learning.. MIT -- [GitHub](https://github.com/arviz-devs/arviz) (πŸ‘¨β€πŸ’» 170 Β· πŸ”€ 430 Β· πŸ“₯ 180 Β· πŸ“¦ 10K Β· πŸ“‹ 890 - 21% open Β· ⏱️ 14.04.2025): +- [GitHub](https://github.com/lutzroeder/netron) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 2.9K Β· πŸ“₯ 50K Β· πŸ“¦ 13 Β· πŸ“‹ 1.2K - 1% open Β· ⏱️ 23.04.2025): ``` - git clone https://github.com/arviz-devs/arviz - ``` -- [PyPi](https://pypi.org/project/arviz) (πŸ“₯ 1.9M / month Β· πŸ“¦ 360 Β· ⏱️ 06.03.2025): - ``` - pip install arviz + git clone https://github.com/lutzroeder/netron ``` -- [Conda](https://anaconda.org/conda-forge/arviz) (πŸ“₯ 2.3M Β· ⏱️ 25.03.2025): +- [PyPi](https://pypi.org/project/netron) (πŸ“₯ 43K / month Β· πŸ“¦ 86 Β· ⏱️ 16.04.2025): ``` - conda install -c conda-forge arviz + pip install netron ```
InterpretML (πŸ₯‡34 Β· ⭐ 6.5K) - Fit interpretable models. Explain blackbox machine learning. MIT @@ -5635,14 +5650,14 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin ``` pip install captum ``` -- [Conda](https://anaconda.org/conda-forge/captum) (πŸ“₯ 120K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/captum) (πŸ“₯ 120K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge captum ```
shapash (πŸ₯ˆ31 Β· ⭐ 2.9K) - Shapash: User-friendly Explainability and Interpretability to.. Apache-2 -- [GitHub](https://github.com/MAIF/shapash) (πŸ‘¨β€πŸ’» 40 Β· πŸ”€ 340 Β· πŸ“¦ 190 Β· πŸ“‹ 230 - 18% open Β· ⏱️ 20.03.2025): +- [GitHub](https://github.com/MAIF/shapash) (πŸ‘¨β€πŸ’» 41 Β· πŸ”€ 340 Β· πŸ“¦ 190 Β· πŸ“‹ 230 - 18% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/MAIF/shapash @@ -5659,11 +5674,11 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin ``` git clone https://github.com/oegedijk/explainerdashboard ``` -- [PyPi](https://pypi.org/project/explainerdashboard) (πŸ“₯ 77K / month Β· πŸ“¦ 13 Β· ⏱️ 29.12.2024): +- [PyPi](https://pypi.org/project/explainerdashboard) (πŸ“₯ 72K / month Β· πŸ“¦ 13 Β· ⏱️ 29.12.2024): ``` pip install explainerdashboard ``` -- [Conda](https://anaconda.org/conda-forge/explainerdashboard) (πŸ“₯ 64K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/explainerdashboard) (πŸ“₯ 64K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge explainerdashboard ``` @@ -5680,7 +5695,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install evaluate ```
-
fairlearn (πŸ₯ˆ30 Β· ⭐ 2K) - A Python package to assess and improve fairness of machine learning.. MIT +
fairlearn (πŸ₯ˆ30 Β· ⭐ 2.1K) - A Python package to assess and improve fairness of machine.. MIT - [GitHub](https://github.com/fairlearn/fairlearn) (πŸ‘¨β€πŸ’» 100 Β· πŸ”€ 450 Β· πŸ“¦ 3 Β· πŸ“‹ 540 - 28% open Β· ⏱️ 13.04.2025): @@ -5691,7 +5706,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin ``` pip install fairlearn ``` -- [Conda](https://anaconda.org/conda-forge/fairlearn) (πŸ“₯ 44K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/fairlearn) (πŸ“₯ 44K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge fairlearn ``` @@ -5707,23 +5722,23 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin ``` pip install pyldavis ``` -- [Conda](https://anaconda.org/conda-forge/pyldavis) (πŸ“₯ 94K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pyldavis) (πŸ“₯ 94K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pyldavis ```
DoWhy (πŸ₯ˆ28 Β· ⭐ 7.4K) - DoWhy is a Python library for causal inference that supports explicit.. MIT -- [GitHub](https://github.com/py-why/dowhy) (πŸ‘¨β€πŸ’» 100 Β· πŸ”€ 940 Β· πŸ“₯ 43 Β· πŸ“¦ 580 Β· πŸ“‹ 490 - 27% open Β· ⏱️ 05.04.2025): +- [GitHub](https://github.com/py-why/dowhy) (πŸ‘¨β€πŸ’» 100 Β· πŸ”€ 940 Β· πŸ“₯ 43 Β· πŸ“¦ 580 Β· πŸ“‹ 490 - 27% open Β· ⏱️ 21.04.2025): ``` git clone https://github.com/py-why/dowhy ``` -- [PyPi](https://pypi.org/project/dowhy) (πŸ“₯ 49K / month Β· πŸ“¦ 18 Β· ⏱️ 24.11.2024): +- [PyPi](https://pypi.org/project/dowhy) (πŸ“₯ 47K / month Β· πŸ“¦ 18 Β· ⏱️ 24.11.2024): ``` pip install dowhy ``` -- [Conda](https://anaconda.org/conda-forge/dowhy) (πŸ“₯ 42K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/dowhy) (πŸ“₯ 42K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge dowhy ``` @@ -5735,11 +5750,11 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin ``` git clone https://github.com/PAIR-code/lit ``` -- [PyPi](https://pypi.org/project/lit-nlp) (πŸ“₯ 7.5K / month Β· πŸ“¦ 3 Β· ⏱️ 20.12.2024): +- [PyPi](https://pypi.org/project/lit-nlp) (πŸ“₯ 6.9K / month Β· πŸ“¦ 3 Β· ⏱️ 20.12.2024): ``` pip install lit-nlp ``` -- [Conda](https://anaconda.org/conda-forge/lit-nlp) (πŸ“₯ 110K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/lit-nlp) (πŸ“₯ 110K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge lit-nlp ``` @@ -5755,23 +5770,23 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin ``` pip install dtreeviz ``` -- [Conda](https://anaconda.org/conda-forge/dtreeviz) (πŸ“₯ 100K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/dtreeviz) (πŸ“₯ 100K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge dtreeviz ```
Fairness 360 (πŸ₯ˆ27 Β· ⭐ 2.6K) - A comprehensive set of fairness metrics for datasets and.. Apache-2 -- [GitHub](https://github.com/Trusted-AI/AIF360) (πŸ‘¨β€πŸ’» 73 Β· πŸ”€ 840 Β· πŸ“¦ 640 Β· πŸ“‹ 300 - 65% open Β· ⏱️ 10.12.2024): +- [GitHub](https://github.com/Trusted-AI/AIF360) (πŸ‘¨β€πŸ’» 73 Β· πŸ”€ 840 Β· πŸ“¦ 650 Β· πŸ“‹ 300 - 65% open Β· ⏱️ 10.12.2024): ``` git clone https://github.com/Trusted-AI/AIF360 ``` -- [PyPi](https://pypi.org/project/aif360) (πŸ“₯ 27K / month Β· πŸ“¦ 32 Β· ⏱️ 08.04.2024): +- [PyPi](https://pypi.org/project/aif360) (πŸ“₯ 34K / month Β· πŸ“¦ 32 Β· ⏱️ 08.04.2024): ``` pip install aif360 ``` -- [Conda](https://anaconda.org/conda-forge/aif360) (πŸ“₯ 22K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/aif360) (πŸ“₯ 22K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge aif360 ``` @@ -5788,14 +5803,14 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install tensorflow-model-analysis ```
-
responsible-ai-widgets (πŸ₯‰26 Β· ⭐ 1.5K) - Responsible AI Toolbox is a suite of tools providing.. MIT +
responsible-ai-widgets (πŸ₯‰25 Β· ⭐ 1.5K) - Responsible AI Toolbox is a suite of tools providing.. MIT - [GitHub](https://github.com/microsoft/responsible-ai-toolbox) (πŸ‘¨β€πŸ’» 43 Β· πŸ”€ 390 Β· πŸ“‹ 320 - 26% open Β· ⏱️ 07.02.2025): ``` git clone https://github.com/microsoft/responsible-ai-toolbox ``` -- [PyPi](https://pypi.org/project/raiwidgets) (πŸ“₯ 9.1K / month Β· πŸ“¦ 6 Β· ⏱️ 08.07.2024): +- [PyPi](https://pypi.org/project/raiwidgets) (πŸ“₯ 9K / month Β· πŸ“¦ 6 Β· ⏱️ 08.07.2024): ``` pip install raiwidgets ``` @@ -5807,31 +5822,43 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin ``` git clone https://github.com/csinva/imodels ``` -- [PyPi](https://pypi.org/project/imodels) (πŸ“₯ 30K / month Β· πŸ“¦ 9 Β· ⏱️ 15.10.2024): +- [PyPi](https://pypi.org/project/imodels) (πŸ“₯ 33K / month Β· πŸ“¦ 9 Β· ⏱️ 15.10.2024): ``` pip install imodels ```
+
Explainability 360 (πŸ₯‰24 Β· ⭐ 1.7K) - Interpretability and explainability of data and.. Apache-2 + +- [GitHub](https://github.com/Trusted-AI/AIX360) (πŸ‘¨β€πŸ’» 42 Β· πŸ”€ 300 Β· πŸ“¦ 120 Β· πŸ“‹ 86 - 62% open Β· ⏱️ 26.02.2025): + + ``` + git clone https://github.com/Trusted-AI/AIX360 + ``` +- [PyPi](https://pypi.org/project/aix360) (πŸ“₯ 1.1K / month Β· πŸ“¦ 1 Β· ⏱️ 31.07.2023): + ``` + pip install aix360 + ``` +
keract (πŸ₯‰24 Β· ⭐ 1.1K) - Layers Outputs and Gradients in Keras. Made easy. MIT -- [GitHub](https://github.com/philipperemy/keract) (πŸ‘¨β€πŸ’» 17 Β· πŸ”€ 190 Β· πŸ“¦ 240 Β· πŸ“‹ 89 - 3% open Β· ⏱️ 07.04.2025): +- [GitHub](https://github.com/philipperemy/keract) (πŸ‘¨β€πŸ’» 17 Β· πŸ”€ 190 Β· πŸ“¦ 250 Β· πŸ“‹ 89 - 3% open Β· ⏱️ 07.04.2025): ``` git clone https://github.com/philipperemy/keract ``` -- [PyPi](https://pypi.org/project/keract) (πŸ“₯ 7K / month Β· πŸ“¦ 7 Β· ⏱️ 07.04.2025): +- [PyPi](https://pypi.org/project/keract) (πŸ“₯ 6.5K / month Β· πŸ“¦ 7 Β· ⏱️ 07.04.2025): ``` pip install keract ```
-
aequitas (πŸ₯‰24 Β· ⭐ 710) - Bias Auditing & Fair ML Toolkit. MIT +
aequitas (πŸ₯‰24 Β· ⭐ 720) - Bias Auditing & Fair ML Toolkit. MIT - [GitHub](https://github.com/dssg/aequitas) (πŸ‘¨β€πŸ’» 23 Β· πŸ”€ 120 Β· πŸ“¦ 190 Β· πŸ“‹ 99 - 51% open Β· ⏱️ 25.03.2025): ``` git clone https://github.com/dssg/aequitas ``` -- [PyPi](https://pypi.org/project/aequitas) (πŸ“₯ 24K / month Β· πŸ“¦ 8 Β· ⏱️ 30.01.2024): +- [PyPi](https://pypi.org/project/aequitas) (πŸ“₯ 23K / month Β· πŸ“¦ 8 Β· ⏱️ 30.01.2024): ``` pip install aequitas ``` @@ -5843,27 +5870,15 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin ``` git clone https://github.com/jalammar/ecco ``` -- [PyPi](https://pypi.org/project/ecco) (πŸ“₯ 970 / month Β· πŸ“¦ 1 Β· ⏱️ 09.01.2022): +- [PyPi](https://pypi.org/project/ecco) (πŸ“₯ 1.1K / month Β· πŸ“¦ 1 Β· ⏱️ 09.01.2022): ``` pip install ecco ``` -- [Conda](https://anaconda.org/conda-forge/ecco) (πŸ“₯ 6.6K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/ecco) (πŸ“₯ 6.6K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge ecco ```
-
Explainability 360 (πŸ₯‰23 Β· ⭐ 1.7K) - Interpretability and explainability of data and.. Apache-2 - -- [GitHub](https://github.com/Trusted-AI/AIX360) (πŸ‘¨β€πŸ’» 42 Β· πŸ”€ 300 Β· πŸ“¦ 120 Β· πŸ“‹ 86 - 62% open Β· ⏱️ 26.02.2025): - - ``` - git clone https://github.com/Trusted-AI/AIX360 - ``` -- [PyPi](https://pypi.org/project/aix360) (πŸ“₯ 1K / month Β· πŸ“¦ 1 Β· ⏱️ 31.07.2023): - ``` - pip install aix360 - ``` -
random-forest-importances (πŸ₯‰22 Β· ⭐ 610) - Code to compute permutation and drop-column.. MIT - [GitHub](https://github.com/parrt/random-forest-importances) (πŸ‘¨β€πŸ’» 16 Β· πŸ”€ 130 Β· πŸ“¦ 180 Β· πŸ“‹ 39 - 20% open Β· ⏱️ 24.03.2025): @@ -5871,7 +5886,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin ``` git clone https://github.com/parrt/random-forest-importances ``` -- [PyPi](https://pypi.org/project/rfpimp) (πŸ“₯ 12K / month Β· πŸ“¦ 5 Β· ⏱️ 28.01.2021): +- [PyPi](https://pypi.org/project/rfpimp) (πŸ“₯ 13K / month Β· πŸ“¦ 5 Β· ⏱️ 28.01.2021): ``` pip install rfpimp ``` @@ -5890,24 +5905,24 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin
LOFO (πŸ₯‰20 Β· ⭐ 830) - Leave One Feature Out Importance. MIT -- [GitHub](https://github.com/aerdem4/lofo-importance) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 87 Β· πŸ“¦ 38 Β· πŸ“‹ 30 - 13% open Β· ⏱️ 14.02.2025): +- [GitHub](https://github.com/aerdem4/lofo-importance) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 87 Β· πŸ“¦ 40 Β· πŸ“‹ 30 - 13% open Β· ⏱️ 14.02.2025): ``` git clone https://github.com/aerdem4/lofo-importance ``` -- [PyPi](https://pypi.org/project/lofo-importance) (πŸ“₯ 2.1K / month Β· πŸ“¦ 5 Β· ⏱️ 14.02.2025): +- [PyPi](https://pypi.org/project/lofo-importance) (πŸ“₯ 2.4K / month Β· πŸ“¦ 5 Β· ⏱️ 14.02.2025): ``` pip install lofo-importance ```
-
fairness-indicators (πŸ₯‰18 Β· ⭐ 350) - Tensorflows Fairness Evaluation and Visualization.. Apache-2 +
fairness-indicators (πŸ₯‰19 Β· ⭐ 350) - Tensorflows Fairness Evaluation and Visualization.. Apache-2 - [GitHub](https://github.com/tensorflow/fairness-indicators) (πŸ‘¨β€πŸ’» 36 Β· πŸ”€ 81 Β· πŸ“‹ 39 - 74% open Β· ⏱️ 22.01.2025): ``` git clone https://github.com/tensorflow/fairness-indicators ``` -- [PyPi](https://pypi.org/project/fairness-indicators) (πŸ“₯ 2.1K / month Β· ⏱️ 22.01.2025): +- [PyPi](https://pypi.org/project/fairness-indicators) (πŸ“₯ 2.8K / month Β· ⏱️ 22.01.2025): ``` pip install fairness-indicators ``` @@ -5919,7 +5934,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin ``` git clone https://github.com/explainX/explainx ``` -- [PyPi](https://pypi.org/project/explainx) (πŸ“₯ 1.3K / month Β· ⏱️ 04.02.2021): +- [PyPi](https://pypi.org/project/explainx) (πŸ“₯ 1.6K / month Β· ⏱️ 04.02.2021): ``` pip install explainx ``` @@ -5935,8 +5950,8 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin - iNNvestigate (πŸ₯ˆ27 Β· ⭐ 1.3K Β· πŸ’€) - A toolbox to iNNvestigate neural networks predictions!. BSD-2 - Alibi (πŸ₯‰26 Β· ⭐ 2.5K) - Algorithms for explaining machine learning models. ❗️Intel - Lucid (πŸ₯‰25 Β· ⭐ 4.7K Β· πŸ’€) - A collection of infrastructure and tools for research in.. Apache-2 -- keras-vis (πŸ₯‰25 Β· ⭐ 3K Β· πŸ’€) - Neural network visualization toolkit for keras. MIT - checklist (πŸ₯‰25 Β· ⭐ 2K Β· πŸ’€) - Beyond Accuracy: Behavioral Testing of NLP models with CheckList. MIT +- keras-vis (πŸ₯‰24 Β· ⭐ 3K Β· πŸ’€) - Neural network visualization toolkit for keras. MIT - CausalNex (πŸ₯‰24 Β· ⭐ 2.3K Β· πŸ’€) - A Python library that helps data scientists to infer.. Apache-2 - What-If Tool (πŸ₯‰23 Β· ⭐ 950 Β· πŸ’€) - Source code/webpage/demos for the What-If Tool. Apache-2 - TreeInterpreter (πŸ₯‰23 Β· ⭐ 760 Β· πŸ’€) - Package for interpreting scikit-learns decision tree.. BSD-3 @@ -5946,7 +5961,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin - tcav (πŸ₯‰20 Β· ⭐ 640 Β· πŸ’€) - Code for the TCAV ML interpretability project. Apache-2 - XAI (πŸ₯‰19 Β· ⭐ 1.2K Β· πŸ’€) - XAI - An eXplainability toolbox for machine learning. MIT - model-card-toolkit (πŸ₯‰18 Β· ⭐ 430 Β· πŸ’€) - A toolkit that streamlines and automates the.. Apache-2 -- effector (πŸ₯‰18 Β· ⭐ 84) - Effector - a Python package for global and regional effect methods. MIT +- effector (πŸ₯‰18 Β· ⭐ 86) - Effector - a Python package for global and regional effect methods. MIT - sklearn-evaluation (πŸ₯‰17 Β· ⭐ 460 Β· πŸ’€) - Machine learning model evaluation made easy: plots,.. MIT - Anchor (πŸ₯‰16 Β· ⭐ 800 Β· πŸ’€) - Code for High-Precision Model-Agnostic Explanations paper. BSD-2 - FlashTorch (πŸ₯‰16 Β· ⭐ 740 Β· πŸ’€) - Visualization toolkit for neural networks in PyTorch! Demo --. MIT @@ -5968,32 +5983,32 @@ _Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarit
Milvus (πŸ₯‡42 Β· ⭐ 34K) - Milvus is a high-performance, cloud-native vector database built for.. Apache-2 -- [GitHub](https://github.com/milvus-io/milvus) (πŸ‘¨β€πŸ’» 310 Β· πŸ”€ 3.2K Β· πŸ“₯ 340K Β· πŸ“‹ 13K - 5% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/milvus-io/milvus) (πŸ‘¨β€πŸ’» 310 Β· πŸ”€ 3.2K Β· πŸ“₯ 340K Β· πŸ“‹ 13K - 5% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/milvus-io/milvus ``` -- [PyPi](https://pypi.org/project/pymilvus) (πŸ“₯ 1.8M / month Β· πŸ“¦ 240 Β· ⏱️ 21.03.2025): +- [PyPi](https://pypi.org/project/pymilvus) (πŸ“₯ 1.8M / month Β· πŸ“¦ 250 Β· ⏱️ 23.04.2025): ``` pip install pymilvus ``` -- [Docker Hub](https://hub.docker.com/r/milvusdb/milvus) (πŸ“₯ 68M Β· ⭐ 78 Β· ⏱️ 17.04.2025): +- [Docker Hub](https://hub.docker.com/r/milvusdb/milvus) (πŸ“₯ 69M Β· ⭐ 78 Β· ⏱️ 24.04.2025): ``` docker pull milvusdb/milvus ```
-
Faiss (πŸ₯‡41 Β· ⭐ 34K) - A library for efficient similarity search and clustering of dense vectors. MIT +
Faiss (πŸ₯‡41 Β· ⭐ 35K) - A library for efficient similarity search and clustering of dense vectors. MIT -- [GitHub](https://github.com/facebookresearch/faiss) (πŸ‘¨β€πŸ’» 220 Β· πŸ”€ 3.8K Β· πŸ“¦ 4.7K Β· πŸ“‹ 2.6K - 9% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/facebookresearch/faiss) (πŸ‘¨β€πŸ’» 220 Β· πŸ”€ 3.8K Β· πŸ“¦ 4.7K Β· πŸ“‹ 2.6K - 9% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/facebookresearch/faiss ``` -- [PyPi](https://pypi.org/project/pymilvus) (πŸ“₯ 1.8M / month Β· πŸ“¦ 240 Β· ⏱️ 21.03.2025): +- [PyPi](https://pypi.org/project/pymilvus) (πŸ“₯ 1.8M / month Β· πŸ“¦ 250 Β· ⏱️ 23.04.2025): ``` pip install pymilvus ``` -- [Conda](https://anaconda.org/conda-forge/faiss) (πŸ“₯ 2.4M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/faiss) (πŸ“₯ 2.5M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge faiss ``` @@ -6005,59 +6020,59 @@ _Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarit ``` git clone https://github.com/spotify/annoy ``` -- [PyPi](https://pypi.org/project/annoy) (πŸ“₯ 780K / month Β· πŸ“¦ 200 Β· ⏱️ 14.06.2023): +- [PyPi](https://pypi.org/project/annoy) (πŸ“₯ 800K / month Β· πŸ“¦ 200 Β· ⏱️ 14.06.2023): ``` pip install annoy ``` -- [Conda](https://anaconda.org/conda-forge/python-annoy) (πŸ“₯ 670K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/python-annoy) (πŸ“₯ 670K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge python-annoy ```
-
hnswlib (πŸ₯ˆ32 Β· ⭐ 4.6K Β· πŸ’€) - Header-only C++/python library for fast approximate nearest.. Apache-2 +
hnswlib (πŸ₯ˆ32 Β· ⭐ 4.7K Β· πŸ’€) - Header-only C++/python library for fast approximate nearest.. Apache-2 - [GitHub](https://github.com/nmslib/hnswlib) (πŸ‘¨β€πŸ’» 72 Β· πŸ”€ 680 Β· πŸ“¦ 7.9K Β· πŸ“‹ 420 - 60% open Β· ⏱️ 17.06.2024): ``` git clone https://github.com/nmslib/hnswlib ``` -- [PyPi](https://pypi.org/project/hnswlib) (πŸ“₯ 490K / month Β· πŸ“¦ 130 Β· ⏱️ 03.12.2023): +- [PyPi](https://pypi.org/project/hnswlib) (πŸ“₯ 480K / month Β· πŸ“¦ 130 Β· ⏱️ 03.12.2023): ``` pip install hnswlib ``` -- [Conda](https://anaconda.org/conda-forge/hnswlib) (πŸ“₯ 340K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/hnswlib) (πŸ“₯ 350K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge hnswlib ```
NMSLIB (πŸ₯ˆ31 Β· ⭐ 3.5K Β· πŸ’€) - Non-Metric Space Library (NMSLIB): An efficient similarity search.. Apache-2 -- [GitHub](https://github.com/nmslib/nmslib) (πŸ‘¨β€πŸ’» 49 Β· πŸ”€ 460 Β· πŸ“¦ 1.3K Β· πŸ“‹ 440 - 21% open Β· ⏱️ 21.09.2024): +- [GitHub](https://github.com/nmslib/nmslib) (πŸ‘¨β€πŸ’» 49 Β· πŸ”€ 460 Β· πŸ“¦ 1.4K Β· πŸ“‹ 440 - 21% open Β· ⏱️ 21.09.2024): ``` git clone https://github.com/nmslib/nmslib ``` -- [PyPi](https://pypi.org/project/nmslib) (πŸ“₯ 410K / month Β· πŸ“¦ 63 Β· ⏱️ 03.02.2021): +- [PyPi](https://pypi.org/project/nmslib) (πŸ“₯ 380K / month Β· πŸ“¦ 63 Β· ⏱️ 03.02.2021): ``` pip install nmslib ``` -- [Conda](https://anaconda.org/conda-forge/nmslib) (πŸ“₯ 190K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/nmslib) (πŸ“₯ 200K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge nmslib ```
USearch (πŸ₯ˆ31 Β· ⭐ 2.7K) - Fast Open-Source Search & Clustering engine for Vectors & Strings in.. Apache-2 -- [GitHub](https://github.com/unum-cloud/usearch) (πŸ‘¨β€πŸ’» 70 Β· πŸ”€ 180 Β· πŸ“₯ 62K Β· πŸ“¦ 180 Β· πŸ“‹ 210 - 42% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/unum-cloud/usearch) (πŸ‘¨β€πŸ’» 70 Β· πŸ”€ 180 Β· πŸ“₯ 64K Β· πŸ“¦ 180 Β· πŸ“‹ 210 - 42% open Β· ⏱️ 16.04.2025): ``` git clone https://github.com/unum-cloud/usearch ``` -- [PyPi](https://pypi.org/project/usearch) (πŸ“₯ 160K / month Β· πŸ“¦ 35 Β· ⏱️ 16.04.2025): +- [PyPi](https://pypi.org/project/usearch) (πŸ“₯ 180K / month Β· πŸ“¦ 35 Β· ⏱️ 16.04.2025): ``` pip install usearch ``` -- [npm](https://www.npmjs.com/package/usearch) (πŸ“₯ 9.8K / month Β· πŸ“¦ 15 Β· ⏱️ 23.01.2025): +- [npm](https://www.npmjs.com/package/usearch) (πŸ“₯ 9.2K / month Β· πŸ“¦ 15 Β· ⏱️ 23.01.2025): ``` npm install usearch ``` @@ -6073,23 +6088,23 @@ _Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarit ``` git clone https://github.com/lmcinnes/pynndescent ``` -- [PyPi](https://pypi.org/project/pynndescent) (πŸ“₯ 1.7M / month Β· πŸ“¦ 160 Β· ⏱️ 17.06.2024): +- [PyPi](https://pypi.org/project/pynndescent) (πŸ“₯ 1.6M / month Β· πŸ“¦ 160 Β· ⏱️ 17.06.2024): ``` pip install pynndescent ``` -- [Conda](https://anaconda.org/conda-forge/pynndescent) (πŸ“₯ 2.3M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pynndescent) (πŸ“₯ 2.3M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pynndescent ```
NGT (πŸ₯‰24 Β· ⭐ 1.3K) - Nearest Neighbor Search with Neighborhood Graph and Tree for High-.. Apache-2 -- [GitHub](https://github.com/yahoojapan/NGT) (πŸ‘¨β€πŸ’» 18 Β· πŸ”€ 120 Β· πŸ“‹ 140 - 15% open Β· ⏱️ 09.04.2025): +- [GitHub](https://github.com/yahoojapan/NGT) (πŸ‘¨β€πŸ’» 18 Β· πŸ”€ 120 Β· πŸ“‹ 140 - 15% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/yahoojapan/NGT ``` -- [PyPi](https://pypi.org/project/ngt) (πŸ“₯ 2.9K / month Β· πŸ“¦ 12 Β· ⏱️ 26.02.2025): +- [PyPi](https://pypi.org/project/ngt) (πŸ“₯ 3.1K / month Β· πŸ“¦ 12 Β· ⏱️ 26.02.2025): ``` pip install ngt ``` @@ -6111,16 +6126,16 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes
PyMC3 (πŸ₯‡41 Β· ⭐ 9K) - Bayesian Modeling and Probabilistic Programming in Python. Apache-2 -- [GitHub](https://github.com/pymc-devs/pymc) (πŸ‘¨β€πŸ’» 510 Β· πŸ”€ 2.1K Β· πŸ“₯ 2K Β· πŸ“¦ 6.4K Β· πŸ“‹ 3.5K - 10% open Β· ⏱️ 15.04.2025): +- [GitHub](https://github.com/pymc-devs/pymc) (πŸ‘¨β€πŸ’» 510 Β· πŸ”€ 2.1K Β· πŸ“₯ 2K Β· πŸ“¦ 6.6K Β· πŸ“‹ 3.5K - 10% open Β· ⏱️ 20.04.2025): ``` git clone https://github.com/pymc-devs/pymc ``` -- [PyPi](https://pypi.org/project/pymc3) (πŸ“₯ 300K / month Β· πŸ“¦ 190 Β· ⏱️ 31.05.2024): +- [PyPi](https://pypi.org/project/pymc3) (πŸ“₯ 310K / month Β· πŸ“¦ 190 Β· ⏱️ 31.05.2024): ``` pip install pymc3 ``` -- [Conda](https://anaconda.org/conda-forge/pymc3) (πŸ“₯ 660K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pymc3) (πŸ“₯ 660K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pymc3 ``` @@ -6136,19 +6151,19 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes ``` pip install tensorflow-probability ``` -- [Conda](https://anaconda.org/conda-forge/tensorflow-probability) (πŸ“₯ 170K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/tensorflow-probability) (πŸ“₯ 170K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge tensorflow-probability ```
pgmpy (πŸ₯‡34 Β· ⭐ 2.9K) - Python Library for learning (Structure and Parameter), inference.. MIT -- [GitHub](https://github.com/pgmpy/pgmpy) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 730 Β· πŸ“₯ 600 Β· πŸ“¦ 1.5K Β· πŸ“‹ 1K - 30% open Β· ⏱️ 13.04.2025): +- [GitHub](https://github.com/pgmpy/pgmpy) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 730 Β· πŸ“₯ 600 Β· πŸ“¦ 1.6K Β· πŸ“‹ 1K - 30% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/pgmpy/pgmpy ``` -- [PyPi](https://pypi.org/project/pgmpy) (πŸ“₯ 140K / month Β· πŸ“¦ 72 Β· ⏱️ 31.03.2025): +- [PyPi](https://pypi.org/project/pgmpy) (πŸ“₯ 150K / month Β· πŸ“¦ 72 Β· ⏱️ 31.03.2025): ``` pip install pgmpy ``` @@ -6160,34 +6175,34 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes ``` git clone https://github.com/pyro-ppl/pyro ``` -- [PyPi](https://pypi.org/project/pyro-ppl) (πŸ“₯ 360K / month Β· πŸ“¦ 190 Β· ⏱️ 02.06.2024): +- [PyPi](https://pypi.org/project/pyro-ppl) (πŸ“₯ 390K / month Β· πŸ“¦ 190 Β· ⏱️ 02.06.2024): ``` pip install pyro-ppl ``` -- [Conda](https://anaconda.org/conda-forge/pyro-ppl) (πŸ“₯ 230K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pyro-ppl) (πŸ“₯ 230K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pyro-ppl ```
-
patsy (πŸ₯ˆ33 Β· ⭐ 960) - Describing statistical models in Python using symbolic formulas. BSD-2 +
patsy (πŸ₯ˆ33 Β· ⭐ 970) - Describing statistical models in Python using symbolic formulas. BSD-2 - [GitHub](https://github.com/pydata/patsy) (πŸ‘¨β€πŸ’» 22 Β· πŸ”€ 100 Β· πŸ“¦ 120K Β· πŸ“‹ 160 - 46% open Β· ⏱️ 24.02.2025): ``` git clone https://github.com/pydata/patsy ``` -- [PyPi](https://pypi.org/project/patsy) (πŸ“₯ 15M / month Β· πŸ“¦ 530 Β· ⏱️ 12.11.2024): +- [PyPi](https://pypi.org/project/patsy) (πŸ“₯ 16M / month Β· πŸ“¦ 530 Β· ⏱️ 12.11.2024): ``` pip install patsy ``` -- [Conda](https://anaconda.org/conda-forge/patsy) (πŸ“₯ 15M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/patsy) (πŸ“₯ 15M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge patsy ```
pandas-ta (πŸ₯ˆ32 Β· ⭐ 6K Β· πŸ’€) - Technical Analysis Indicators - Pandas TA is an easy to use.. MIT -- [GitHub](https://github.com/twopirllc/pandas-ta) (πŸ‘¨β€πŸ’» 45 Β· πŸ”€ 1.2K Β· πŸ“¦ 5.2K Β· πŸ“‹ 720 - 14% open Β· ⏱️ 24.06.2024): +- [GitHub](https://github.com/twopirllc/pandas-ta) (πŸ‘¨β€πŸ’» 45 Β· πŸ”€ 1.2K Β· πŸ“¦ 5.3K Β· πŸ“‹ 720 - 14% open Β· ⏱️ 24.06.2024): ``` git clone https://github.com/twopirllc/pandas-ta @@ -6196,23 +6211,23 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes ``` pip install pandas-ta ``` -- [Conda](https://anaconda.org/conda-forge/pandas-ta) (πŸ“₯ 25K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pandas-ta) (πŸ“₯ 26K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pandas-ta ```
-
GPyTorch (πŸ₯ˆ32 Β· ⭐ 3.7K) - A highly efficient implementation of Gaussian Processes in PyTorch. MIT +
GPyTorch (πŸ₯ˆ31 Β· ⭐ 3.7K) - A highly efficient implementation of Gaussian Processes in PyTorch. MIT - [GitHub](https://github.com/cornellius-gp/gpytorch) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 560 Β· πŸ“¦ 2.8K Β· πŸ“‹ 1.4K - 27% open Β· ⏱️ 07.02.2025): ``` git clone https://github.com/cornellius-gp/gpytorch ``` -- [PyPi](https://pypi.org/project/gpytorch) (πŸ“₯ 280K / month Β· πŸ“¦ 190 Β· ⏱️ 29.01.2025): +- [PyPi](https://pypi.org/project/gpytorch) (πŸ“₯ 290K / month Β· πŸ“¦ 190 Β· ⏱️ 29.01.2025): ``` pip install gpytorch ``` -- [Conda](https://anaconda.org/conda-forge/gpytorch) (πŸ“₯ 200K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/gpytorch) (πŸ“₯ 200K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge gpytorch ``` @@ -6228,7 +6243,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes ``` pip install hmmlearn ``` -- [Conda](https://anaconda.org/conda-forge/hmmlearn) (πŸ“₯ 360K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/hmmlearn) (πŸ“₯ 360K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge hmmlearn ``` @@ -6244,7 +6259,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes ``` pip install emcee ``` -- [Conda](https://anaconda.org/conda-forge/emcee) (πŸ“₯ 400K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/emcee) (πŸ“₯ 400K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge emcee ``` @@ -6260,41 +6275,41 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes ``` pip install gpflow ``` -- [Conda](https://anaconda.org/conda-forge/gpflow) (πŸ“₯ 43K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/gpflow) (πŸ“₯ 43K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge gpflow ```
-
SALib (πŸ₯‰29 Β· ⭐ 920) - Sensitivity Analysis Library in Python. Contains Sobol, Morris, FAST, and.. MIT +
bambi (πŸ₯‰28 Β· ⭐ 1.1K) - BAyesian Model-Building Interface (Bambi) in Python. MIT -- [GitHub](https://github.com/SALib/SALib) (πŸ‘¨β€πŸ’» 50 Β· πŸ”€ 240 Β· πŸ“¦ 1.5K Β· πŸ“‹ 340 - 15% open Β· ⏱️ 06.01.2025): +- [GitHub](https://github.com/bambinos/bambi) (πŸ‘¨β€πŸ’» 47 Β· πŸ”€ 130 Β· πŸ“¦ 200 Β· πŸ“‹ 440 - 20% open Β· ⏱️ 16.04.2025): ``` - git clone https://github.com/SALib/SALib + git clone https://github.com/bambinos/bambi ``` -- [PyPi](https://pypi.org/project/salib) (πŸ“₯ 260K / month Β· πŸ“¦ 130 Β· ⏱️ 19.08.2024): +- [PyPi](https://pypi.org/project/bambi) (πŸ“₯ 38K / month Β· πŸ“¦ 14 Β· ⏱️ 21.12.2024): ``` - pip install salib + pip install bambi ``` -- [Conda](https://anaconda.org/conda-forge/salib) (πŸ“₯ 210K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/bambi) (πŸ“₯ 47K Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge salib + conda install -c conda-forge bambi ```
-
bambi (πŸ₯‰28 Β· ⭐ 1.1K) - BAyesian Model-Building Interface (Bambi) in Python. MIT +
SALib (πŸ₯‰28 Β· ⭐ 920) - Sensitivity Analysis Library in Python. Contains Sobol, Morris, FAST, and.. MIT -- [GitHub](https://github.com/bambinos/bambi) (πŸ‘¨β€πŸ’» 47 Β· πŸ”€ 130 Β· πŸ“¦ 190 Β· πŸ“‹ 440 - 20% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/SALib/SALib) (πŸ‘¨β€πŸ’» 51 Β· πŸ”€ 240 Β· πŸ“¦ 1.5K Β· πŸ“‹ 340 - 15% open Β· ⏱️ 18.04.2025): ``` - git clone https://github.com/bambinos/bambi + git clone https://github.com/SALib/SALib ``` -- [PyPi](https://pypi.org/project/bambi) (πŸ“₯ 39K / month Β· πŸ“¦ 14 Β· ⏱️ 21.12.2024): +- [PyPi](https://pypi.org/project/salib) (πŸ“₯ 260K / month Β· πŸ“¦ 130 Β· ⏱️ 19.08.2024): ``` - pip install bambi + pip install salib ``` -- [Conda](https://anaconda.org/conda-forge/bambi) (πŸ“₯ 47K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/salib) (πŸ“₯ 210K Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge bambi + conda install -c conda-forge salib ```
PyStan (πŸ₯‰28 Β· ⭐ 350 Β· πŸ’€) - PyStan, a Python interface to Stan, a platform for statistical.. ISC @@ -6304,11 +6319,11 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes ``` git clone https://github.com/stan-dev/pystan ``` -- [PyPi](https://pypi.org/project/pystan) (πŸ“₯ 800K / month Β· πŸ“¦ 160 Β· ⏱️ 03.07.2024): +- [PyPi](https://pypi.org/project/pystan) (πŸ“₯ 860K / month Β· πŸ“¦ 160 Β· ⏱️ 03.07.2024): ``` pip install pystan ``` -- [Conda](https://anaconda.org/conda-forge/pystan) (πŸ“₯ 3M Β· ⏱️ 29.03.2025): +- [Conda](https://anaconda.org/conda-forge/pystan) (πŸ“₯ 3M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pystan ``` @@ -6320,27 +6335,27 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes ``` git clone https://github.com/jmschrei/pomegranate ``` -- [PyPi](https://pypi.org/project/pomegranate) (πŸ“₯ 28K / month Β· πŸ“¦ 67 Β· ⏱️ 07.02.2025): +- [PyPi](https://pypi.org/project/pomegranate) (πŸ“₯ 29K / month Β· πŸ“¦ 67 Β· ⏱️ 07.02.2025): ``` pip install pomegranate ``` -- [Conda](https://anaconda.org/conda-forge/pomegranate) (πŸ“₯ 200K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pomegranate) (πŸ“₯ 200K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pomegranate ```
scikit-posthocs (πŸ₯‰27 Β· ⭐ 360) - Multiple Pairwise Comparisons (Post Hoc) Tests in Python. MIT -- [GitHub](https://github.com/maximtrp/scikit-posthocs) (πŸ‘¨β€πŸ’» 16 Β· πŸ”€ 40 Β· πŸ“₯ 66 Β· πŸ“¦ 1.1K Β· πŸ“‹ 69 - 2% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/maximtrp/scikit-posthocs) (πŸ‘¨β€πŸ’» 16 Β· πŸ”€ 40 Β· πŸ“₯ 66 Β· πŸ“¦ 1.1K Β· πŸ“‹ 72 - 6% open Β· ⏱️ 16.04.2025): ``` git clone https://github.com/maximtrp/scikit-posthocs ``` -- [PyPi](https://pypi.org/project/scikit-posthocs) (πŸ“₯ 92K / month Β· πŸ“¦ 73 Β· ⏱️ 29.03.2025): +- [PyPi](https://pypi.org/project/scikit-posthocs) (πŸ“₯ 88K / month Β· πŸ“¦ 73 Β· ⏱️ 29.03.2025): ``` pip install scikit-posthocs ``` -- [Conda](https://anaconda.org/conda-forge/scikit-posthocs) (πŸ“₯ 1M Β· ⏱️ 29.03.2025): +- [Conda](https://anaconda.org/conda-forge/scikit-posthocs) (πŸ“₯ 1M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge scikit-posthocs ``` @@ -6352,19 +6367,19 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes ``` git clone https://github.com/uber/orbit ``` -- [PyPi](https://pypi.org/project/orbit-ml) (πŸ“₯ 11K / month Β· πŸ“¦ 1 Β· ⏱️ 01.04.2024): +- [PyPi](https://pypi.org/project/orbit-ml) (πŸ“₯ 15K / month Β· πŸ“¦ 1 Β· ⏱️ 01.04.2024): ``` pip install orbit-ml ```
TorchUncertainty (πŸ₯‰23 Β· ⭐ 380) - Open-source framework for uncertainty and deep.. Apache-2 -- [GitHub](https://github.com/ENSTA-U2IS-AI/torch-uncertainty) (πŸ‘¨β€πŸ’» 12 Β· πŸ”€ 27 Β· πŸ“‹ 49 - 26% open Β· ⏱️ 20.03.2025): +- [GitHub](https://github.com/ENSTA-U2IS-AI/torch-uncertainty) (πŸ‘¨β€πŸ’» 12 Β· πŸ”€ 28 Β· πŸ“‹ 50 - 28% open Β· ⏱️ 20.03.2025): ``` git clone https://github.com/ENSTA-U2IS-AI/torch-uncertainty ``` -- [PyPi](https://pypi.org/project/torch-uncertainty) (πŸ“₯ 1.5K / month Β· πŸ“¦ 4 Β· ⏱️ 20.03.2025): +- [PyPi](https://pypi.org/project/torch-uncertainty) (πŸ“₯ 1.4K / month Β· πŸ“¦ 4 Β· ⏱️ 20.03.2025): ``` pip install torch-uncertainty ``` @@ -6376,11 +6391,11 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes ``` git clone https://github.com/baal-org/baal ``` -- [PyPi](https://pypi.org/project/baal) (πŸ“₯ 1.7K / month Β· πŸ“¦ 2 Β· ⏱️ 11.06.2024): +- [PyPi](https://pypi.org/project/baal) (πŸ“₯ 1.8K / month Β· πŸ“¦ 2 Β· ⏱️ 11.06.2024): ``` pip install baal ``` -- [Conda](https://anaconda.org/conda-forge/baal) (πŸ“₯ 12K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/baal) (πŸ“₯ 12K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge baal ``` @@ -6392,7 +6407,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes ``` git clone https://github.com/mattjj/pyhsmm ``` -- [PyPi](https://pypi.org/project/pyhsmm) (πŸ“₯ 310 / month Β· πŸ“¦ 1 Β· ⏱️ 10.05.2017): +- [PyPi](https://pypi.org/project/pyhsmm) (πŸ“₯ 320 / month Β· πŸ“¦ 1 Β· ⏱️ 10.05.2017): ``` pip install pyhsmm ``` @@ -6413,34 +6428,34 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes _Libraries for testing the robustness of machine learning models against attacks with adversarial/malicious examples._ -
ART (πŸ₯‡33 Β· ⭐ 5.2K) - Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning.. MIT +
ART (πŸ₯‡32 Β· ⭐ 5.2K) - Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning.. MIT - [GitHub](https://github.com/Trusted-AI/adversarial-robustness-toolbox) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 1.2K Β· πŸ“¦ 710 Β· πŸ“‹ 900 - 2% open Β· ⏱️ 28.02.2025): ``` git clone https://github.com/Trusted-AI/adversarial-robustness-toolbox ``` -- [PyPi](https://pypi.org/project/adversarial-robustness-toolbox) (πŸ“₯ 27K / month Β· πŸ“¦ 20 Β· ⏱️ 22.01.2025): +- [PyPi](https://pypi.org/project/adversarial-robustness-toolbox) (πŸ“₯ 29K / month Β· πŸ“¦ 20 Β· ⏱️ 22.01.2025): ``` pip install adversarial-robustness-toolbox ``` -- [Conda](https://anaconda.org/conda-forge/adversarial-robustness-toolbox) (πŸ“₯ 70K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/adversarial-robustness-toolbox) (πŸ“₯ 70K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge adversarial-robustness-toolbox ```
-
TextAttack (πŸ₯ˆ28 Β· ⭐ 3.1K Β· πŸ’€) - TextAttack is a Python framework for adversarial attacks, data.. MIT +
TextAttack (πŸ₯ˆ29 Β· ⭐ 3.1K Β· πŸ’€) - TextAttack is a Python framework for adversarial attacks, data.. MIT -- [GitHub](https://github.com/QData/TextAttack) (πŸ‘¨β€πŸ’» 66 Β· πŸ”€ 400 Β· πŸ“¦ 370 Β· πŸ“‹ 290 - 23% open Β· ⏱️ 25.07.2024): +- [GitHub](https://github.com/QData/TextAttack) (πŸ‘¨β€πŸ’» 66 Β· πŸ”€ 400 Β· πŸ“¦ 380 Β· πŸ“‹ 290 - 23% open Β· ⏱️ 25.07.2024): ``` git clone https://github.com/QData/TextAttack ``` -- [PyPi](https://pypi.org/project/textattack) (πŸ“₯ 7.2K / month Β· πŸ“¦ 11 Β· ⏱️ 11.03.2024): +- [PyPi](https://pypi.org/project/textattack) (πŸ“₯ 8.1K / month Β· πŸ“¦ 11 Β· ⏱️ 11.03.2024): ``` pip install textattack ``` -- [Conda](https://anaconda.org/conda-forge/textattack) (πŸ“₯ 9.9K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/textattack) (πŸ“₯ 10K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge textattack ``` @@ -6448,9 +6463,9 @@ _Libraries for testing the robustness of machine learning models against attacks
Show 7 hidden projects... - CleverHans (πŸ₯ˆ30 Β· ⭐ 6.3K Β· πŸ’€) - An adversarial example library for constructing attacks,.. MIT -- Foolbox (πŸ₯ˆ28 Β· ⭐ 2.8K Β· πŸ’€) - A Python toolbox to create adversarial examples that fool neural.. MIT -- advertorch (πŸ₯‰23 Β· ⭐ 1.3K Β· πŸ’€) - A Toolbox for Adversarial Robustness Research. ❗️GPL-3.0 -- robustness (πŸ₯‰21 Β· ⭐ 930 Β· πŸ’€) - A library for experimenting with, training and evaluating neural.. MIT +- Foolbox (πŸ₯ˆ28 Β· ⭐ 2.9K Β· πŸ’€) - A Python toolbox to create adversarial examples that fool neural.. MIT +- advertorch (πŸ₯‰24 Β· ⭐ 1.3K Β· πŸ’€) - A Toolbox for Adversarial Robustness Research. ❗️GPL-3.0 +- robustness (πŸ₯‰21 Β· ⭐ 940 Β· πŸ’€) - A library for experimenting with, training and evaluating neural.. MIT - AdvBox (πŸ₯‰19 Β· ⭐ 1.4K Β· πŸ’€) - Advbox is a toolbox to generate adversarial examples that fool.. Apache-2 - textflint (πŸ₯‰17 Β· ⭐ 640 Β· πŸ’€) - Unified Multilingual Robustness Evaluation Toolkit for.. ❗️GPL-3.0 - Adversary (πŸ₯‰16 Β· ⭐ 400 Β· πŸ’€) - Tool to generate adversarial text examples and test machine.. MIT @@ -6465,28 +6480,28 @@ _Libraries that require and make use of CUDA/GPU or other accelerator hardware c
cuDF (πŸ₯‡35 Β· ⭐ 8.9K) - cuDF - GPU DataFrame Library. Apache-2 -- [GitHub](https://github.com/rapidsai/cudf) (πŸ‘¨β€πŸ’» 300 Β· πŸ”€ 940 Β· πŸ“¦ 62 Β· πŸ“‹ 6.9K - 15% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/rapidsai/cudf) (πŸ‘¨β€πŸ’» 300 Β· πŸ”€ 940 Β· πŸ“¦ 62 Β· πŸ“‹ 6.9K - 15% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/rapidsai/cudf ``` -- [PyPi](https://pypi.org/project/cudf) (πŸ“₯ 3.9K / month Β· πŸ“¦ 22 Β· ⏱️ 01.06.2020): +- [PyPi](https://pypi.org/project/cudf) (πŸ“₯ 3.7K / month Β· πŸ“¦ 22 Β· ⏱️ 01.06.2020): ``` pip install cudf ```
optimum (πŸ₯‡35 Β· ⭐ 2.9K) - Accelerate inference and training of Transformers, Diffusers, TIMM.. Apache-2 -- [GitHub](https://github.com/huggingface/optimum) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 510 Β· πŸ“¦ 5.2K Β· πŸ“‹ 890 - 44% open Β· ⏱️ 15.04.2025): +- [GitHub](https://github.com/huggingface/optimum) (πŸ‘¨β€πŸ’» 140 Β· πŸ”€ 520 Β· πŸ“¦ 5.3K Β· πŸ“‹ 890 - 44% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/huggingface/optimum ``` -- [PyPi](https://pypi.org/project/optimum) (πŸ“₯ 1.2M / month Β· πŸ“¦ 200 Β· ⏱️ 30.01.2025): +- [PyPi](https://pypi.org/project/optimum) (πŸ“₯ 1.3M / month Β· πŸ“¦ 200 Β· ⏱️ 30.01.2025): ``` pip install optimum ``` -- [Conda](https://anaconda.org/conda-forge/optimum) (πŸ“₯ 37K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/optimum) (πŸ“₯ 37K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge optimum ``` @@ -6498,14 +6513,14 @@ _Libraries that require and make use of CUDA/GPU or other accelerator hardware c ``` git clone https://github.com/NVIDIA/apex ``` -- [Conda](https://anaconda.org/conda-forge/nvidia-apex) (πŸ“₯ 470K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/nvidia-apex) (πŸ“₯ 480K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge nvidia-apex ```
-
cuML (πŸ₯ˆ32 Β· ⭐ 4.6K) - cuML - RAPIDS Machine Learning Library. Apache-2 +
cuML (πŸ₯ˆ32 Β· ⭐ 4.7K) - cuML - RAPIDS Machine Learning Library. Apache-2 -- [GitHub](https://github.com/rapidsai/cuml) (πŸ‘¨β€πŸ’» 180 Β· πŸ”€ 570 Β· πŸ“‹ 2.7K - 36% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/rapidsai/cuml) (πŸ‘¨β€πŸ’» 180 Β· πŸ”€ 570 Β· πŸ“‹ 2.7K - 36% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/rapidsai/cuml @@ -6515,18 +6530,18 @@ _Libraries that require and make use of CUDA/GPU or other accelerator hardware c pip install cuml ```
-
PyCUDA (πŸ₯ˆ30 Β· ⭐ 1.9K) - CUDA integration for Python, plus shiny features. MIT +
PyCUDA (πŸ₯ˆ31 Β· ⭐ 1.9K) - CUDA integration for Python, plus shiny features. MIT -- [GitHub](https://github.com/inducer/pycuda) (πŸ‘¨β€πŸ’» 82 Β· πŸ”€ 290 Β· πŸ“¦ 3.6K Β· πŸ“‹ 280 - 30% open Β· ⏱️ 07.02.2025): +- [GitHub](https://github.com/inducer/pycuda) (πŸ‘¨β€πŸ’» 82 Β· πŸ”€ 290 Β· πŸ“¦ 3.7K Β· πŸ“‹ 280 - 30% open Β· ⏱️ 07.02.2025): ``` git clone https://github.com/inducer/pycuda ``` -- [PyPi](https://pypi.org/project/pycuda) (πŸ“₯ 79K / month Β· πŸ“¦ 170 Β· ⏱️ 07.02.2025): +- [PyPi](https://pypi.org/project/pycuda) (πŸ“₯ 78K / month Β· πŸ“¦ 170 Β· ⏱️ 07.02.2025): ``` pip install pycuda ``` -- [Conda](https://anaconda.org/conda-forge/pycuda) (πŸ“₯ 950K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pycuda) (πŸ“₯ 950K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pycuda ``` @@ -6538,66 +6553,66 @@ _Libraries that require and make use of CUDA/GPU or other accelerator hardware c ``` git clone https://github.com/wookayin/gpustat ``` -- [PyPi](https://pypi.org/project/gpustat) (πŸ“₯ 680K / month Β· πŸ“¦ 150 Β· ⏱️ 22.08.2023): +- [PyPi](https://pypi.org/project/gpustat) (πŸ“₯ 690K / month Β· πŸ“¦ 150 Β· ⏱️ 22.08.2023): ``` pip install gpustat ``` -- [Conda](https://anaconda.org/conda-forge/gpustat) (πŸ“₯ 300K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/gpustat) (πŸ“₯ 310K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge gpustat ```
ArrayFire (πŸ₯ˆ28 Β· ⭐ 4.7K) - ArrayFire: a general purpose GPU library. BSD-3 -- [GitHub](https://github.com/arrayfire/arrayfire) (πŸ‘¨β€πŸ’» 97 Β· πŸ”€ 540 Β· πŸ“₯ 8.2K Β· πŸ“‹ 1.8K - 19% open Β· ⏱️ 04.04.2025): +- [GitHub](https://github.com/arrayfire/arrayfire) (πŸ‘¨β€πŸ’» 97 Β· πŸ”€ 540 Β· πŸ“₯ 8.3K Β· πŸ“‹ 1.8K - 19% open Β· ⏱️ 04.04.2025): ``` git clone https://github.com/arrayfire/arrayfire ``` -- [PyPi](https://pypi.org/project/arrayfire) (πŸ“₯ 3.5K / month Β· πŸ“¦ 10 Β· ⏱️ 22.02.2022): +- [PyPi](https://pypi.org/project/arrayfire) (πŸ“₯ 3.3K / month Β· πŸ“¦ 10 Β· ⏱️ 22.02.2022): ``` pip install arrayfire ```
CuPy (πŸ₯ˆ27 Β· ⭐ 10K) - NumPy & SciPy for GPU. MIT -- [GitHub](https://github.com/cupy/cupy) (πŸ‘¨β€πŸ’» 340 Β· πŸ”€ 890): +- [GitHub](https://github.com/cupy/cupy) (πŸ‘¨β€πŸ’» 340 Β· πŸ”€ 900): ``` git clone https://github.com/cupy/cupy ``` -- [PyPi](https://pypi.org/project/cupy) (πŸ“₯ 37K / month Β· πŸ“¦ 350 Β· ⏱️ 04.04.2025): +- [PyPi](https://pypi.org/project/cupy) (πŸ“₯ 36K / month Β· πŸ“¦ 350 Β· ⏱️ 04.04.2025): ``` pip install cupy ``` -- [Conda](https://anaconda.org/conda-forge/cupy) (πŸ“₯ 6.1M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/cupy) (πŸ“₯ 6.2M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge cupy ``` -- [Docker Hub](https://hub.docker.com/r/cupy/cupy) (πŸ“₯ 80K Β· ⭐ 13 Β· ⏱️ 04.04.2025): +- [Docker Hub](https://hub.docker.com/r/cupy/cupy) (πŸ“₯ 81K Β· ⭐ 13 Β· ⏱️ 04.04.2025): ``` docker pull cupy/cupy ```
cuGraph (πŸ₯ˆ27 Β· ⭐ 2K) - cuGraph - RAPIDS Graph Analytics Library. Apache-2 -- [GitHub](https://github.com/rapidsai/cugraph) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 320 Β· πŸ“‹ 1.8K - 9% open Β· ⏱️ 15.04.2025): +- [GitHub](https://github.com/rapidsai/cugraph) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 320 Β· πŸ“‹ 1.8K - 9% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/rapidsai/cugraph ``` -- [PyPi](https://pypi.org/project/cugraph) (πŸ“₯ 390 / month Β· πŸ“¦ 4 Β· ⏱️ 01.06.2020): +- [PyPi](https://pypi.org/project/cugraph) (πŸ“₯ 380 / month Β· πŸ“¦ 4 Β· ⏱️ 01.06.2020): ``` pip install cugraph ``` -- [Conda](https://anaconda.org/conda-forge/libcugraph) (πŸ“₯ 29K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/libcugraph) (πŸ“₯ 29K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge libcugraph ```
DALI (πŸ₯‰25 Β· ⭐ 5.4K) - A GPU-accelerated library containing highly optimized building blocks.. Apache-2 -- [GitHub](https://github.com/NVIDIA/DALI) (πŸ‘¨β€πŸ’» 96 Β· πŸ”€ 630 Β· πŸ“‹ 1.7K - 14% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/NVIDIA/DALI) (πŸ‘¨β€πŸ’» 96 Β· πŸ”€ 630 Β· πŸ“‹ 1.7K - 14% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/NVIDIA/DALI @@ -6605,12 +6620,12 @@ _Libraries that require and make use of CUDA/GPU or other accelerator hardware c
Vulkan Kompute (πŸ₯‰23 Β· ⭐ 2.2K) - General purpose GPU compute framework built on Vulkan to.. Apache-2 -- [GitHub](https://github.com/KomputeProject/kompute) (πŸ‘¨β€πŸ’» 32 Β· πŸ”€ 150 Β· πŸ“₯ 640 Β· πŸ“‹ 220 - 32% open Β· ⏱️ 19.03.2025): +- [GitHub](https://github.com/KomputeProject/kompute) (πŸ‘¨β€πŸ’» 32 Β· πŸ”€ 160 Β· πŸ“₯ 640 Β· πŸ“‹ 220 - 32% open Β· ⏱️ 19.03.2025): ``` git clone https://github.com/KomputeProject/kompute ``` -- [PyPi](https://pypi.org/project/kp) (πŸ“₯ 600 / month Β· ⏱️ 20.01.2024): +- [PyPi](https://pypi.org/project/kp) (πŸ“₯ 560 / month Β· ⏱️ 20.01.2024): ``` pip install kp ``` @@ -6622,7 +6637,7 @@ _Libraries that require and make use of CUDA/GPU or other accelerator hardware c ``` git clone https://github.com/NVIDIA-Merlin/Merlin ``` -- [PyPi](https://pypi.org/project/merlin-core) (πŸ“₯ 24K / month Β· πŸ“¦ 1 Β· ⏱️ 29.08.2023): +- [PyPi](https://pypi.org/project/merlin-core) (πŸ“₯ 25K / month Β· πŸ“¦ 1 Β· ⏱️ 29.08.2023): ``` pip install merlin-core ``` @@ -6646,7 +6661,7 @@ _Libraries that require and make use of CUDA/GPU or other accelerator hardware c _Libraries that extend TensorFlow with additional capabilities._ -
TensorFlow Datasets (πŸ₯‡39 Β· ⭐ 4.4K) - TFDS is a collection of datasets ready to use with.. Apache-2 +
TensorFlow Datasets (πŸ₯‡38 Β· ⭐ 4.4K Β· πŸ“‰) - TFDS is a collection of datasets ready to use with.. Apache-2 - [GitHub](https://github.com/tensorflow/datasets) (πŸ‘¨β€πŸ’» 490 Β· πŸ”€ 1.6K Β· πŸ“¦ 23K Β· πŸ“‹ 1.5K - 47% open Β· ⏱️ 15.04.2025): @@ -6657,7 +6672,7 @@ _Libraries that extend TensorFlow with additional capabilities._ ``` pip install tensorflow-datasets ``` -- [Conda](https://anaconda.org/conda-forge/tensorflow-datasets) (πŸ“₯ 45K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/tensorflow-datasets) (πŸ“₯ 46K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge tensorflow-datasets ``` @@ -6669,11 +6684,11 @@ _Libraries that extend TensorFlow with additional capabilities._ ``` git clone https://github.com/tensorflow/hub ``` -- [PyPi](https://pypi.org/project/tensorflow-hub) (πŸ“₯ 2.1M / month Β· πŸ“¦ 300 Β· ⏱️ 30.01.2024): +- [PyPi](https://pypi.org/project/tensorflow-hub) (πŸ“₯ 2M / month Β· πŸ“¦ 300 Β· ⏱️ 30.01.2024): ``` pip install tensorflow-hub ``` -- [Conda](https://anaconda.org/conda-forge/tensorflow-hub) (πŸ“₯ 120K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/tensorflow-hub) (πŸ“₯ 120K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge tensorflow-hub ``` @@ -6697,7 +6712,7 @@ _Libraries that extend TensorFlow with additional capabilities._ ``` git clone https://github.com/tensorflow/addons ``` -- [PyPi](https://pypi.org/project/tensorflow-addons) (πŸ“₯ 1.2M / month Β· πŸ“¦ 370 Β· ⏱️ 28.11.2023): +- [PyPi](https://pypi.org/project/tensorflow-addons) (πŸ“₯ 1.1M / month Β· πŸ“¦ 370 Β· ⏱️ 28.11.2023): ``` pip install tensorflow-addons ``` @@ -6709,7 +6724,7 @@ _Libraries that extend TensorFlow with additional capabilities._ ``` git clone https://github.com/tensorflow/io ``` -- [PyPi](https://pypi.org/project/tensorflow-io) (πŸ“₯ 760K / month Β· πŸ“¦ 61 Β· ⏱️ 01.07.2024): +- [PyPi](https://pypi.org/project/tensorflow-io) (πŸ“₯ 770K / month Β· πŸ“¦ 61 Β· ⏱️ 01.07.2024): ``` pip install tensorflow-io ``` @@ -6721,7 +6736,7 @@ _Libraries that extend TensorFlow with additional capabilities._ ``` git clone https://github.com/tensorflow/model-optimization ``` -- [PyPi](https://pypi.org/project/tensorflow-model-optimization) (πŸ“₯ 240K / month Β· πŸ“¦ 45 Β· ⏱️ 08.02.2024): +- [PyPi](https://pypi.org/project/tensorflow-model-optimization) (πŸ“₯ 250K / month Β· πŸ“¦ 45 Β· ⏱️ 08.02.2024): ``` pip install tensorflow-model-optimization ``` @@ -6745,7 +6760,7 @@ _Libraries that extend TensorFlow with additional capabilities._ ``` git clone https://github.com/tensorflow/neural-structured-learning ``` -- [PyPi](https://pypi.org/project/neural-structured-learning) (πŸ“₯ 5.8K / month Β· πŸ“¦ 3 Β· ⏱️ 29.07.2022): +- [PyPi](https://pypi.org/project/neural-structured-learning) (πŸ“₯ 5.5K / month Β· πŸ“¦ 3 Β· ⏱️ 29.07.2022): ``` pip install neural-structured-learning ``` @@ -6757,7 +6772,7 @@ _Libraries that extend TensorFlow with additional capabilities._ ``` git clone https://github.com/tensorflow/compression ``` -- [PyPi](https://pypi.org/project/tensorflow-compression) (πŸ“₯ 2.9K / month Β· πŸ“¦ 2 Β· ⏱️ 02.02.2024): +- [PyPi](https://pypi.org/project/tensorflow-compression) (πŸ“₯ 3.7K / month Β· πŸ“¦ 2 Β· ⏱️ 02.02.2024): ``` pip install tensorflow-compression ``` @@ -6769,7 +6784,7 @@ _Libraries that extend TensorFlow with additional capabilities._ ``` git clone https://github.com/tensorflow/cloud ``` -- [PyPi](https://pypi.org/project/tensorflow-cloud) (πŸ“₯ 35K / month Β· πŸ“¦ 7 Β· ⏱️ 17.06.2021): +- [PyPi](https://pypi.org/project/tensorflow-cloud) (πŸ“₯ 37K / month Β· πŸ“¦ 7 Β· ⏱️ 17.06.2021): ``` pip install tensorflow-cloud ``` @@ -6791,30 +6806,30 @@ _Libraries that extend TensorFlow with additional capabilities._ _Libraries that extend Jax with additional capabilities._ -
equinox (πŸ₯‡32 Β· ⭐ 2.3K) - Elegant easy-to-use neural networks + scientific computing in.. Apache-2 +
equinox (πŸ₯‡31 Β· ⭐ 2.3K) - Elegant easy-to-use neural networks + scientific computing in.. Apache-2 -- [GitHub](https://github.com/patrick-kidger/equinox) (πŸ‘¨β€πŸ’» 64 Β· πŸ”€ 160 Β· πŸ“¦ 1.1K Β· πŸ“‹ 540 - 34% open Β· ⏱️ 14.04.2025): +- [GitHub](https://github.com/patrick-kidger/equinox) (πŸ‘¨β€πŸ’» 65 Β· πŸ”€ 160 Β· πŸ“¦ 1.2K Β· πŸ“‹ 540 - 34% open Β· ⏱️ 21.04.2025): ``` git clone https://github.com/patrick-kidger/equinox ``` -- [PyPi](https://pypi.org/project/equinox) (πŸ“₯ 280K / month Β· πŸ“¦ 230 Β· ⏱️ 27.03.2025): +- [PyPi](https://pypi.org/project/equinox) (πŸ“₯ 290K / month Β· πŸ“¦ 230 Β· ⏱️ 27.03.2025): ``` pip install equinox ```
evojax (πŸ₯‰20 Β· ⭐ 900 Β· πŸ’€) - EvoJAX: Hardware-accelerated Neuroevolution. Apache-2 -- [GitHub](https://github.com/google/evojax) (πŸ‘¨β€πŸ’» 14 Β· πŸ”€ 100 Β· πŸ“¦ 27 Β· πŸ“‹ 37 - 54% open Β· ⏱️ 27.06.2024): +- [GitHub](https://github.com/google/evojax) (πŸ‘¨β€πŸ’» 14 Β· πŸ”€ 100 Β· πŸ“¦ 28 Β· πŸ“‹ 37 - 54% open Β· ⏱️ 27.06.2024): ``` git clone https://github.com/google/evojax ``` -- [PyPi](https://pypi.org/project/evojax) (πŸ“₯ 1.2K / month Β· πŸ“¦ 6 Β· ⏱️ 18.06.2024): +- [PyPi](https://pypi.org/project/evojax) (πŸ“₯ 1.3K / month Β· πŸ“¦ 6 Β· ⏱️ 18.06.2024): ``` pip install evojax ``` -- [Conda](https://anaconda.org/conda-forge/evojax) (πŸ“₯ 37K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/evojax) (πŸ“₯ 37K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge evojax ``` @@ -6842,23 +6857,23 @@ _Libraries that extend scikit-learn with additional capabilities._ ``` pip install mlxtend ``` -- [Conda](https://anaconda.org/conda-forge/mlxtend) (πŸ“₯ 350K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/mlxtend) (πŸ“₯ 350K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge mlxtend ```
scikit-learn-intelex (πŸ₯‡35 Β· ⭐ 1.3K) - Extension for Scikit-learn is a seamless way to speed.. Apache-2 -- [GitHub](https://github.com/uxlfoundation/scikit-learn-intelex) (πŸ‘¨β€πŸ’» 85 Β· πŸ”€ 180 Β· πŸ“¦ 13K Β· πŸ“‹ 250 - 20% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/uxlfoundation/scikit-learn-intelex) (πŸ‘¨β€πŸ’» 85 Β· πŸ”€ 180 Β· πŸ“¦ 13K Β· πŸ“‹ 250 - 20% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/intel/scikit-learn-intelex ``` -- [PyPi](https://pypi.org/project/scikit-learn-intelex) (πŸ“₯ 85K / month Β· πŸ“¦ 65 Β· ⏱️ 21.03.2025): +- [PyPi](https://pypi.org/project/scikit-learn-intelex) (πŸ“₯ 76K / month Β· πŸ“¦ 65 Β· ⏱️ 22.04.2025): ``` pip install scikit-learn-intelex ``` -- [Conda](https://anaconda.org/conda-forge/scikit-learn-intelex) (πŸ“₯ 500K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/scikit-learn-intelex) (πŸ“₯ 510K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge scikit-learn-intelex ``` @@ -6870,62 +6885,62 @@ _Libraries that extend scikit-learn with additional capabilities._ ``` git clone https://github.com/scikit-learn-contrib/imbalanced-learn ``` -- [PyPi](https://pypi.org/project/imbalanced-learn) (πŸ“₯ 15M / month Β· πŸ“¦ 480 Β· ⏱️ 20.12.2024): +- [PyPi](https://pypi.org/project/imbalanced-learn) (πŸ“₯ 14M / month Β· πŸ“¦ 480 Β· ⏱️ 20.12.2024): ``` pip install imbalanced-learn ``` -- [Conda](https://anaconda.org/conda-forge/imbalanced-learn) (πŸ“₯ 690K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/imbalanced-learn) (πŸ“₯ 690K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge imbalanced-learn ```
category_encoders (πŸ₯ˆ32 Β· ⭐ 2.4K) - A library of sklearn compatible categorical variable.. BSD-3 -- [GitHub](https://github.com/scikit-learn-contrib/category_encoders) (πŸ‘¨β€πŸ’» 71 Β· πŸ”€ 400 Β· πŸ“¦ 3.3K Β· πŸ“‹ 300 - 14% open Β· ⏱️ 24.03.2025): +- [GitHub](https://github.com/scikit-learn-contrib/category_encoders) (πŸ‘¨β€πŸ’» 71 Β· πŸ”€ 400 Β· πŸ“¦ 3.4K Β· πŸ“‹ 300 - 14% open Β· ⏱️ 24.03.2025): ``` git clone https://github.com/scikit-learn-contrib/category_encoders ``` -- [PyPi](https://pypi.org/project/category_encoders) (πŸ“₯ 1.9M / month Β· πŸ“¦ 310 Β· ⏱️ 15.03.2025): +- [PyPi](https://pypi.org/project/category_encoders) (πŸ“₯ 2M / month Β· πŸ“¦ 310 Β· ⏱️ 15.03.2025): ``` pip install category_encoders ``` -- [Conda](https://anaconda.org/conda-forge/category_encoders) (πŸ“₯ 310K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/category_encoders) (πŸ“₯ 310K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge category_encoders ```
-
scikit-opt (πŸ₯‰25 Β· ⭐ 5.5K Β· πŸ’€) - Genetic Algorithm, Particle Swarm Optimization, Simulated.. MIT +
scikit-lego (πŸ₯ˆ27 Β· ⭐ 1.3K Β· πŸ“ˆ) - Extra blocks for scikit-learn pipelines. MIT -- [GitHub](https://github.com/guofei9987/scikit-opt) (πŸ‘¨β€πŸ’» 24 Β· πŸ”€ 990 Β· πŸ“¦ 260 Β· πŸ“‹ 180 - 37% open Β· ⏱️ 23.06.2024): +- [GitHub](https://github.com/koaning/scikit-lego) (πŸ‘¨β€πŸ’» 68 Β· πŸ”€ 120 Β· πŸ“¦ 180 Β· πŸ“‹ 340 - 11% open Β· ⏱️ 19.04.2025): ``` - git clone https://github.com/guofei9987/scikit-opt + git clone https://github.com/koaning/scikit-lego ``` -- [PyPi](https://pypi.org/project/scikit-opt) (πŸ“₯ 5.7K / month Β· πŸ“¦ 15 Β· ⏱️ 14.01.2022): +- [PyPi](https://pypi.org/project/scikit-lego) (πŸ“₯ 29K / month Β· πŸ“¦ 13 Β· ⏱️ 17.12.2024): ``` - pip install scikit-opt + pip install scikit-lego + ``` +- [Conda](https://anaconda.org/conda-forge/scikit-lego) (πŸ“₯ 66K Β· ⏱️ 22.04.2025): + ``` + conda install -c conda-forge scikit-lego ```
-
scikit-lego (πŸ₯‰25 Β· ⭐ 1.3K) - Extra blocks for scikit-learn pipelines. MIT +
scikit-opt (πŸ₯‰25 Β· ⭐ 5.5K Β· πŸ’€) - Genetic Algorithm, Particle Swarm Optimization, Simulated.. MIT -- [GitHub](https://github.com/koaning/scikit-lego) (πŸ‘¨β€πŸ’» 68 Β· πŸ”€ 120 Β· πŸ“¦ 180 Β· πŸ“‹ 340 - 11% open Β· ⏱️ 14.04.2025): +- [GitHub](https://github.com/guofei9987/scikit-opt) (πŸ‘¨β€πŸ’» 24 Β· πŸ”€ 990 Β· πŸ“¦ 260 Β· πŸ“‹ 180 - 37% open Β· ⏱️ 23.06.2024): ``` - git clone https://github.com/koaning/scikit-lego - ``` -- [PyPi](https://pypi.org/project/scikit-lego) (πŸ“₯ 28K / month Β· πŸ“¦ 13 Β· ⏱️ 17.12.2024): - ``` - pip install scikit-lego + git clone https://github.com/guofei9987/scikit-opt ``` -- [Conda](https://anaconda.org/conda-forge/scikit-lego) (πŸ“₯ 66K Β· ⏱️ 25.03.2025): +- [PyPi](https://pypi.org/project/scikit-opt) (πŸ“₯ 5.7K / month Β· πŸ“¦ 15 Β· ⏱️ 14.01.2022): ``` - conda install -c conda-forge scikit-lego + pip install scikit-opt ```
iterative-stratification (πŸ₯‰21 Β· ⭐ 860) - scikit-learn cross validators for iterative.. BSD-3 -- [GitHub](https://github.com/trent-b/iterative-stratification) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 75 Β· πŸ“¦ 570 Β· πŸ“‹ 27 - 7% open Β· ⏱️ 12.10.2024): +- [GitHub](https://github.com/trent-b/iterative-stratification) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 75 Β· πŸ“¦ 580 Β· πŸ“‹ 27 - 7% open Β· ⏱️ 12.10.2024): ``` git clone https://github.com/trent-b/iterative-stratification @@ -6942,33 +6957,33 @@ _Libraries that extend scikit-learn with additional capabilities._ ``` git clone https://github.com/amueller/dabl ``` -- [PyPi](https://pypi.org/project/dabl) (πŸ“₯ 4.7K / month Β· πŸ“¦ 3 Β· ⏱️ 16.12.2024): +- [PyPi](https://pypi.org/project/dabl) (πŸ“₯ 4.2K / month Β· πŸ“¦ 3 Β· ⏱️ 16.12.2024): ``` pip install dabl ```
-
DESlib (πŸ₯‰18 Β· ⭐ 490 Β· πŸ’€) - A Python library for dynamic classifier and ensemble selection. BSD-3 +
scikit-tda (πŸ₯‰18 Β· ⭐ 540 Β· πŸ’€) - Topological Data Analysis for Python. MIT -- [GitHub](https://github.com/scikit-learn-contrib/DESlib) (πŸ‘¨β€πŸ’» 17 Β· πŸ”€ 100 Β· πŸ“‹ 160 - 11% open Β· ⏱️ 15.04.2024): +- [GitHub](https://github.com/scikit-tda/scikit-tda) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 54 Β· πŸ“¦ 83 Β· πŸ“‹ 22 - 18% open Β· ⏱️ 19.07.2024): ``` - git clone https://github.com/scikit-learn-contrib/DESlib + git clone https://github.com/scikit-tda/scikit-tda ``` -- [PyPi](https://pypi.org/project/deslib) (πŸ“₯ 4K / month Β· πŸ“¦ 3 Β· ⏱️ 12.04.2024): +- [PyPi](https://pypi.org/project/scikit-tda) (πŸ“₯ 1.1K / month Β· ⏱️ 19.07.2024): ``` - pip install deslib + pip install scikit-tda ```
-
scikit-tda (πŸ₯‰17 Β· ⭐ 540 Β· πŸ’€) - Topological Data Analysis for Python. MIT +
DESlib (πŸ₯‰18 Β· ⭐ 490 Β· πŸ’€) - A Python library for dynamic classifier and ensemble selection. BSD-3 -- [GitHub](https://github.com/scikit-tda/scikit-tda) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 54 Β· πŸ“¦ 82 Β· πŸ“‹ 22 - 18% open Β· ⏱️ 19.07.2024): +- [GitHub](https://github.com/scikit-learn-contrib/DESlib) (πŸ‘¨β€πŸ’» 17 Β· πŸ”€ 100 Β· πŸ“‹ 160 - 11% open Β· ⏱️ 15.04.2024): ``` - git clone https://github.com/scikit-tda/scikit-tda + git clone https://github.com/scikit-learn-contrib/DESlib ``` -- [PyPi](https://pypi.org/project/scikit-tda) (πŸ“₯ 1.1K / month Β· ⏱️ 19.07.2024): +- [PyPi](https://pypi.org/project/deslib) (πŸ“₯ 3.8K / month Β· πŸ“¦ 3 Β· ⏱️ 12.04.2024): ``` - pip install scikit-tda + pip install deslib ```
Show 9 hidden projects... @@ -6979,8 +6994,8 @@ _Libraries that extend scikit-learn with additional capabilities._ - sklearn-crfsuite (πŸ₯ˆ27 Β· ⭐ 430 Β· πŸ’€) - scikit-learn inspired API for CRFsuite. MIT - sklearn-contrib-lightning (πŸ₯‰24 Β· ⭐ 1.7K Β· πŸ’€) - Large-scale linear classification, regression and.. BSD-3 - skope-rules (πŸ₯‰22 Β· ⭐ 630 Β· πŸ’€) - machine learning with logical rules in Python. ❗️BSD-1-Clause +- celer (πŸ₯‰22 Β· ⭐ 220) - Fast solver for L1-type problems: Lasso, sparse Logisitic regression,.. BSD-3 - combo (πŸ₯‰21 Β· ⭐ 650 Β· πŸ’€) - (AAAI 20) A Python Toolbox for Machine Learning Model.. BSD-2 xgboost -- celer (πŸ₯‰21 Β· ⭐ 220) - Fast solver for L1-type problems: Lasso, sparse Logisitic regression,.. BSD-3 - skggm (πŸ₯‰18 Β· ⭐ 250 Β· πŸ’€) - Scikit-learn compatible estimation of general graphical models. MIT

@@ -6993,7 +7008,7 @@ _Libraries that extend Pytorch with additional capabilities._
accelerate (πŸ₯‡42 Β· ⭐ 8.6K) - A simple way to launch, train, and use PyTorch models on.. Apache-2 -- [GitHub](https://github.com/huggingface/accelerate) (πŸ‘¨β€πŸ’» 340 Β· πŸ”€ 1.1K Β· πŸ“¦ 85K Β· πŸ“‹ 1.8K - 6% open Β· ⏱️ 15.04.2025): +- [GitHub](https://github.com/huggingface/accelerate) (πŸ‘¨β€πŸ’» 340 Β· πŸ”€ 1.1K Β· πŸ“¦ 87K Β· πŸ“‹ 1.8K - 6% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/huggingface/accelerate @@ -7002,14 +7017,14 @@ _Libraries that extend Pytorch with additional capabilities._ ``` pip install accelerate ``` -- [Conda](https://anaconda.org/conda-forge/accelerate) (πŸ“₯ 360K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/accelerate) (πŸ“₯ 370K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge accelerate ```
tinygrad (πŸ₯‡35 Β· ⭐ 29K) - You like pytorch? You like micrograd? You love tinygrad!. MIT -- [GitHub](https://github.com/tinygrad/tinygrad) (πŸ‘¨β€πŸ’» 390 Β· πŸ”€ 3.2K Β· πŸ“¦ 190 Β· πŸ“‹ 900 - 14% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/tinygrad/tinygrad) (πŸ‘¨β€πŸ’» 390 Β· πŸ”€ 3.3K Β· πŸ“¦ 200 Β· πŸ“‹ 900 - 14% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/geohot/tinygrad @@ -7022,7 +7037,7 @@ _Libraries that extend Pytorch with additional capabilities._ ``` git clone https://github.com/KevinMusgrave/pytorch-metric-learning ``` -- [PyPi](https://pypi.org/project/pytorch-metric-learning) (πŸ“₯ 780K / month Β· πŸ“¦ 55 Β· ⏱️ 11.12.2024): +- [PyPi](https://pypi.org/project/pytorch-metric-learning) (πŸ“₯ 770K / month Β· πŸ“¦ 55 Β· ⏱️ 11.12.2024): ``` pip install pytorch-metric-learning ``` @@ -7033,23 +7048,23 @@ _Libraries that extend Pytorch with additional capabilities._
torchdiffeq (πŸ₯‡33 Β· ⭐ 5.9K) - Differentiable ODE solvers with full GPU support and.. MIT -- [GitHub](https://github.com/rtqichen/torchdiffeq) (πŸ‘¨β€πŸ’» 22 Β· πŸ”€ 930 Β· πŸ“¦ 4.9K Β· πŸ“‹ 220 - 33% open Β· ⏱️ 04.04.2025): +- [GitHub](https://github.com/rtqichen/torchdiffeq) (πŸ‘¨β€πŸ’» 22 Β· πŸ”€ 930 Β· πŸ“¦ 5K Β· πŸ“‹ 220 - 33% open Β· ⏱️ 04.04.2025): ``` git clone https://github.com/rtqichen/torchdiffeq ``` -- [PyPi](https://pypi.org/project/torchdiffeq) (πŸ“₯ 1M / month Β· πŸ“¦ 120 Β· ⏱️ 21.11.2024): +- [PyPi](https://pypi.org/project/torchdiffeq) (πŸ“₯ 1.1M / month Β· πŸ“¦ 120 Β· ⏱️ 21.11.2024): ``` pip install torchdiffeq ``` -- [Conda](https://anaconda.org/conda-forge/torchdiffeq) (πŸ“₯ 21K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/torchdiffeq) (πŸ“₯ 21K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge torchdiffeq ```
torchsde (πŸ₯ˆ30 Β· ⭐ 1.6K) - Differentiable SDE solvers with GPU support and efficient.. Apache-2 -- [GitHub](https://github.com/google-research/torchsde) (πŸ‘¨β€πŸ’» 9 Β· πŸ”€ 200 Β· πŸ“¦ 4.9K Β· πŸ“‹ 82 - 35% open Β· ⏱️ 30.12.2024): +- [GitHub](https://github.com/google-research/torchsde) (πŸ‘¨β€πŸ’» 9 Β· πŸ”€ 200 Β· πŸ“¦ 5K Β· πŸ“‹ 82 - 35% open Β· ⏱️ 30.12.2024): ``` git clone https://github.com/google-research/torchsde @@ -7058,23 +7073,23 @@ _Libraries that extend Pytorch with additional capabilities._ ``` pip install torchsde ``` -- [Conda](https://anaconda.org/conda-forge/torchsde) (πŸ“₯ 38K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/torchsde) (πŸ“₯ 38K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge torchsde ```
torch-scatter (πŸ₯ˆ27 Β· ⭐ 1.6K) - PyTorch Extension Library of Optimized Scatter Operations. MIT -- [GitHub](https://github.com/rusty1s/pytorch_scatter) (πŸ‘¨β€πŸ’» 32 Β· πŸ”€ 180 Β· πŸ“‹ 410 - 6% open Β· ⏱️ 10.04.2025): +- [GitHub](https://github.com/rusty1s/pytorch_scatter) (πŸ‘¨β€πŸ’» 33 Β· πŸ”€ 180 Β· πŸ“‹ 410 - 6% open Β· ⏱️ 20.04.2025): ``` git clone https://github.com/rusty1s/pytorch_scatter ``` -- [PyPi](https://pypi.org/project/torch-scatter) (πŸ“₯ 55K / month Β· πŸ“¦ 150 Β· ⏱️ 06.10.2023): +- [PyPi](https://pypi.org/project/torch-scatter) (πŸ“₯ 54K / month Β· πŸ“¦ 150 Β· ⏱️ 06.10.2023): ``` pip install torch-scatter ``` -- [Conda](https://anaconda.org/conda-forge/pytorch_scatter) (πŸ“₯ 810K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pytorch_scatter) (πŸ“₯ 820K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pytorch_scatter ``` @@ -7086,47 +7101,39 @@ _Libraries that extend Pytorch with additional capabilities._ ``` git clone https://github.com/BloodAxe/pytorch-toolbelt ``` -- [PyPi](https://pypi.org/project/pytorch_toolbelt) (πŸ“₯ 10K / month Β· πŸ“¦ 12 Β· ⏱️ 21.11.2024): +- [PyPi](https://pypi.org/project/pytorch_toolbelt) (πŸ“₯ 9.9K / month Β· πŸ“¦ 12 Β· ⏱️ 21.11.2024): ``` pip install pytorch_toolbelt ```
-
EfficientNets (πŸ₯‰25 Β· ⭐ 1.6K Β· πŸ’€) - Pretrained EfficientNet, EfficientNet-Lite, MixNet,.. Apache-2 +
EfficientNets (πŸ₯ˆ25 Β· ⭐ 1.6K Β· πŸ’€) - Pretrained EfficientNet, EfficientNet-Lite, MixNet,.. Apache-2 - [GitHub](https://github.com/rwightman/gen-efficientnet-pytorch) (πŸ‘¨β€πŸ’» 5 Β· πŸ”€ 210 Β· πŸ“¦ 290 Β· πŸ“‹ 55 - 7% open Β· ⏱️ 13.06.2024): ``` git clone https://github.com/rwightman/gen-efficientnet-pytorch ``` -- [PyPi](https://pypi.org/project/geffnet) (πŸ“₯ 180K / month Β· πŸ“¦ 4 Β· ⏱️ 08.07.2021): +- [PyPi](https://pypi.org/project/geffnet) (πŸ“₯ 190K / month Β· πŸ“¦ 4 Β· ⏱️ 08.07.2021): ``` pip install geffnet ```
-
PyTorch Sparse (πŸ₯‰25 Β· ⭐ 1.1K) - PyTorch Extension Library of Optimized Autograd Sparse.. MIT +
PyTorch Sparse (πŸ₯ˆ25 Β· ⭐ 1.1K) - PyTorch Extension Library of Optimized Autograd Sparse.. MIT - [GitHub](https://github.com/rusty1s/pytorch_sparse) (πŸ‘¨β€πŸ’» 47 Β· πŸ”€ 150 Β· πŸ“‹ 290 - 10% open Β· ⏱️ 10.04.2025): ``` git clone https://github.com/rusty1s/pytorch_sparse ``` -- [PyPi](https://pypi.org/project/torch-sparse) (πŸ“₯ 39K / month Β· πŸ“¦ 120 Β· ⏱️ 06.10.2023): +- [PyPi](https://pypi.org/project/torch-sparse) (πŸ“₯ 38K / month Β· πŸ“¦ 120 Β· ⏱️ 06.10.2023): ``` pip install torch-sparse ``` -- [Conda](https://anaconda.org/conda-forge/pytorch_sparse) (πŸ“₯ 760K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pytorch_sparse) (πŸ“₯ 770K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pytorch_sparse ```
-
pytorchviz (πŸ₯‰19 Β· ⭐ 3.3K Β· πŸ“ˆ) - A small package to create visualizations of PyTorch execution.. MIT - -- [GitHub](https://github.com/szagoruyko/pytorchviz) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 280 Β· πŸ“¦ 2.8K Β· πŸ“‹ 72 - 47% open Β· ⏱️ 30.12.2024): - - ``` - git clone https://github.com/szagoruyko/pytorchviz - ``` -
madgrad (πŸ₯‰16 Β· ⭐ 800) - MADGRAD Optimization Method. MIT - [GitHub](https://github.com/facebookresearch/madgrad) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 57 Β· πŸ“¦ 100 Β· ⏱️ 27.01.2025): @@ -7134,21 +7141,29 @@ _Libraries that extend Pytorch with additional capabilities._ ``` git clone https://github.com/facebookresearch/madgrad ``` -- [PyPi](https://pypi.org/project/madgrad) (πŸ“₯ 4K / month Β· πŸ“¦ 1 Β· ⏱️ 08.03.2022): +- [PyPi](https://pypi.org/project/madgrad) (πŸ“₯ 3.9K / month Β· πŸ“¦ 1 Β· ⏱️ 08.03.2022): ``` pip install madgrad ```
+
pytorchviz (πŸ₯‰14 Β· ⭐ 3.3K Β· πŸ“‰) - A small package to create visualizations of PyTorch execution.. MIT + +- [GitHub](https://github.com/szagoruyko/pytorchviz) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 280 Β· πŸ“‹ 72 - 47% open Β· ⏱️ 30.12.2024): + + ``` + git clone https://github.com/szagoruyko/pytorchviz + ``` +
Show 21 hidden projects... - pretrainedmodels (πŸ₯ˆ30 Β· ⭐ 9.1K Β· πŸ’€) - Pretrained ConvNets for pytorch: NASNet, ResNeXt,.. BSD-3 -- pytorch-summary (πŸ₯ˆ28 Β· ⭐ 4K Β· πŸ’€) - Model summary in PyTorch similar to `model.summary()` in.. MIT -- lightning-flash (πŸ₯ˆ28 Β· ⭐ 1.7K Β· πŸ’€) - Your PyTorch AI Factory - Flash enables you to easily.. Apache-2 +- lightning-flash (πŸ₯ˆ29 Β· ⭐ 1.7K Β· πŸ’€) - Your PyTorch AI Factory - Flash enables you to easily.. Apache-2 - EfficientNet-PyTorch (πŸ₯ˆ27 Β· ⭐ 8.1K Β· πŸ’€) - A PyTorch implementation of EfficientNet. Apache-2 - pytorch-optimizer (πŸ₯ˆ27 Β· ⭐ 3.1K Β· πŸ’€) - torch-optimizer -- collection of optimizers for.. Apache-2 - TabNet (πŸ₯ˆ26 Β· ⭐ 2.8K Β· πŸ’€) - PyTorch implementation of TabNet paper :.. MIT -- Torchmeta (πŸ₯‰25 Β· ⭐ 2K Β· πŸ’€) - A collection of extensions and data-loaders for few-shot.. MIT -- Higher (πŸ₯‰23 Β· ⭐ 1.6K Β· πŸ’€) - higher is a pytorch library allowing users to obtain higher.. Apache-2 +- Torchmeta (πŸ₯ˆ25 Β· ⭐ 2K Β· πŸ’€) - A collection of extensions and data-loaders for few-shot.. MIT +- pytorch-summary (πŸ₯‰24 Β· ⭐ 4K Β· πŸ’€) - Model summary in PyTorch similar to `model.summary()` in.. MIT +- Higher (πŸ₯‰24 Β· ⭐ 1.6K Β· πŸ’€) - higher is a pytorch library allowing users to obtain higher.. Apache-2 - micrograd (πŸ₯‰22 Β· ⭐ 12K Β· πŸ’€) - A tiny scalar-valued autograd engine and a neural net library.. MIT - SRU (πŸ₯‰22 Β· ⭐ 2.1K Β· πŸ’€) - Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755). MIT - AdaBound (πŸ₯‰21 Β· ⭐ 2.9K Β· πŸ’€) - An optimizer that trains as fast as Adam and as good as SGD. Apache-2 @@ -7158,8 +7173,8 @@ _Libraries that extend Pytorch with additional capabilities._ - Poutyne (πŸ₯‰21 Β· ⭐ 570) - A simplified framework and utilities for PyTorch. ❗️LGPL-3.0 - Lambda Networks (πŸ₯‰19 Β· ⭐ 1.5K Β· πŸ’€) - Implementation of LambdaNetworks, a new approach to.. MIT - Torch-Struct (πŸ₯‰19 Β· ⭐ 1.1K Β· πŸ’€) - Fast, general, and tested differentiable structured.. MIT -- Tensor Sensor (πŸ₯‰18 Β· ⭐ 800 Β· πŸ’€) - The goal of this library is to generate more helpful.. MIT -- Tez (πŸ₯‰17 Β· ⭐ 1.2K Β· πŸ’€) - Tez is a super-simple and lightweight Trainer for PyTorch. It.. Apache-2 +- Tensor Sensor (πŸ₯‰19 Β· ⭐ 800 Β· πŸ’€) - The goal of this library is to generate more helpful.. MIT +- Tez (πŸ₯‰18 Β· ⭐ 1.2K Β· πŸ’€) - Tez is a super-simple and lightweight Trainer for PyTorch. It.. Apache-2 - Pywick (πŸ₯‰17 Β· ⭐ 400 Β· πŸ’€) - High-level batteries-included neural network training library for.. MIT - TorchDrift (πŸ₯‰15 Β· ⭐ 320 Β· πŸ’€) - Drift Detection for your PyTorch Models. Apache-2
@@ -7181,7 +7196,7 @@ _Libraries for connecting to, operating, and querying databases._
scipy (πŸ₯‡50 Β· ⭐ 14K) - Ecosystem of open-source software for mathematics, science, and engineering. BSD-3 -- [GitHub](https://github.com/scipy/scipy) (πŸ‘¨β€πŸ’» 1.8K Β· πŸ”€ 5.3K Β· πŸ“₯ 480K Β· πŸ“¦ 1.3M Β· πŸ“‹ 11K - 15% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/scipy/scipy) (πŸ‘¨β€πŸ’» 1.8K Β· πŸ”€ 5.3K Β· πŸ“₯ 490K Β· πŸ“¦ 1.3M Β· πŸ“‹ 11K - 15% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/scipy/scipy @@ -7190,123 +7205,139 @@ _Libraries for connecting to, operating, and querying databases._ ``` pip install scipy ``` -- [Conda](https://anaconda.org/conda-forge/scipy) (πŸ“₯ 61M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/scipy) (πŸ“₯ 61M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge scipy ```
SymPy (πŸ₯‡49 Β· ⭐ 14K) - A computer algebra system written in pure Python. BSD-3 -- [GitHub](https://github.com/sympy/sympy) (πŸ‘¨β€πŸ’» 1.4K Β· πŸ”€ 4.7K Β· πŸ“₯ 560K Β· πŸ“¦ 250K Β· πŸ“‹ 14K - 36% open Β· ⏱️ 14.04.2025): +- [GitHub](https://github.com/sympy/sympy) (πŸ‘¨β€πŸ’» 1.4K Β· πŸ”€ 4.7K Β· πŸ“₯ 560K Β· πŸ“¦ 250K Β· πŸ“‹ 14K - 36% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/sympy/sympy ``` -- [PyPi](https://pypi.org/project/sympy) (πŸ“₯ 46M / month Β· πŸ“¦ 4.3K Β· ⏱️ 14.04.2025): +- [PyPi](https://pypi.org/project/sympy) (πŸ“₯ 49M / month Β· πŸ“¦ 4.3K Β· ⏱️ 14.04.2025): ``` pip install sympy ``` -- [Conda](https://anaconda.org/conda-forge/sympy) (πŸ“₯ 8.5M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/sympy) (πŸ“₯ 8.6M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge sympy ```
Streamlit (πŸ₯‡46 Β· ⭐ 39K) - Streamlit A faster way to build and share data apps. Apache-2 -- [GitHub](https://github.com/streamlit/streamlit) (πŸ‘¨β€πŸ’» 370 Β· πŸ”€ 3.4K Β· πŸ“¦ 840K Β· πŸ“‹ 5.1K - 22% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/streamlit/streamlit) (πŸ‘¨β€πŸ’» 380 Β· πŸ”€ 3.4K Β· πŸ“¦ 860K Β· πŸ“‹ 5.1K - 22% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/streamlit/streamlit ``` -- [PyPi](https://pypi.org/project/streamlit) (πŸ“₯ 9.4M / month Β· πŸ“¦ 3.5K Β· ⏱️ 01.04.2025): +- [PyPi](https://pypi.org/project/streamlit) (πŸ“₯ 9.9M / month Β· πŸ“¦ 3.5K Β· ⏱️ 01.04.2025): ``` pip install streamlit ```
Gradio (πŸ₯‡44 Β· ⭐ 38K) - Wrap UIs around any model, share with anyone. Apache-2 -- [GitHub](https://github.com/gradio-app/gradio) (πŸ‘¨β€πŸ’» 560 Β· πŸ”€ 2.9K Β· πŸ“¦ 68K Β· πŸ“‹ 5.6K - 8% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/gradio-app/gradio) (πŸ‘¨β€πŸ’» 570 Β· πŸ”€ 2.9K Β· πŸ“¦ 70K Β· πŸ“‹ 5.6K - 8% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/gradio-app/gradio ``` -- [PyPi](https://pypi.org/project/gradio) (πŸ“₯ 9.4M / month Β· πŸ“¦ 1.2K Β· ⏱️ 15.04.2025): +- [PyPi](https://pypi.org/project/gradio) (πŸ“₯ 9.4M / month Β· πŸ“¦ 1.2K Β· ⏱️ 23.04.2025): ``` pip install gradio ```
carla (πŸ₯‡37 Β· ⭐ 12K) - Open-source simulator for autonomous driving research. MIT -- [GitHub](https://github.com/carla-simulator/carla) (πŸ‘¨β€πŸ’» 180 Β· πŸ”€ 3.8K Β· πŸ“¦ 1K Β· πŸ“‹ 5.9K - 18% open Β· ⏱️ 11.04.2025): +- [GitHub](https://github.com/carla-simulator/carla) (πŸ‘¨β€πŸ’» 180 Β· πŸ”€ 3.8K Β· πŸ“¦ 1K Β· πŸ“‹ 5.9K - 18% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/carla-simulator/carla ``` -- [PyPi](https://pypi.org/project/carla) (πŸ“₯ 27K / month Β· πŸ“¦ 11 Β· ⏱️ 14.11.2023): +- [PyPi](https://pypi.org/project/carla) (πŸ“₯ 28K / month Β· πŸ“¦ 11 Β· ⏱️ 14.11.2023): ``` pip install carla ```
PennyLane (πŸ₯‡37 Β· ⭐ 2.6K) - PennyLane is a cross-platform Python library for quantum.. Apache-2 -- [GitHub](https://github.com/PennyLaneAI/pennylane) (πŸ‘¨β€πŸ’» 200 Β· πŸ”€ 650 Β· πŸ“₯ 100 Β· πŸ“¦ 1.5K Β· πŸ“‹ 1.6K - 24% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/PennyLaneAI/pennylane) (πŸ‘¨β€πŸ’» 200 Β· πŸ”€ 650 Β· πŸ“₯ 100 Β· πŸ“¦ 1.5K Β· πŸ“‹ 1.6K - 24% open Β· ⏱️ 24.04.2025): ``` git clone https://github.com/PennyLaneAI/PennyLane ``` -- [PyPi](https://pypi.org/project/pennylane) (πŸ“₯ 92K / month Β· πŸ“¦ 150 Β· ⏱️ 15.04.2025): +- [PyPi](https://pypi.org/project/pennylane) (πŸ“₯ 94K / month Β· πŸ“¦ 150 Β· ⏱️ 15.04.2025): ``` pip install pennylane ``` -- [Conda](https://anaconda.org/conda-forge/pennylane) (πŸ“₯ 260K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pennylane) (πŸ“₯ 260K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pennylane ```
PyOD (πŸ₯‡36 Β· ⭐ 9.1K) - A Python Library for Outlier and Anomaly Detection, Integrating Classical.. BSD-2 -- [GitHub](https://github.com/yzhao062/pyod) (πŸ‘¨β€πŸ’» 63 Β· πŸ”€ 1.4K Β· πŸ“¦ 5K Β· πŸ“‹ 380 - 60% open Β· ⏱️ 24.03.2025): +- [GitHub](https://github.com/yzhao062/pyod) (πŸ‘¨β€πŸ’» 63 Β· πŸ”€ 1.4K Β· πŸ“¦ 5.1K Β· πŸ“‹ 380 - 60% open Β· ⏱️ 24.03.2025): ``` git clone https://github.com/yzhao062/pyod ``` -- [PyPi](https://pypi.org/project/pyod) (πŸ“₯ 570K / month Β· πŸ“¦ 130 Β· ⏱️ 24.03.2025): +- [PyPi](https://pypi.org/project/pyod) (πŸ“₯ 560K / month Β· πŸ“¦ 130 Β· ⏱️ 24.03.2025): ``` pip install pyod ``` -- [Conda](https://anaconda.org/conda-forge/pyod) (πŸ“₯ 150K Β· ⏱️ 01.04.2025): +- [Conda](https://anaconda.org/conda-forge/pyod) (πŸ“₯ 150K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pyod ```
+
Autograd (πŸ₯‡36 Β· ⭐ 7.2K Β· πŸ“ˆ) - Efficiently computes derivatives of NumPy code. MIT + +- [GitHub](https://github.com/HIPS/autograd) (πŸ‘¨β€πŸ’» 61 Β· πŸ”€ 910 Β· πŸ“¦ 13K Β· πŸ“‹ 430 - 42% open Β· ⏱️ 21.04.2025): + + ``` + git clone https://github.com/HIPS/autograd + ``` +- [PyPi](https://pypi.org/project/autograd) (πŸ“₯ 4M / month Β· πŸ“¦ 280 Β· ⏱️ 22.08.2024): + ``` + pip install autograd + ``` +- [Conda](https://anaconda.org/conda-forge/autograd) (πŸ“₯ 530K Β· ⏱️ 22.04.2025): + ``` + conda install -c conda-forge autograd + ``` +
Datasette (πŸ₯ˆ35 Β· ⭐ 10K) - An open source multi-tool for exploring and publishing data. Apache-2 -- [GitHub](https://github.com/simonw/datasette) (πŸ‘¨β€πŸ’» 82 Β· πŸ”€ 720 Β· πŸ“₯ 70 Β· πŸ“¦ 1.5K Β· πŸ“‹ 1.9K - 32% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/simonw/datasette) (πŸ‘¨β€πŸ’» 82 Β· πŸ”€ 730 Β· πŸ“₯ 70 Β· πŸ“¦ 1.5K Β· πŸ“‹ 1.9K - 32% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/simonw/datasette ``` -- [PyPi](https://pypi.org/project/datasette) (πŸ“₯ 220K / month Β· πŸ“¦ 460 Β· ⏱️ 17.04.2025): +- [PyPi](https://pypi.org/project/datasette) (πŸ“₯ 200K / month Β· πŸ“¦ 460 Β· ⏱️ 22.04.2025): ``` pip install datasette ``` -- [Conda](https://anaconda.org/conda-forge/datasette) (πŸ“₯ 59K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/datasette) (πŸ“₯ 59K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge datasette ```
DeepChem (πŸ₯ˆ35 Β· ⭐ 5.9K) - Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry,.. MIT -- [GitHub](https://github.com/deepchem/deepchem) (πŸ‘¨β€πŸ’» 260 Β· πŸ”€ 1.9K Β· πŸ“¦ 570 Β· πŸ“‹ 2K - 38% open Β· ⏱️ 14.04.2025): +- [GitHub](https://github.com/deepchem/deepchem) (πŸ‘¨β€πŸ’» 260 Β· πŸ”€ 1.9K Β· πŸ“¦ 570 Β· πŸ“‹ 2K - 38% open Β· ⏱️ 21.04.2025): ``` git clone https://github.com/deepchem/deepchem ``` -- [PyPi](https://pypi.org/project/deepchem) (πŸ“₯ 63K / month Β· πŸ“¦ 17 Β· ⏱️ 15.04.2025): +- [PyPi](https://pypi.org/project/deepchem) (πŸ“₯ 61K / month Β· πŸ“¦ 17 Β· ⏱️ 22.04.2025): ``` pip install deepchem ``` -- [Conda](https://anaconda.org/conda-forge/deepchem) (πŸ“₯ 110K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/deepchem) (πŸ“₯ 110K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge deepchem ``` @@ -7322,30 +7353,30 @@ _Libraries for connecting to, operating, and querying databases._ ``` pip install agate ``` -- [Conda](https://anaconda.org/conda-forge/agate) (πŸ“₯ 310K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/agate) (πŸ“₯ 310K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge agate ```
-
Autograd (πŸ₯ˆ33 Β· ⭐ 7.2K Β· πŸ“‰) - Efficiently computes derivatives of NumPy code. MIT +
hdbscan (πŸ₯ˆ33 Β· ⭐ 2.9K) - A high performance implementation of HDBSCAN clustering. BSD-3 -- [GitHub](https://github.com/HIPS/autograd) (πŸ‘¨β€πŸ’» 61 Β· πŸ”€ 910 Β· πŸ“¦ 13K Β· πŸ“‹ 430 - 42% open Β· ⏱️ 14.04.2025): +- [GitHub](https://github.com/scikit-learn-contrib/hdbscan) (πŸ‘¨β€πŸ’» 96 Β· πŸ”€ 500 Β· πŸ“¦ 6K Β· πŸ“‹ 530 - 67% open Β· ⏱️ 22.04.2025): ``` - git clone https://github.com/HIPS/autograd + git clone https://github.com/scikit-learn-contrib/hdbscan ``` -- [PyPi](https://pypi.org/project/autograd) (πŸ“¦ 280 Β· ⏱️ 22.08.2024): +- [PyPi](https://pypi.org/project/hdbscan) (πŸ“₯ 710K / month Β· πŸ“¦ 350 Β· ⏱️ 18.11.2024): ``` - pip install autograd + pip install hdbscan ``` -- [Conda](https://anaconda.org/conda-forge/autograd) (πŸ“₯ 530K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/hdbscan) (πŸ“₯ 2.5M Β· ⏱️ 22.04.2025): ``` - conda install -c conda-forge autograd + conda install -c conda-forge hdbscan ```
Pythran (πŸ₯ˆ33 Β· ⭐ 2K) - Ahead of Time compiler for numeric kernels. BSD-3 -- [GitHub](https://github.com/serge-sans-paille/pythran) (πŸ‘¨β€πŸ’» 74 Β· πŸ”€ 190 Β· πŸ“¦ 3.3K Β· πŸ“‹ 890 - 15% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/serge-sans-paille/pythran) (πŸ‘¨β€πŸ’» 74 Β· πŸ”€ 190 Β· πŸ“¦ 3.3K Β· πŸ“‹ 890 - 15% open Β· ⏱️ 23.04.2025): ``` git clone https://github.com/serge-sans-paille/pythran @@ -7354,55 +7385,39 @@ _Libraries for connecting to, operating, and querying databases._ ``` pip install pythran ``` -- [Conda](https://anaconda.org/conda-forge/pythran) (πŸ“₯ 1.1M Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pythran) (πŸ“₯ 1.1M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pythran ```
-
hdbscan (πŸ₯ˆ32 Β· ⭐ 2.9K) - A high performance implementation of HDBSCAN clustering. BSD-3 - -- [GitHub](https://github.com/scikit-learn-contrib/hdbscan) (πŸ‘¨β€πŸ’» 96 Β· πŸ”€ 500 Β· πŸ“¦ 5.8K Β· πŸ“‹ 530 - 67% open Β· ⏱️ 08.02.2025): - - ``` - git clone https://github.com/scikit-learn-contrib/hdbscan - ``` -- [PyPi](https://pypi.org/project/hdbscan) (πŸ“₯ 690K / month Β· πŸ“¦ 350 Β· ⏱️ 18.11.2024): - ``` - pip install hdbscan - ``` -- [Conda](https://anaconda.org/conda-forge/hdbscan) (πŸ“₯ 2.5M Β· ⏱️ 25.03.2025): - ``` - conda install -c conda-forge hdbscan - ``` -
-
tensorly (πŸ₯ˆ32 Β· ⭐ 1.6K) - TensorLy: Tensor Learning in Python. BSD-2 +
tensorly (πŸ₯ˆ33 Β· ⭐ 1.6K) - TensorLy: Tensor Learning in Python. BSD-2 -- [GitHub](https://github.com/tensorly/tensorly) (πŸ‘¨β€πŸ’» 70 Β· πŸ”€ 290 Β· πŸ“¦ 980 Β· πŸ“‹ 280 - 23% open Β· ⏱️ 02.03.2025): +- [GitHub](https://github.com/tensorly/tensorly) (πŸ‘¨β€πŸ’» 72 Β· πŸ”€ 290 Β· πŸ“¦ 990 Β· πŸ“‹ 280 - 23% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/tensorly/tensorly ``` -- [PyPi](https://pypi.org/project/tensorly) (πŸ“₯ 69K / month Β· πŸ“¦ 99 Β· ⏱️ 12.11.2024): +- [PyPi](https://pypi.org/project/tensorly) (πŸ“₯ 76K / month Β· πŸ“¦ 99 Β· ⏱️ 12.11.2024): ``` pip install tensorly ``` -- [Conda](https://anaconda.org/conda-forge/tensorly) (πŸ“₯ 370K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/tensorly) (πŸ“₯ 370K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge tensorly ```
pyjanitor (πŸ₯ˆ32 Β· ⭐ 1.4K) - Clean APIs for data cleaning. Python implementation of R package.. MIT -- [GitHub](https://github.com/pyjanitor-devs/pyjanitor) (πŸ‘¨β€πŸ’» 110 Β· πŸ”€ 170 Β· πŸ“¦ 910 Β· πŸ“‹ 580 - 19% open Β· ⏱️ 16.04.2025): +- [GitHub](https://github.com/pyjanitor-devs/pyjanitor) (πŸ‘¨β€πŸ’» 110 Β· πŸ”€ 170 Β· πŸ“¦ 920 Β· πŸ“‹ 580 - 19% open Β· ⏱️ 22.04.2025): ``` git clone https://github.com/pyjanitor-devs/pyjanitor ``` -- [PyPi](https://pypi.org/project/pyjanitor) (πŸ“₯ 92K / month Β· πŸ“¦ 42 Β· ⏱️ 07.03.2025): +- [PyPi](https://pypi.org/project/pyjanitor) (πŸ“₯ 93K / month Β· πŸ“¦ 42 Β· ⏱️ 07.03.2025): ``` pip install pyjanitor ``` -- [Conda](https://anaconda.org/conda-forge/pyjanitor) (πŸ“₯ 250K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/pyjanitor) (πŸ“₯ 260K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pyjanitor ``` @@ -7414,49 +7429,49 @@ _Libraries for connecting to, operating, and querying databases._ ``` git clone https://github.com/PaddlePaddle/PaddleHub ``` -- [PyPi](https://pypi.org/project/paddlehub) (πŸ“₯ 6.6K / month Β· πŸ“¦ 7 Β· ⏱️ 20.09.2023): +- [PyPi](https://pypi.org/project/paddlehub) (πŸ“₯ 6.8K / month Β· πŸ“¦ 7 Β· ⏱️ 20.09.2023): ``` pip install paddlehub ```
River (πŸ₯ˆ31 Β· ⭐ 5.3K) - Online machine learning in Python. BSD-3 -- [GitHub](https://github.com/online-ml/river) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 560 Β· πŸ“¦ 700 Β· πŸ“‹ 620 - 19% open Β· ⏱️ 03.03.2025): +- [GitHub](https://github.com/online-ml/river) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 560 Β· πŸ“¦ 710 Β· πŸ“‹ 620 - 19% open Β· ⏱️ 03.03.2025): ``` git clone https://github.com/online-ml/river ``` -- [PyPi](https://pypi.org/project/river) (πŸ“₯ 91K / month Β· πŸ“¦ 64 Β· ⏱️ 25.11.2024): +- [PyPi](https://pypi.org/project/river) (πŸ“₯ 83K / month Β· πŸ“¦ 64 Β· ⏱️ 25.11.2024): ``` pip install river ``` -- [Conda](https://anaconda.org/conda-forge/river) (πŸ“₯ 110K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/river) (πŸ“₯ 110K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge river ```
-
anomalib (πŸ₯ˆ31 Β· ⭐ 4.2K) - An anomaly detection library comprising state-of-the-art algorithms.. Apache-2 +
dstack (πŸ₯ˆ31 Β· ⭐ 1.8K) - dstack is an open-source alternative to Kubernetes and Slurm, designed.. MPL-2.0 -- [GitHub](https://github.com/open-edge-platform/anomalib) (πŸ‘¨β€πŸ’» 84 Β· πŸ”€ 720 Β· πŸ“₯ 24K Β· πŸ“¦ 160 Β· πŸ“‹ 1K - 15% open Β· ⏱️ 13.04.2025): +- [GitHub](https://github.com/dstackai/dstack) (πŸ‘¨β€πŸ’» 52 Β· πŸ”€ 170 Β· πŸ“¦ 18 Β· πŸ“‹ 1.3K - 8% open Β· ⏱️ 24.04.2025): ``` - git clone https://github.com/openvinotoolkit/anomalib + git clone https://github.com/dstackai/dstack ``` -- [PyPi](https://pypi.org/project/anomalib) (πŸ“₯ 60K / month Β· πŸ“¦ 5 Β· ⏱️ 19.03.2025): +- [PyPi](https://pypi.org/project/dstack) (πŸ“₯ 11K / month Β· ⏱️ 23.04.2025): ``` - pip install anomalib + pip install dstack ```
-
dstack (πŸ₯ˆ31 Β· ⭐ 1.8K) - dstack is an open-source alternative to Kubernetes and Slurm, designed.. MPL-2.0 +
anomalib (πŸ₯ˆ30 Β· ⭐ 4.2K) - An anomaly detection library comprising state-of-the-art algorithms.. Apache-2 -- [GitHub](https://github.com/dstackai/dstack) (πŸ‘¨β€πŸ’» 52 Β· πŸ”€ 170 Β· πŸ“¦ 18 Β· πŸ“‹ 1.2K - 8% open Β· ⏱️ 17.04.2025): +- [GitHub](https://github.com/open-edge-platform/anomalib) (πŸ‘¨β€πŸ’» 84 Β· πŸ”€ 720 Β· πŸ“₯ 24K Β· πŸ“¦ 170 Β· πŸ“‹ 1K - 15% open Β· ⏱️ 13.04.2025): ``` - git clone https://github.com/dstackai/dstack + git clone https://github.com/openvinotoolkit/anomalib ``` -- [PyPi](https://pypi.org/project/dstack) (πŸ“₯ 9K / month Β· ⏱️ 17.04.2025): +- [PyPi](https://pypi.org/project/anomalib) (πŸ“₯ 72K / month Β· πŸ“¦ 5 Β· ⏱️ 19.03.2025): ``` - pip install dstack + pip install anomalib ```
pyopencl (πŸ₯ˆ30 Β· ⭐ 1.1K) - OpenCL integration for Python, plus shiny features. MIT @@ -7466,11 +7481,11 @@ _Libraries for connecting to, operating, and querying databases._ ``` git clone https://github.com/inducer/pyopencl ``` -- [PyPi](https://pypi.org/project/pyopencl) (πŸ“₯ 87K / month Β· πŸ“¦ 180 Β· ⏱️ 22.01.2025): +- [PyPi](https://pypi.org/project/pyopencl) (πŸ“₯ 89K / month Β· πŸ“¦ 180 Β· ⏱️ 22.01.2025): ``` pip install pyopencl ``` -- [Conda](https://anaconda.org/conda-forge/pyopencl) (πŸ“₯ 1.7M Β· ⏱️ 03.04.2025): +- [Conda](https://anaconda.org/conda-forge/pyopencl) (πŸ“₯ 1.7M Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge pyopencl ``` @@ -7482,23 +7497,23 @@ _Libraries for connecting to, operating, and querying databases._ ``` git clone https://github.com/datalad/datalad ``` -- [PyPi](https://pypi.org/project/datalad) (πŸ“₯ 22K / month Β· πŸ“¦ 99 Β· ⏱️ 15.12.2024): +- [PyPi](https://pypi.org/project/datalad) (πŸ“₯ 21K / month Β· πŸ“¦ 99 Β· ⏱️ 15.12.2024): ``` pip install datalad ``` -- [Conda](https://anaconda.org/conda-forge/datalad) (πŸ“₯ 840K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/datalad) (πŸ“₯ 850K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge datalad ```
-
causalml (πŸ₯ˆ29 Β· ⭐ 5.3K) - Uplift modeling and causal inference with machine learning.. Apache-2 +
causalml (πŸ₯ˆ29 Β· ⭐ 5.4K) - Uplift modeling and causal inference with machine learning.. Apache-2 -- [GitHub](https://github.com/uber/causalml) (πŸ‘¨β€πŸ’» 65 Β· πŸ”€ 800 Β· πŸ“¦ 260 Β· πŸ“‹ 420 - 12% open Β· ⏱️ 23.03.2025): +- [GitHub](https://github.com/uber/causalml) (πŸ‘¨β€πŸ’» 65 Β· πŸ”€ 810 Β· πŸ“¦ 270 Β· πŸ“‹ 410 - 10% open Β· ⏱️ 23.03.2025): ``` git clone https://github.com/uber/causalml ``` -- [PyPi](https://pypi.org/project/causalml) (πŸ“₯ 45K / month Β· πŸ“¦ 6 Β· ⏱️ 20.02.2025): +- [PyPi](https://pypi.org/project/causalml) (πŸ“₯ 43K / month Β· πŸ“¦ 9 Β· ⏱️ 20.02.2025): ``` pip install causalml ``` @@ -7510,19 +7525,19 @@ _Libraries for connecting to, operating, and querying databases._ ``` git clone https://github.com/google/trax ``` -- [PyPi](https://pypi.org/project/trax) (πŸ“₯ 4.9K / month Β· πŸ“¦ 1 Β· ⏱️ 26.10.2021): +- [PyPi](https://pypi.org/project/trax) (πŸ“₯ 4.5K / month Β· πŸ“¦ 1 Β· ⏱️ 26.10.2021): ``` pip install trax ```
adapter-transformers (πŸ₯‰28 Β· ⭐ 2.7K) - A Unified Library for Parameter-Efficient and Modular.. Apache-2 huggingface -- [GitHub](https://github.com/adapter-hub/adapters) (πŸ‘¨β€πŸ’» 16 Β· πŸ”€ 360 Β· πŸ“¦ 200 Β· πŸ“‹ 400 - 10% open Β· ⏱️ 15.04.2025): +- [GitHub](https://github.com/adapter-hub/adapters) (πŸ‘¨β€πŸ’» 16 Β· πŸ”€ 360 Β· πŸ“¦ 200 Β· πŸ“‹ 400 - 10% open Β· ⏱️ 19.04.2025): ``` git clone https://github.com/Adapter-Hub/adapter-transformers ``` -- [PyPi](https://pypi.org/project/adapter-transformers) (πŸ“₯ 5K / month Β· πŸ“¦ 12 Β· ⏱️ 07.07.2024): +- [PyPi](https://pypi.org/project/adapter-transformers) (πŸ“₯ 5.4K / month Β· πŸ“¦ 12 Β· ⏱️ 07.07.2024): ``` pip install adapter-transformers ``` @@ -7534,23 +7549,23 @@ _Libraries for connecting to, operating, and querying databases._ ``` git clone https://github.com/ContinualAI/avalanche ``` -- [PyPi](https://pypi.org/project/avalanche-lib) (πŸ“₯ 2.2K / month Β· πŸ“¦ 3 Β· ⏱️ 29.10.2024): +- [PyPi](https://pypi.org/project/avalanche-lib) (πŸ“₯ 2K / month Β· πŸ“¦ 3 Β· ⏱️ 29.10.2024): ``` pip install avalanche-lib ```
TabPy (πŸ₯‰28 Β· ⭐ 1.6K) - Execute Python code on the fly and display results in Tableau visualizations:. MIT -- [GitHub](https://github.com/tableau/TabPy) (πŸ‘¨β€πŸ’» 51 Β· πŸ”€ 600 Β· πŸ“¦ 200 Β· πŸ“‹ 320 - 6% open Β· ⏱️ 25.11.2024): +- [GitHub](https://github.com/tableau/TabPy) (πŸ‘¨β€πŸ’» 51 Β· πŸ”€ 600 Β· πŸ“¦ 210 Β· πŸ“‹ 320 - 6% open Β· ⏱️ 25.11.2024): ``` git clone https://github.com/tableau/TabPy ``` -- [PyPi](https://pypi.org/project/tabpy) (πŸ“₯ 6.9K / month Β· πŸ“¦ 2 Β· ⏱️ 25.11.2024): +- [PyPi](https://pypi.org/project/tabpy) (πŸ“₯ 7.6K / month Β· πŸ“¦ 2 Β· ⏱️ 25.11.2024): ``` pip install tabpy ``` -- [Conda](https://anaconda.org/anaconda/tabpy-client) (πŸ“₯ 5.1K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/anaconda/tabpy-client) (πŸ“₯ 5.1K Β· ⏱️ 22.04.2025): ``` conda install -c anaconda tabpy-client ``` @@ -7562,11 +7577,11 @@ _Libraries for connecting to, operating, and querying databases._ ``` git clone https://github.com/MaxHalford/prince ``` -- [PyPi](https://pypi.org/project/prince) (πŸ“₯ 170K / month Β· πŸ“¦ 20 Β· ⏱️ 09.03.2025): +- [PyPi](https://pypi.org/project/prince) (πŸ“₯ 180K / month Β· πŸ“¦ 20 Β· ⏱️ 09.03.2025): ``` pip install prince ``` -- [Conda](https://anaconda.org/conda-forge/prince-factor-analysis) (πŸ“₯ 24K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/prince-factor-analysis) (πŸ“₯ 24K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge prince-factor-analysis ``` @@ -7590,11 +7605,11 @@ _Libraries for connecting to, operating, and querying databases._ ``` git clone https://github.com/scikit-learn-contrib/metric-learn ``` -- [PyPi](https://pypi.org/project/metric-learn) (πŸ“₯ 6.6K / month Β· πŸ“¦ 7 Β· ⏱️ 09.10.2023): +- [PyPi](https://pypi.org/project/metric-learn) (πŸ“₯ 6.4K / month Β· πŸ“¦ 7 Β· ⏱️ 09.10.2023): ``` pip install metric-learn ``` -- [Conda](https://anaconda.org/conda-forge/metric-learn) (πŸ“₯ 16K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/metric-learn) (πŸ“₯ 16K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge metric-learn ``` @@ -7606,7 +7621,7 @@ _Libraries for connecting to, operating, and querying databases._ ``` git clone https://github.com/facebookresearch/AugLy ``` -- [PyPi](https://pypi.org/project/augly) (πŸ“₯ 2.6K / month Β· πŸ“¦ 4 Β· ⏱️ 05.12.2023): +- [PyPi](https://pypi.org/project/augly) (πŸ“₯ 2.9K / month Β· πŸ“¦ 4 Β· ⏱️ 05.12.2023): ``` pip install augly ``` @@ -7622,7 +7637,7 @@ _Libraries for connecting to, operating, and querying databases._ ``` pip install feature_engine ``` -- [Conda](https://anaconda.org/conda-forge/feature_engine) (πŸ“₯ 70K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/feature_engine) (πŸ“₯ 71K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge feature_engine ``` @@ -7638,12 +7653,24 @@ _Libraries for connecting to, operating, and querying databases._ ``` pip install biopandas ``` -- [Conda](https://anaconda.org/conda-forge/biopandas) (πŸ“₯ 180K Β· ⏱️ 25.03.2025): +- [Conda](https://anaconda.org/conda-forge/biopandas) (πŸ“₯ 180K Β· ⏱️ 22.04.2025): ``` conda install -c conda-forge biopandas ```
-
SUOD (πŸ₯‰22 Β· ⭐ 390) - (MLSys 21) An Acceleration System for Large-scare Unsupervised Heterogeneous.. BSD-2 +
pykale (πŸ₯‰22 Β· ⭐ 460) - Knowledge-Aware machine LEarning (KALE): accessible machine learning.. MIT + +- [GitHub](https://github.com/pykale/pykale) (πŸ‘¨β€πŸ’» 26 Β· πŸ”€ 66 Β· πŸ“¦ 6 Β· πŸ“‹ 130 - 8% open Β· ⏱️ 24.04.2025): + + ``` + git clone https://github.com/pykale/pykale + ``` +- [PyPi](https://pypi.org/project/pykale) (πŸ“₯ 410 / month Β· ⏱️ 12.04.2022): + ``` + pip install pykale + ``` +
+
SUOD (πŸ₯‰22 Β· ⭐ 380) - (MLSys 21) An Acceleration System for Large-scare Unsupervised Heterogeneous.. BSD-2 - [GitHub](https://github.com/yzhao062/SUOD) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 49 Β· πŸ“¦ 550 Β· πŸ“‹ 15 - 80% open Β· ⏱️ 24.03.2025): @@ -7662,43 +7689,31 @@ _Libraries for connecting to, operating, and querying databases._ ``` git clone https://github.com/clementchadebec/benchmark_VAE ``` -- [PyPi](https://pypi.org/project/pythae) (πŸ“₯ 1.1K / month Β· ⏱️ 06.09.2023): +- [PyPi](https://pypi.org/project/pythae) (πŸ“₯ 1.2K / month Β· ⏱️ 06.09.2023): ``` pip install pythae ```
-
MONAILabel (πŸ₯‰21 Β· ⭐ 690) - MONAI Label is an intelligent open source image labeling and.. Apache-2 +
MONAILabel (πŸ₯‰21 Β· ⭐ 700) - MONAI Label is an intelligent open source image labeling and.. Apache-2 - [GitHub](https://github.com/Project-MONAI/MONAILabel) (πŸ‘¨β€πŸ’» 66 Β· πŸ”€ 220 Β· πŸ“₯ 110K Β· πŸ“‹ 540 - 25% open Β· ⏱️ 03.04.2025): ``` git clone https://github.com/Project-MONAI/MONAILabel ``` -- [PyPi](https://pypi.org/project/monailabel-weekly) (πŸ“₯ 2.7K / month Β· ⏱️ 01.10.2023): +- [PyPi](https://pypi.org/project/monailabel-weekly) (πŸ“₯ 1.7K / month Β· ⏱️ 01.10.2023): ``` pip install monailabel-weekly ```
-
pykale (πŸ₯‰21 Β· ⭐ 460) - Knowledge-Aware machine LEarning (KALE): accessible machine learning.. MIT - -- [GitHub](https://github.com/pykale/pykale) (πŸ‘¨β€πŸ’» 26 Β· πŸ”€ 65 Β· πŸ“¦ 6 Β· πŸ“‹ 130 - 8% open Β· ⏱️ 17.03.2025): - - ``` - git clone https://github.com/pykale/pykale - ``` -- [PyPi](https://pypi.org/project/pykale) (πŸ“₯ 400 / month Β· ⏱️ 12.04.2022): - ``` - pip install pykale - ``` -
-
pymdp (πŸ₯‰20 Β· ⭐ 510) - A Python implementation of active inference for Markov Decision Processes. MIT +
pymdp (πŸ₯‰20 Β· ⭐ 520) - A Python implementation of active inference for Markov Decision Processes. MIT -- [GitHub](https://github.com/infer-actively/pymdp) (πŸ‘¨β€πŸ’» 19 Β· πŸ”€ 100 Β· πŸ“¦ 20 Β· πŸ“‹ 52 - 48% open Β· ⏱️ 06.02.2025): +- [GitHub](https://github.com/infer-actively/pymdp) (πŸ‘¨β€πŸ’» 19 Β· πŸ”€ 100 Β· πŸ“¦ 20 Β· πŸ“‹ 53 - 49% open Β· ⏱️ 06.02.2025): ``` git clone https://github.com/infer-actively/pymdp ``` -- [PyPi](https://pypi.org/project/inferactively-pymdp) (πŸ“₯ 4.4K / month Β· ⏱️ 08.12.2022): +- [PyPi](https://pypi.org/project/inferactively-pymdp) (πŸ“₯ 7.2K / month Β· ⏱️ 08.12.2022): ``` pip install inferactively-pymdp ``` @@ -7727,19 +7742,19 @@ _Libraries for connecting to, operating, and querying databases._ - modAL (πŸ₯‰28 Β· ⭐ 2.3K Β· πŸ’€) - A modular active learning framework for Python. MIT - gplearn (πŸ₯‰27 Β· ⭐ 1.7K Β· πŸ’€) - Genetic Programming in Python, with a scikit-learn inspired API. BSD-3 - PySwarms (πŸ₯‰27 Β· ⭐ 1.3K Β· πŸ’€) - A research toolkit for particle swarm optimization in Python. MIT -- metricflow (πŸ₯‰26 Β· ⭐ 1.2K) - MetricFlow allows you to define, build, and maintain metrics.. ❗Unlicensed -- pandas-ai (πŸ₯‰25 Β· ⭐ 19K) - Chat with your database or your datalake (SQL, CSV, parquet)... ❗Unlicensed +- metricflow (πŸ₯‰27 Β· ⭐ 1.2K) - MetricFlow allows you to define, build, and maintain metrics.. ❗Unlicensed +- pandas-ai (πŸ₯‰25 Β· ⭐ 20K) - Chat with your database or your datalake (SQL, CSV, parquet)... ❗Unlicensed - findspark (πŸ₯‰25 Β· ⭐ 520 Β· πŸ’€) - Find pyspark to make it importable. BSD-3 - Mars (πŸ₯‰24 Β· ⭐ 2.7K Β· πŸ’€) - Mars is a tensor-based unified framework for large-scale data.. Apache-2 - AstroML (πŸ₯‰23 Β· ⭐ 1.1K Β· πŸ’€) - Machine learning, statistics, and data mining for astronomy.. BSD-2 +- vecstack (πŸ₯‰23 Β· ⭐ 690 Β· πŸ’€) - Python package for stacking (machine learning technique). MIT - opyrator (πŸ₯‰22 Β· ⭐ 3.1K Β· πŸ’€) - Turns your machine learning code into microservices with web API,.. MIT +- mlens (πŸ₯‰22 Β· ⭐ 850 Β· πŸ’€) - ML-Ensemble high performance ensemble learning. MIT - apricot (πŸ₯‰22 Β· ⭐ 500 Β· πŸ’€) - apricot implements submodular optimization for the purpose of.. MIT - impyute (πŸ₯‰21 Β· ⭐ 360 Β· πŸ’€) - Data imputations library to preprocess datasets with missing data. MIT - StreamAlert (πŸ₯‰20 Β· ⭐ 2.9K Β· πŸ’€) - StreamAlert is a serverless, realtime data analysis.. Apache-2 -- vecstack (πŸ₯‰20 Β· ⭐ 690 Β· πŸ’€) - Python package for stacking (machine learning technique). MIT - rrcf (πŸ₯‰20 Β· ⭐ 510 Β· πŸ’€) - Implementation of the Robust Random Cut Forest algorithm for anomaly.. MIT - scikit-rebate (πŸ₯‰20 Β· ⭐ 420 Β· πŸ’€) - A scikit-learn-compatible Python implementation of.. MIT -- mlens (πŸ₯‰19 Β· ⭐ 850 Β· πŸ’€) - ML-Ensemble high performance ensemble learning. MIT - baikal (πŸ₯‰19 Β· ⭐ 590 Β· πŸ’€) - A graph-based functional API for building complex scikit-learn.. BSD-3 - KD-Lib (πŸ₯‰16 Β· ⭐ 620 Β· πŸ’€) - A Pytorch Knowledge Distillation library for benchmarking and.. MIT - pandas-ml (πŸ₯‰16 Β· ⭐ 320 Β· πŸ’€) - pandas, scikit-learn, xgboost and seaborn integration. BSD-3 diff --git a/history/2025-04-24_changes.md b/history/2025-04-24_changes.md new file mode 100644 index 0000000..aba03c9 --- /dev/null +++ b/history/2025-04-24_changes.md @@ -0,0 +1,30 @@ +## πŸ“ˆ Trending Up + +_Projects that have a higher project-quality score compared to the last update. There might be a variety of reasons, such as increased downloads or code activity._ + +- OpenAI Gym (πŸ₯‡42 Β· ⭐ 36K Β· πŸ’€) - A toolkit for developing and comparing reinforcement learning.. MIT +- Fastai (πŸ₯ˆ42 Β· ⭐ 27K Β· πŸ“ˆ) - The fastai deep learning library. Apache-2 +- OCRmyPDF (πŸ₯‡38 Β· ⭐ 28K Β· πŸ“ˆ) - OCRmyPDF adds an OCR text layer to scanned PDF files, allowing.. MPL-2.0 +- Autograd (πŸ₯‡36 Β· ⭐ 7.2K Β· πŸ“ˆ) - Efficiently computes derivatives of NumPy code. MIT +- VisPy (πŸ₯ˆ35 Β· ⭐ 3.4K Β· πŸ“ˆ) - High-performance interactive 2D/3D data visualization library. BSD-3 +- Hivemind (πŸ₯‰27 Β· ⭐ 2.2K Β· πŸ“ˆ) - Decentralized deep learning in PyTorch. Built to train models on.. MIT +- scikit-lego (πŸ₯ˆ27 Β· ⭐ 1.3K Β· πŸ“ˆ) - Extra blocks for scikit-learn pipelines. MIT +- greykite (πŸ₯‰23 Β· ⭐ 1.8K Β· πŸ“ˆ) - A flexible, intuitive and fast forecasting library. BSD-2 +- vecstack (πŸ₯‰23 Β· ⭐ 690 Β· πŸ’€) - Python package for stacking (machine learning technique). MIT +- mlens (πŸ₯‰22 Β· ⭐ 850 Β· πŸ’€) - ML-Ensemble high performance ensemble learning. MIT + +## πŸ“‰ Trending Down + +_Projects that have a lower project-quality score compared to the last update. There might be a variety of reasons such as decreased downloads or code activity._ + +- PySpark (πŸ₯ˆ44 Β· ⭐ 41K Β· πŸ“‰) - Apache Spark Python API. Apache-2 +- litellm (πŸ₯‡43 Β· ⭐ 21K Β· πŸ“‰) - Python SDK, Proxy Server (LLM Gateway) to call 100+.. MIT o t h e r s +- sentence-transformers (πŸ₯‡43 Β· ⭐ 17K Β· πŸ“‰) - State-of-the-Art Text Embeddings. Apache-2 +- PyTorch Image Models (πŸ₯‡41 Β· ⭐ 34K Β· πŸ“‰) - The largest collection of PyTorch image encoders /.. Apache-2 +- TensorFlow Datasets (πŸ₯‡38 Β· ⭐ 4.4K Β· πŸ“‰) - TFDS is a collection of datasets ready to use with.. Apache-2 +- HoloViews (πŸ₯ˆ38 Β· ⭐ 2.8K Β· πŸ“‰) - With Holoviews, your data visualizes itself. BSD-3 +- Nilearn (πŸ₯‡38 Β· ⭐ 1.3K Β· πŸ“‰) - Machine learning for NeuroImaging in Python. BSD-3 +- pytorch-summary (πŸ₯‰24 Β· ⭐ 4K Β· πŸ’€) - Model summary in PyTorch similar to `model.summary()` in.. MIT +- PyAlgoTrade (πŸ₯‰20 Β· ⭐ 4.5K Β· πŸ’€) - Python Algorithmic Trading Library. Apache-2 +- pytorchviz (πŸ₯‰14 Β· ⭐ 3.3K Β· πŸ“‰) - A small package to create visualizations of PyTorch execution.. MIT + diff --git a/history/2025-04-24_projects.csv b/history/2025-04-24_projects.csv new file mode 100644 index 0000000..c31859f --- /dev/null +++ b/history/2025-04-24_projects.csv @@ -0,0 +1,923 @@ +,name,github_id,category,resource,github_url,homepage,license,created_at,updated_at,last_commit_pushed_at,commit_count,recent_commit_count,fork_count,watchers_count,pr_count,open_issue_count,closed_issue_count,star_count,description,contributor_count,projectrank,show,latest_stable_release_published_at,latest_stable_release_number,release_count,pypi_id,conda_id,dockerhub_id,docs_url,labels,dependent_project_count,github_dependent_project_count,pypi_url,pypi_latest_release_published_at,pypi_dependent_project_count,pypi_monthly_downloads,monthly_downloads,conda_url,conda_latest_release_published_at,conda_total_downloads,dockerhub_url,dockerhub_latest_release_published_at,dockerhub_stars,dockerhub_pulls,projectrank_placing,github_release_downloads,npm_id,npm_url,npm_latest_release_published_at,npm_dependent_project_count,npm_monthly_downloads,updated_github_id,helm_id,trending,brew_id,apt_id,yum_id,conda_dependent_project_count,dnf_id,yay_id,snap_id,maven_id,maven_url,maven_latest_release_published_at,maven_dependent_project_count +0,ANN Benchmarks,erikbern/ann-benchmarks,nn-search,True,https://github.com/erikbern/ann-benchmarks,https://github.com/erikbern/ann-benchmarks,MIT,2015-05-28 13:21:43.000,2025-04-15 14:58:41.000000,2025-04-15 14:58:40,1582.0,7.0,756.0,117.0,355.0,78.0,155.0,5242.0,Benchmarks of approximate nearest neighbor libraries in Python.,112.0,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +1,best-of-web-python - Web Scraping,ml-tooling/best-of-web-python,web-scraping,True,https://github.com/ml-tooling/best-of-web-python,https://github.com/ml-tooling/best-of-web-python#web-scraping--crawling,CC-BY-SA-4.0,2021-01-05 13:09:27.000,2024-06-07 15:14:35.000000,2024-06-06 19:06:33,346.0,,185.0,57.0,205.0,,3.0,2497.0,Collection of web-scraping and crawling libraries.,16.0,0,True,2024-06-06 19:06:38.000,2024.06.06,100.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +2,best-of-python - Data Extraction,ml-tooling/best-of-python,data-loading,True,https://github.com/ml-tooling/best-of-python,https://github.com/ml-tooling/best-of-python#data-loading--extraction,CC-BY-SA-4.0,2021-01-11 19:11:32.000,2025-03-11 09:47:21.000000,2025-03-11 09:47:21,361.0,1.0,270.0,97.0,200.0,7.0,6.0,3940.0,Collection of data-loading and -extraction libraries.,13.0,0,True,2024-06-06 14:07:12.000,2024.06.06,100.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +3,best-of-python - DB Clients,ml-tooling/best-of-python,db-clients,True,https://github.com/ml-tooling/best-of-python,https://github.com/ml-tooling/best-of-python#database-clients,CC-BY-SA-4.0,2021-01-11 19:11:32.000,2025-03-11 09:47:21.000000,2025-03-11 09:47:21,361.0,1.0,270.0,97.0,200.0,7.0,6.0,3940.0,Collection of database clients for python.,13.0,0,True,2024-06-06 14:07:12.000,2024.06.06,100.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4,best-of-python - Data Containers,ml-tooling/best-of-python,data-containers,True,https://github.com/ml-tooling/best-of-python,https://github.com/ml-tooling/best-of-python#data-containers--dataframes,CC-BY-SA-4.0,2021-01-11 19:11:32.000,2025-03-11 09:47:21.000000,2025-03-11 09:47:21,361.0,1.0,270.0,97.0,200.0,7.0,6.0,3940.0,"Collection of data-container, dataframe, and pandas-utility libraries.",13.0,0,True,2024-06-06 14:07:12.000,2024.06.06,100.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +5,best-of-python - Data Pipelines,ml-tooling/best-of-python,data-pipelines,True,https://github.com/ml-tooling/best-of-python,https://github.com/ml-tooling/best-of-python#data-pipelines--streaming,CC-BY-SA-4.0,2021-01-11 19:11:32.000,2025-03-11 09:47:21.000000,2025-03-11 09:47:21,361.0,1.0,270.0,97.0,200.0,7.0,6.0,3940.0,"Libraries for data batch- and stream-processing, workflow automation, job scheduling, and other data pipeline tasks.",13.0,0,True,2024-06-06 14:07:12.000,2024.06.06,100.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +6,Tensorflow,tensorflow/tensorflow,ml-frameworks,,https://github.com/tensorflow/tensorflow,https://github.com/tensorflow/tensorflow,Apache-2.0,2015-11-07 01:19:20.000,2025-04-24 14:15:35.000000,2025-04-24 13:27:10,179199.0,4080.0,74593.0,7504.0,49683.0,7513.0,39588.0,192270.0,An Open Source Machine Learning Framework for Everyone.,4847.0,56,True,2025-03-12 01:04:13.000,2.19.0,207.0,tensorflow,conda-forge/tensorflow,tensorflow/tensorflow,https://www.tensorflow.org/overview,['tensorflow'],512775.0,504061.0,https://pypi.org/project/tensorflow,2025-03-12 01:04:13.000,8714.0,21648243.0,22448265.0,https://anaconda.org/conda-forge/tensorflow,2025-04-22 14:56:20.356,5480112.0,https://hub.docker.com/r/tensorflow/tensorflow,2025-04-24 12:51:42.279459,2745.0,79538502.0,1.0,,,,,,,,,,,,,,,,,,,, +7,PyTorch,pytorch/pytorch,ml-frameworks,,https://github.com/pytorch/pytorch,https://github.com/pytorch/pytorch,BSD-3-Clause,2016-08-13 05:26:41.000,2025-04-24 14:17:31.000000,2025-04-24 14:17:22,86919.0,3343.0,23946.0,1780.0,101135.0,16304.0,35642.0,89350.0,Tensors and Dynamic neural networks in Python with strong GPU acceleration.,5550.0,55,True,2025-04-23 16:16:06.000,2.7.0,59.0,torch,pytorch/pytorch,,https://pytorch.org/docs/stable/index.html,['pytorch'],757590.0,733517.0,https://pypi.org/project/torch,2025-04-23 14:30:40.000,24073.0,48139374.0,48762185.0,https://anaconda.org/pytorch/pytorch,2025-03-25 16:24:31.802,26745466.0,,,,,1.0,84929.0,,,,,,,,,,,,,,,,,,, +8,transformers,huggingface/transformers,nlp,,https://github.com/huggingface/transformers,https://github.com/huggingface/transformers,Apache-2.0,2018-10-29 13:56:00.000,2025-04-24 14:08:39.000000,2025-04-24 14:08:38,18773.0,896.0,28627.0,1148.0,20090.0,1740.0,16060.0,143418.0,"Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.",3208.0,54,True,2025-04-24 14:07:11.000,4.51.3-Qwen2.5-Omni-preiew,179.0,transformers,conda-forge/transformers,,,"['pytorch', 'tensorflow']",352934.0,344573.0,https://pypi.org/project/transformers,2025-04-14 08:13:43.000,8361.0,61651041.0,61698913.0,https://anaconda.org/conda-forge/transformers,2025-04-22 14:57:14.678,2728707.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +9,scikit-learn,scikit-learn/scikit-learn,ml-frameworks,,https://github.com/scikit-learn/scikit-learn,https://github.com/scikit-learn/scikit-learn,BSD-3-Clause,2010-08-17 09:43:38.000,2025-04-24 07:52:27.000000,2025-04-24 07:52:27,32385.0,271.0,25769.0,2139.0,18668.0,2167.0,9892.0,61838.0,scikit-learn: machine learning in Python.,3290.0,53,True,2025-01-10 10:51:11.000,1.6.1,84.0,scikit-learn,conda-forge/scikit-learn,,,['sklearn'],1220120.0,1190616.0,https://pypi.org/project/scikit-learn,2025-01-10 08:05:56.000,29504.0,93228625.0,93832381.0,https://anaconda.org/conda-forge/scikit-learn,2025-04-22 14:56:23.760,35621128.0,,,,,1.0,1053.0,,,,,,,,,,,,,,,,,,, +10,scipy,scipy/scipy,others,,https://github.com/scipy/scipy,https://github.com/scipy/scipy,BSD-3-Clause,2011-03-09 18:52:03.000,2025-04-23 14:01:12.000000,2025-04-23 14:01:11,35032.0,552.0,5306.0,352.0,12111.0,1723.0,9314.0,13557.0,"Ecosystem of open-source software for mathematics, science, and engineering.",1772.0,50,True,2025-02-17 01:57:38.000,1.15.2,113.0,scipy,conda-forge/scipy,,,,1363742.0,1313236.0,https://pypi.org/project/scipy,2025-02-17 00:28:56.000,50506.0,138122512.0,139279665.0,https://anaconda.org/conda-forge/scipy,2025-04-22 14:56:23.716,61108918.0,,,,,1.0,486173.0,,,,,,,,,,,,,,,,,,, +11,Matplotlib,matplotlib/matplotlib,data-viz,,https://github.com/matplotlib/matplotlib,https://github.com/matplotlib/matplotlib,,2011-02-19 03:17:12.000,2025-04-24 08:57:20.000000,2025-04-24 08:57:17,52386.0,446.0,7781.0,585.0,19099.0,1615.0,9567.0,21097.0,matplotlib: plotting with Python.,1800.0,49,True,2025-02-27 19:18:10.000,3.10.1,132.0,matplotlib,conda-forge/matplotlib,,,,1757590.0,1701473.0,https://pypi.org/project/matplotlib,2025-02-27 19:18:10.000,56117.0,84534506.0,85043935.0,https://anaconda.org/conda-forge/matplotlib,2025-04-22 14:56:20.111,29546914.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +12,SymPy,sympy/sympy,others,,https://github.com/sympy/sympy,https://github.com/sympy/sympy,BSD-3-Clause,2010-04-30 20:37:14.000,2025-04-22 14:56:22.841000,2025-04-22 13:27:36,60031.0,600.0,4666.0,291.0,13923.0,5316.0,9096.0,13558.0,A computer algebra system written in pure Python.,1369.0,49,True,2025-04-14 22:30:48.000,1.14.0rc1,65.0,sympy,conda-forge/sympy,,,,258160.0,253908.0,https://pypi.org/project/sympy,2025-04-14 22:30:20.000,4252.0,49010956.0,49160160.0,https://anaconda.org/conda-forge/sympy,2025-04-22 14:56:22.841,8569647.0,,,,,1.0,557828.0,,,,,,,,,,,,,,,,,,, +13,Pillow,python-pillow/Pillow,image,,https://github.com/python-pillow/Pillow,https://github.com/python-pillow/Pillow,PIL,2012-07-24 21:38:39.000,2025-04-22 14:56:22.479000,2025-04-21 09:14:08,19456.0,305.0,2269.0,218.0,5443.0,108.0,3210.0,12734.0,Python Imaging Library (Fork).,485.0,48,True,2025-04-12 17:56:01.000,11.2.1,102.0,Pillow,conda-forge/pillow,,,,2242058.0,2228352.0,https://pypi.org/project/Pillow,2025-04-12 17:47:10.000,13706.0,142352354.0,143281976.0,https://anaconda.org/conda-forge/pillow,2025-04-22 14:56:22.479,52988465.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +14,Keras,keras-team/keras,ml-frameworks,,https://github.com/keras-team/keras,https://github.com/keras-team/keras,Apache-2.0,2015-03-28 00:35:42.000,2025-04-23 20:28:02.000000,2025-04-23 20:28:01,11474.0,162.0,19573.0,1901.0,7993.0,308.0,12179.0,62915.0,Deep Learning for humans.,1402.0,47,True,2025-04-02 20:22:14.000,3.9.2,108.0,keras,conda-forge/keras,,https://keras.io,['tensorflow'],1794.0,,https://pypi.org/project/keras,2025-04-02 19:03:07.000,1794.0,14682036.0,14751865.0,https://anaconda.org/conda-forge/keras,2025-04-22 14:56:26.303,4050100.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +15,Ray,ray-project/ray,distributed-ml,,https://github.com/ray-project/ray,https://github.com/ray-project/ray,Apache-2.0,2016-10-25 19:38:30.000,2025-04-24 14:37:06.000000,2025-04-24 04:57:37,24930.0,1236.0,6189.0,482.0,32192.0,4457.0,16225.0,36724.0,Ray is an AI compute engine. Ray consists of a core distributed runtime and a set of AI Libraries for accelerating ML..,1209.0,47,True,2025-03-27 17:13:14.000,ray-2.44.1,126.0,ray,conda-forge/ray-tune,,,,24168.0,23244.0,https://pypi.org/project/ray,2025-03-27 16:47:43.000,924.0,6655079.0,6669385.0,https://anaconda.org/conda-forge/ray-tune,2025-04-22 14:57:41.621,743833.0,,,,,1.0,251.0,,,,,,,,,,,,,,,,,,, +16,Streamlit,streamlit/streamlit,others,,https://github.com/streamlit/streamlit,https://github.com/streamlit/streamlit,Apache-2.0,2019-08-24 00:14:52.000,2025-04-24 14:26:57.000000,2025-04-24 00:03:54,7501.0,497.0,3406.0,326.0,6017.0,1141.0,3998.0,38998.0,Streamlit A faster way to build and share data apps.,379.0,46,True,2025-04-01 20:36:24.000,1.44.1,242.0,streamlit,,,,,864587.0,861071.0,https://pypi.org/project/streamlit,2025-04-01 20:36:16.000,3516.0,9922408.0,9922408.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +17,XGBoost,dmlc/xgboost,ml-frameworks,,https://github.com/dmlc/xgboost,https://github.com/dmlc/xgboost,Apache-2.0,2014-02-06 17:28:03.000,2025-04-23 16:46:01.000000,2025-04-23 16:46:01,7409.0,99.0,8766.0,906.0,5949.0,448.0,5062.0,26856.0,"Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and..",660.0,46,True,2025-03-15 13:45:01.000,3.0.0,88.0,xgboost,conda-forge/xgboost,,https://xgboost.readthedocs.io/en/latest/,,151097.0,148769.0,https://pypi.org/project/xgboost,2025-03-15 13:45:01.000,2328.0,24886714.0,24992749.0,https://anaconda.org/conda-forge/xgboost,2025-04-22 14:56:33.345,6037240.0,,,,,1.0,15883.0,,,,,,,,,,,,,,,,,,, +18,dash,plotly/dash,data-viz,,https://github.com/plotly/dash,https://github.com/plotly/dash,MIT,2015-04-10 01:53:08.000,2025-04-24 14:45:17.000000,2025-04-24 12:49:57,8292.0,344.0,2133.0,423.0,1250.0,549.0,1428.0,22337.0,Data Apps & Dashboards for Python. No JavaScript Required.,176.0,46,True,2025-04-14 18:12:49.000,3.0.3,190.0,dash,conda-forge/dash,,,,85390.0,83788.0,https://pypi.org/project/dash,2025-04-14 18:10:19.000,1602.0,5523250.0,5553975.0,https://anaconda.org/conda-forge/dash,2025-04-22 14:56:50.273,1782023.0,,,,,1.0,88.0,,,,,,,,,,,,,,,,,,, +19,Plotly,plotly/plotly.py,data-viz,,https://github.com/plotly/plotly.py,https://github.com/plotly/plotly.py,MIT,2013-11-21 05:53:08.000,2025-04-23 15:01:54.000000,2025-04-22 14:27:42,7803.0,357.0,2630.0,277.0,1862.0,650.0,2541.0,17044.0,The interactive graphing library for Python.,285.0,46,True,2025-03-17 15:02:47.000,6.0.1,304.0,plotly,conda-forge/plotly,,,,417580.0,409750.0,https://pypi.org/project/plotly,2025-03-31 18:47:11.000,7821.0,23135113.0,23347169.0,https://anaconda.org/conda-forge/plotly,2025-04-22 14:56:26.042,9156776.0,,,,,1.0,164.0,plotlywidget,https://www.npmjs.com/package/plotlywidget,2021-01-12 16:09:46.133,9.0,56856.0,,,,,,,,,,,,,, +20,jax,google/jax,ml-frameworks,,https://github.com/jax-ml/jax,https://github.com/jax-ml/jax,Apache-2.0,2018-10-25 21:25:02.000,2025-04-24 14:04:12.000000,2025-04-24 14:01:33,27275.0,2017.0,2978.0,327.0,18953.0,1485.0,4661.0,32035.0,"Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more.",862.0,45,True,2025-04-17 00:04:02.000,jax-v0.6.0,177.0,jax,conda-forge/jaxlib,,,,44301.0,41873.0,https://pypi.org/project/jax,2025-04-17 00:00:18.000,2428.0,8419110.0,8462768.0,https://anaconda.org/conda-forge/jaxlib,2025-04-22 14:57:08.015,2532220.0,,,,,1.0,,,,,,,jax-ml/jax,,,,,,,,,,,,, +21,PaddlePaddle,PaddlePaddle/Paddle,ml-frameworks,,https://github.com/PaddlePaddle/Paddle,https://github.com/PaddlePaddle/Paddle,Apache-2.0,2016-08-15 06:59:08.000,2025-04-24 14:12:15.000000,2025-04-24 14:12:15,53671.0,950.0,5715.0,715.0,53501.0,1791.0,17700.0,22705.0,PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice &.,1370.0,45,True,2025-03-31 01:41:13.000,3.0.0,74.0,paddlepaddle,,,,['paddle'],8074.0,7846.0,https://pypi.org/project/paddlepaddle,2025-03-26 08:17:50.000,228.0,404974.0,405122.0,,,,,,,,1.0,15432.0,,,,,,,,,,,,,,,,,,, +22,Bokeh,bokeh/bokeh,data-viz,,https://github.com/bokeh/bokeh,https://github.com/bokeh/bokeh,BSD-3-Clause,2012-03-26 15:40:01.000,2025-04-24 11:30:51.000000,2025-04-24 11:16:19,20761.0,89.0,4214.0,434.0,6329.0,807.0,7142.0,19790.0,"Interactive Data Visualization in the browser, from Python.",710.0,45,True,2025-03-28 08:06:33.000,3.7.2,237.0,bokeh,conda-forge/bokeh,,,,102824.0,100910.0,https://pypi.org/project/bokeh,2025-03-28 08:06:33.000,1914.0,3744374.0,4026758.0,https://anaconda.org/conda-forge/bokeh,2025-04-22 14:56:34.327,16378328.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +23,nltk,nltk/nltk,nlp,,https://github.com/nltk/nltk,https://github.com/nltk/nltk,Apache-2.0,2009-09-07 10:53:58.000,2025-04-22 14:56:27.119000,2025-03-15 01:00:12,14735.0,34.0,2887.0,459.0,1516.0,276.0,1593.0,14011.0,Suite of libraries and programs for symbolic and statistical natural language processing for English.,470.0,45,True,2024-08-18 19:48:21.000,3.9.1,63.0,nltk,conda-forge/nltk,,,,384388.0,379691.0,https://pypi.org/project/nltk,2024-08-18 19:48:21.000,4697.0,32784534.0,32848492.0,https://anaconda.org/conda-forge/nltk,2025-04-22 14:56:27.119,3133974.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +24,PySpark,apache/spark,ml-frameworks,,https://github.com/apache/spark,https://github.com/apache/spark,Apache-2.0,2014-02-25 08:00:08.000,2025-04-24 11:21:46.000000,2025-04-24 11:21:41,44238.0,828.0,28469.0,2017.0,50661.0,209.0,,40989.0,Apache Spark Python API.,3218.0,44,True,2025-02-27 09:16:31.000,3.5.5,51.0,pyspark,conda-forge/pyspark,,,['spark'],1805.0,,https://pypi.org/project/pyspark,2025-02-27 09:16:31.000,1805.0,42142851.0,42208577.0,https://anaconda.org/conda-forge/pyspark,2025-04-22 14:56:33.311,3812123.0,,,,,2.0,,,,,,,,stable/spark,-1.0,,,,,,,,,,, +25,Gradio,gradio-app/gradio,others,,https://github.com/gradio-app/gradio,https://github.com/gradio-app/gradio,Apache-2.0,2018-12-19 08:24:04.000,2025-04-24 14:26:23.000000,2025-04-23 18:49:40,7664.0,278.0,2864.0,183.0,5080.0,477.0,5120.0,37640.0,"Wrap UIs around any model, share with anyone.",567.0,44,True,2025-04-23 16:53:07.000,5.26.0,639.0,gradio,,,,,70869.0,69684.0,https://pypi.org/project/gradio,2025-04-23 16:53:07.000,1185.0,9375194.0,9375194.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +26,pytorch-lightning,Lightning-AI/lightning,ml-frameworks,,https://github.com/Lightning-AI/pytorch-lightning,https://github.com/Lightning-AI/pytorch-lightning,Apache-2.0,2019-03-31 00:45:57.000,2025-04-24 14:05:26.000000,2025-04-24 10:05:37,10567.0,65.0,3479.0,253.0,10443.0,919.0,6373.0,29354.0,"Pretrain, finetune ANY AI model of ANY size on multiple GPUs, TPUs with zero code changes.",1010.0,44,True,2025-03-19 20:28:20.000,2.5.1,286.0,pytorch-lightning,conda-forge/pytorch-lightning,,,['pytorch'],46597.0,44968.0,https://pypi.org/project/pytorch-lightning,2025-03-19 20:28:20.000,1629.0,8288001.0,8314319.0,https://anaconda.org/conda-forge/pytorch-lightning,2025-04-22 14:57:27.508,1510818.0,,,,,2.0,11892.0,,,,,,Lightning-AI/pytorch-lightning,,,,,,,,,,,,, +27,mlflow,mlflow/mlflow,ml-experiments,,https://github.com/mlflow/mlflow,https://github.com/mlflow/mlflow,Apache-2.0,2018-06-05 16:05:58.000,2025-04-24 14:22:11.000000,2025-04-24 11:14:57,7541.0,470.0,4483.0,307.0,10914.0,1818.0,2791.0,20286.0,Open source platform for the machine learning lifecycle.,841.0,44,True,2025-04-24 09:56:38.000,2.22.0,135.0,mlflow,conda-forge/mlflow,,,,59443.0,58380.0,https://pypi.org/project/mlflow,2025-04-24 09:11:38.000,1063.0,15739608.0,15793794.0,https://anaconda.org/conda-forge/mlflow,2025-04-22 14:57:04.066,3142831.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +28,networkx,networkx/networkx,graph,,https://github.com/networkx/networkx,https://github.com/networkx/networkx,BSD-3-Clause,2010-09-06 00:53:44.000,2025-04-22 14:56:28.978000,2025-04-21 23:56:49,7961.0,92.0,3257.0,281.0,4098.0,344.0,3085.0,15666.0,Network Analysis in Python.,774.0,44,True,2024-10-21 12:40:41.000,networkx-3.4.2,98.0,networkx,conda-forge/networkx,,,,400635.0,391005.0,https://pypi.org/project/networkx,2024-10-21 12:39:36.000,9630.0,86092138.0,86477905.0,https://anaconda.org/conda-forge/networkx,2025-04-22 14:56:28.978,21602993.0,,,,,1.0,113.0,,,,,,,,,,,,,,,,,,, +29,dask,dask/dask,distributed-ml,,https://github.com/dask/dask,https://github.com/dask/dask,BSD-3-Clause,2015-01-04 18:50:00.000,2025-04-24 10:55:44.000000,2025-04-24 10:55:44,9542.0,112.0,1757.0,212.0,6265.0,1125.0,4401.0,13143.0,Parallel computing with task scheduling.,621.0,44,True,2025-04-22 18:32:34.000,2025.4.0,218.0,dask,conda-forge/dask,,,,76268.0,73416.0,https://pypi.org/project/dask,2025-04-22 18:32:34.000,2852.0,11396396.0,11617297.0,https://anaconda.org/conda-forge/dask,2025-04-22 20:56:19.506,13033176.0,,,,,1.0,,,,,,,,stable/dask,,,,,,,,,,,, +30,StatsModels,statsmodels/statsmodels,ml-frameworks,,https://github.com/statsmodels/statsmodels,https://github.com/statsmodels/statsmodels,BSD-3-Clause,2011-06-12 17:04:50.000,2025-04-22 14:56:24.492000,2025-04-02 08:10:43,15692.0,50.0,3091.0,285.0,4005.0,2851.0,2829.0,10604.0,Statsmodels: statistical modeling and econometrics in Python.,454.0,44,True,2024-10-03 16:13:31.000,0.14.4,39.0,statsmodels,conda-forge/statsmodels,,,,170176.0,165707.0,https://pypi.org/project/statsmodels,2024-10-03 16:13:31.000,4469.0,16731907.0,17052767.0,https://anaconda.org/conda-forge/statsmodels,2025-04-22 14:56:24.492,18609898.0,,,,,2.0,35.0,,,,,,,,,,,,,,,,,,, +31,spaCy,explosion/spaCy,nlp,,https://github.com/explosion/spaCy,https://github.com/explosion/spaCy,MIT,2014-07-03 15:15:40.000,2025-04-22 14:56:32.571000,2025-04-11 18:56:52,16228.0,8.0,4485.0,563.0,4049.0,198.0,5527.0,31455.0,Industrial-strength Natural Language Processing (NLP) in Python.,764.0,43,True,2025-04-01 21:03:46.000,3.8.5,240.0,spacy,conda-forge/spacy,,,,130594.0,127541.0,https://pypi.org/project/spacy,2025-04-01 21:03:46.000,3053.0,18204704.0,18304417.0,https://anaconda.org/conda-forge/spacy,2025-04-22 14:56:32.571,5781920.0,,,,,1.0,2219.0,,,,,,,,,,,,,,,,,,, +32,litellm,BerriAI/litellm,nlp,,https://github.com/BerriAI/litellm,https://github.com/BerriAI/litellm,MIT,2023-07-27 00:09:52.000,2025-04-24 06:27:44.000000,2025-04-24 06:27:44,21607.0,2425.0,2691.0,114.0,4907.0,1672.0,3814.0,21265.0,"Python SDK, Proxy Server (LLM Gateway) to call 100+ LLM APIs in OpenAI format - [Bedrock, Azure, OpenAI, VertexAI,..",489.0,43,True,2025-04-24 06:01:04.000,1.67.3.de1,1132.0,litellm,,,,others,12246.0,11158.0,https://pypi.org/project/litellm,2025-04-24 05:09:37.000,1088.0,7448248.0,7448565.0,,,,,,,,1.0,634.0,,,,,,,,-1.0,,,,,,,,,,, +33,sentence-transformers,UKPLab/sentence-transformers,nlp,,https://github.com/UKPLab/sentence-transformers,https://github.com/UKPLab/sentence-transformers,Apache-2.0,2019-07-24 10:53:51.000,2025-04-24 11:02:26.000000,2025-04-24 11:02:26,1827.0,190.0,2574.0,144.0,701.0,1248.0,1145.0,16551.0,State-of-the-Art Text Embeddings.,222.0,43,True,2025-04-15 13:47:13.000,4.1.0,65.0,sentence-transformers,conda-forge/sentence-transformers,,,['pytorch'],97892.0,95508.0,https://pypi.org/project/sentence-transformers,2025-04-15 13:46:12.000,2384.0,8926629.0,8938662.0,https://anaconda.org/conda-forge/sentence-transformers,2025-04-22 14:57:36.121,661837.0,,,,,1.0,,,,,,,,,-1.0,,,,,,,,,,, +34,triton,openai/triton,model-serialisation,,https://github.com/triton-lang/triton,https://github.com/triton-lang/triton,MIT,2014-08-30 17:07:16.000,2025-04-24 14:28:52.000000,2025-04-24 10:16:22,3803.0,538.0,1912.0,198.0,4664.0,745.0,998.0,15339.0,Development repository for the Triton language and compiler.,389.0,43,True,2025-04-09 20:27:25.000,3.3.0,198.0,triton,,,,,63764.0,63369.0,https://pypi.org/project/triton,2025-04-09 20:27:25.000,395.0,22820680.0,22820680.0,,,,,,,,1.0,,,,,,,triton-lang/triton,,,,,,,,,,,,, +35,Seaborn,mwaskom/seaborn,data-viz,,https://github.com/mwaskom/seaborn,https://github.com/mwaskom/seaborn,BSD-3-Clause,2012-06-18 18:41:19.000,2025-04-22 14:56:26.328000,2025-01-26 16:55:13,3242.0,4.0,1949.0,262.0,1141.0,168.0,2456.0,13054.0,Statistical data visualization in Python.,215.0,43,True,2024-01-25 13:21:49.000,0.13.2,37.0,seaborn,conda-forge/seaborn,,,,642485.0,631642.0,https://pypi.org/project/seaborn,2024-01-25 13:21:49.000,10843.0,24781837.0,24997256.0,https://anaconda.org/conda-forge/seaborn,2025-04-22 14:56:26.328,12494136.0,,,,,1.0,473.0,,,,,,,,,,,,,,,,,,, +36,pydeck,visgl/deck.gl,geospatial-data,,https://github.com/visgl/deck.gl,https://github.com/visgl/deck.gl,MIT,2015-12-15 08:38:29.000,2025-04-23 21:29:06.000000,2025-04-23 20:58:49,5154.0,77.0,2116.0,1665.0,5072.0,423.0,2776.0,12640.0,WebGL2 powered visualization framework.,286.0,43,True,2025-04-18 11:03:48.824,9.1.11,694.0,pydeck,conda-forge/pydeck,,,['jupyter'],9468.0,8966.0,https://pypi.org/project/pydeck,2025-03-21 15:25:17.000,157.0,8543664.0,9165172.0,https://anaconda.org/conda-forge/pydeck,2025-04-22 14:57:20.802,736470.0,,,,,1.0,,deck.gl,https://www.npmjs.com/package/deck.gl,2025-04-18 11:03:48.824,345.0,608588.0,,,,,,,,,,,,,, +37,Optuna,optuna/optuna,hyperopt,,https://github.com/optuna/optuna,https://github.com/optuna/optuna,MIT,2018-02-21 06:12:56.000,2025-04-23 10:34:08.000000,2025-04-23 10:34:07,19077.0,221.0,1086.0,117.0,3913.0,63.0,1671.0,11798.0,A hyperparameter optimization framework.,292.0,43,True,2025-04-14 05:07:40.000,4.3.0,73.0,optuna,conda-forge/optuna,,,,26614.0,25367.0,https://pypi.org/project/optuna,2025-04-14 05:07:40.000,1247.0,3989184.0,4033558.0,https://anaconda.org/conda-forge/optuna,2025-04-22 14:57:16.783,2573749.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +38,Tensorboard,tensorflow/tensorboard,ml-experiments,,https://github.com/tensorflow/tensorboard,https://github.com/tensorflow/tensorboard,Apache-2.0,2017-05-15 20:08:07.000,2025-04-22 14:56:43.843000,2025-04-16 22:53:44,5896.0,14.0,1665.0,187.0,5074.0,696.0,1243.0,6851.0,TensorFlows Visualization Toolkit.,325.0,43,True,2025-02-12 08:17:27.000,2.19.0,64.0,tensorboard,conda-forge/tensorboard,,,['tensorflow'],316605.0,314151.0,https://pypi.org/project/tensorboard,2025-02-12 08:17:27.000,2454.0,25837225.0,25931920.0,https://anaconda.org/conda-forge/tensorboard,2025-04-22 14:56:43.843,5492324.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +39,OpenAI Gym,openai/gym,reinforcement-learning,,https://github.com/openai/gym,https://github.com/openai/gym,MIT,2016-04-27 14:59:16.000,2025-04-22 14:57:24.136000,2023-01-30 18:15:21,1757.0,,8614.0,1058.0,1459.0,121.0,1726.0,35851.0,A toolkit for developing and comparing reinforcement learning algorithms.,384.0,42,False,2023-07-20 15:30:49.667,0.0.1,108.0,gym,conda-forge/gym,,,,66763.0,65215.0,https://pypi.org/project/gym,2023-07-20 15:30:49.667,1548.0,26556201.0,26562538.0,https://anaconda.org/conda-forge/gym,2025-04-22 14:57:24.136,380272.0,,,,,1.0,,,,,,,,,1.0,,,,,,,,,,, +40,Milvus,milvus-io/milvus,nn-search,,https://github.com/milvus-io/milvus,https://github.com/milvus-io/milvus,Apache-2.0,2019-09-16 06:43:43.000,2025-04-24 14:38:40.959105,2025-04-24 13:06:37,22229.0,503.0,3165.0,302.0,25266.0,746.0,12598.0,34370.0,"Milvus is a high-performance, cloud-native vector database built for scalable vector ANN search.",313.0,42,True,2025-04-23 13:14:33.000,2.5.7,117.0,pymilvus,,milvusdb/milvus,,,253.0,,https://pypi.org/project/pymilvus,2025-04-23 13:14:33.000,253.0,1807885.0,2840806.0,,,,https://hub.docker.com/r/milvusdb/milvus,2025-04-24 14:38:40.959105,78.0,68762227.0,1.0,344290.0,,,,,,,,,,,,,,,,,,, +41,Fastai,fastai/fastai,ml-frameworks,,https://github.com/fastai/fastai,https://github.com/fastai/fastai,Apache-2.0,2017-09-09 17:43:36.000,2025-04-19 19:47:43.000000,2025-04-19 19:47:43,2849.0,45.0,7590.0,607.0,2253.0,244.0,1596.0,26894.0,The fastai deep learning library.,674.0,42,True,2025-04-18 21:15:10.000,2.8.1,155.0,fastai,,,,['pytorch'],22294.0,21966.0,https://pypi.org/project/fastai,2025-04-18 21:15:10.000,328.0,501060.0,501060.0,,,,,,,,2.0,,,,,,,,,1.0,,,,,,,,,,, +42,shap,slundberg/shap,interpretability,,https://github.com/shap/shap,https://github.com/shap/shap,MIT,2016-11-22 19:17:08.000,2025-04-22 14:56:53.980000,2025-04-22 14:37:19,2828.0,40.0,3357.0,245.0,1050.0,673.0,1944.0,23773.0,A game theoretic approach to explain the output of any machine learning model.,267.0,42,True,2025-04-17 18:14:16.000,0.47.2,107.0,shap,conda-forge/shap,,,,30945.0,29986.0,https://pypi.org/project/shap,2025-04-17 18:14:16.000,959.0,7355698.0,7467179.0,https://anaconda.org/conda-forge/shap,2025-04-22 14:56:53.980,5797062.0,,,,,1.0,,,,,,,shap/shap,,,,,,,,,,,,, +43,onnx,onnx/onnx,model-serialisation,,https://github.com/onnx/onnx,https://github.com/onnx/onnx,Apache-2.0,2017-09-07 04:53:45.000,2025-04-24 14:50:50.000000,2025-04-23 13:45:20,3141.0,167.0,3725.0,437.0,3729.0,339.0,2641.0,18838.0,Open standard for machine learning interoperability.,345.0,42,True,2024-10-01 21:45:45.000,1.17.0,35.0,onnx,conda-forge/onnx,,,,45625.0,44361.0,https://pypi.org/project/onnx,2024-10-01 21:45:45.000,1264.0,6998903.0,7028837.0,https://anaconda.org/conda-forge/onnx,2025-04-22 14:56:43.974,1721177.0,,,,,1.0,23370.0,,,,,,,,,,,,,,,,,,, +44,LightGBM,microsoft/LightGBM,ml-frameworks,,https://github.com/microsoft/LightGBM,https://github.com/microsoft/LightGBM,MIT,2016-08-05 05:45:50.000,2025-04-24 13:58:56.000000,2025-04-24 13:58:56,3656.0,27.0,3873.0,436.0,3362.0,422.0,3123.0,17153.0,"A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision..",326.0,42,True,2025-02-15 04:02:50.000,4.6.0,39.0,lightgbm,conda-forge/lightgbm,,,,51303.0,50055.0,https://pypi.org/project/lightgbm,2025-02-15 04:02:50.000,1248.0,10076050.0,10141396.0,https://anaconda.org/conda-forge/lightgbm,2025-04-22 14:56:38.692,3428956.0,,,,,2.0,288228.0,,,,,,,,,,,,,,,,,,, +45,torchvision,pytorch/vision,image,,https://github.com/pytorch/vision,https://github.com/pytorch/vision,BSD-3-Clause,2016-11-09 23:11:43.000,2025-04-24 11:35:15.000000,2025-04-23 16:31:23,4050.0,67.0,7040.0,467.0,5568.0,1095.0,2585.0,16770.0,"Datasets, Transforms and Models specific to Computer Vision.",635.0,42,True,2025-04-23 16:03:55.000,0.22.0,51.0,torchvision,conda-forge/torchvision,,,['pytorch'],6995.0,21.0,https://pypi.org/project/torchvision,2025-04-23 14:41:49.000,6974.0,16934563.0,16987204.0,https://anaconda.org/conda-forge/torchvision,2025-04-22 14:56:44.476,2558824.0,,,,,1.0,40466.0,,,,,,,,,,,,,,,,,,, +46,wandb client,wandb/client,ml-experiments,,https://github.com/wandb/wandb,https://github.com/wandb/wandb,MIT,2017-03-24 05:46:23.000,2025-04-24 14:29:53.000000,2025-04-23 18:37:58,7888.0,269.0,732.0,62.0,6197.0,634.0,2916.0,9780.0,"The AI developer platform. Use Weights & Biases to train and fine-tune models, and manage models from experimentation..",211.0,42,True,2025-04-22 21:53:22.000,0.19.10,308.0,wandb,conda-forge/wandb,,,,76369.0,74557.0,https://pypi.org/project/wandb,2025-04-22 21:50:14.000,1812.0,17133224.0,17151281.0,https://anaconda.org/conda-forge/wandb,2025-04-23 18:02:45.083,1028504.0,,,,,1.0,693.0,,,,,,wandb/wandb,,,,,,,,,,,,, +47,Altair,altair-viz/altair,data-viz,,https://github.com/vega/altair,https://github.com/vega/altair,BSD-3-Clause,2015-09-19 03:14:04.000,2025-04-22 14:56:25.338000,2025-04-22 06:53:11,3873.0,18.0,802.0,137.0,1576.0,136.0,1944.0,9722.0,Declarative visualization library for Python.,176.0,42,True,2024-11-24 00:12:10.000,5.5.0,43.0,altair,conda-forge/altair,,,,223282.0,222366.0,https://pypi.org/project/altair,2024-11-23 23:39:56.000,916.0,28138645.0,28205730.0,https://anaconda.org/conda-forge/altair,2025-04-22 14:56:25.338,2683344.0,,,,,1.0,231.0,,,,,,vega/altair,,,,,,,,,,,,, +48,accelerate,huggingface/accelerate,pytorch-utils,,https://github.com/huggingface/accelerate,https://github.com/huggingface/accelerate,Apache-2.0,2020-10-30 13:27:12.000,2025-04-24 10:19:51.000000,2025-04-24 10:19:49,1729.0,71.0,1059.0,98.0,1733.0,120.0,1682.0,8650.0,"A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic..",340.0,42,True,2025-04-01 13:48:21.000,1.6.0,72.0,accelerate,conda-forge/accelerate,,,['pytorch'],88990.0,86995.0,https://pypi.org/project/accelerate,2025-04-01 11:53:01.000,1995.0,10842316.0,10851073.0,https://anaconda.org/conda-forge/accelerate,2025-04-22 14:58:02.306,367802.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +49,Catboost,catboost/catboost,ml-frameworks,,https://github.com/catboost/catboost,https://github.com/catboost/catboost,Apache-2.0,2017-07-18 05:29:04.000,2025-04-24 11:09:06.000000,2025-04-24 11:09:01,49388.0,377.0,1215.0,189.0,411.0,614.0,1823.0,8363.0,"A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification,..",1319.0,42,True,2025-04-13 10:45:50.000,1.2.8,114.0,catboost,conda-forge/catboost,,,,670.0,16.0,https://pypi.org/project/catboost,2025-04-13 10:12:07.000,654.0,2925929.0,2967636.0,https://anaconda.org/conda-forge/catboost,2025-04-22 14:56:50.403,1990516.0,,,,,2.0,377816.0,,,,,,,,,,,,,,,,,,, +50,scikit-image,scikit-image/scikit-image,image,,https://github.com/scikit-image/scikit-image,https://github.com/scikit-image/scikit-image,,2011-07-07 22:07:20.000,2025-04-22 14:56:23.748000,2025-04-04 01:28:22,14320.0,68.0,2254.0,183.0,4641.0,809.0,2161.0,6233.0,Image processing in Python.,682.0,42,False,2025-02-18 18:05:27.000,0.25.2,74.0,scikit-image,conda-forge/scikit-image,,,,233577.0,226626.0,https://pypi.org/project/scikit-image,2025-02-18 18:04:11.000,6951.0,13600947.0,13736434.0,https://anaconda.org/conda-forge/scikit-image,2025-04-22 14:56:23.748,7858275.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +51,PaddleOCR,PaddlePaddle/PaddleOCR,ocr,,https://github.com/PaddlePaddle/PaddleOCR,https://github.com/PaddlePaddle/PaddleOCR,Apache-2.0,2020-05-08 10:38:16.000,2025-04-22 08:23:39.000000,2025-04-22 08:22:00,6451.0,57.0,8063.0,452.0,3284.0,93.0,9465.0,48617.0,"Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages..",284.0,41,True,2025-03-07 07:04:27.000,2.10.0,49.0,paddleocr,,,,['paddle'],5355.0,5220.0,https://pypi.org/project/paddleocr,2025-03-07 07:04:27.000,135.0,363350.0,395939.0,,,,,,,,1.0,1792425.0,,,,,,,,,,,,,,,,,,, +52,DeepSpeed,microsoft/DeepSpeed,distributed-ml,,https://github.com/deepspeedai/DeepSpeed,https://github.com/deepspeedai/DeepSpeed,Apache-2.0,2020-01-23 18:35:18.000,2025-04-24 05:52:28.000000,2025-04-23 21:58:01,2762.0,104.0,4338.0,352.0,3273.0,1040.0,2025.0,38078.0,"DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and..",380.0,41,True,2025-04-18 15:37:44.000,0.16.7,106.0,deepspeed,,deepspeed/deepspeed,,['pytorch'],12916.0,12644.0,https://pypi.org/project/deepspeed,2025-04-18 15:37:44.000,272.0,674103.0,674452.0,,,,https://hub.docker.com/r/deepspeed/deepspeed,2022-09-02 00:25:31.275782,4.0,22038.0,1.0,,,,,,,deepspeedai/DeepSpeed,,,,,,,,,,,,, +53,Faiss,facebookresearch/faiss,nn-search,,https://github.com/facebookresearch/faiss,https://github.com/facebookresearch/faiss,MIT,2017-02-07 16:07:05.000,2025-04-24 06:14:22.000000,2025-04-24 06:11:27,1442.0,76.0,3763.0,481.0,1427.0,254.0,2385.0,34516.0,A library for efficient similarity search and clustering of dense vectors.,219.0,41,True,2025-04-23 13:14:33.000,2.5.7,117.0,pymilvus,conda-forge/faiss,,,,4986.0,4733.0,https://pypi.org/project/pymilvus,2025-04-23 13:14:33.000,253.0,1807885.0,1850140.0,https://anaconda.org/conda-forge/faiss,2025-04-22 14:57:26.087,2450832.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +54,PyTorch Image Models,rwightman/pytorch-image-models,image,,https://github.com/huggingface/pytorch-image-models,https://github.com/huggingface/pytorch-image-models,Apache-2.0,2019-02-02 05:51:12.000,2025-04-22 15:50:11.000000,2025-04-22 15:50:11,2711.0,33.0,4867.0,316.0,603.0,50.0,917.0,33928.0,"The largest collection of PyTorch image encoders / backbones. Including train, eval, inference, export scripts, and..",171.0,41,True,2025-02-23 05:07:06.000,1.0.15,66.0,timm,conda-forge/timm,,,['pytorch'],55101.0,54000.0,https://pypi.org/project/timm,2025-02-23 05:05:53.000,1101.0,6914478.0,7029264.0,https://anaconda.org/conda-forge/timm,2025-04-22 14:57:29.925,367093.0,,,,,1.0,7692617.0,,,,,,huggingface/pytorch-image-models,,-1.0,,,,,,,,,,, +55,yfinance,ranaroussi/yfinance,financial-data,,https://github.com/ranaroussi/yfinance,https://github.com/ranaroussi/yfinance,Apache-2.0,2017-05-21 10:16:15.000,2025-04-23 21:31:56.000000,2025-04-23 21:31:56,1506.0,85.0,2620.0,251.0,717.0,174.0,1377.0,16784.0,Download market data from Yahoo! Finances API.,132.0,41,True,2025-04-23 21:26:33.000,0.2.56,128.0,yfinance,ranaroussi/yfinance,,,,74062.0,73126.0,https://pypi.org/project/yfinance,2025-04-23 21:26:33.000,936.0,3116369.0,3118546.0,https://anaconda.org/ranaroussi/yfinance,2025-03-25 16:27:42.706,97981.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +56,Albumentations,albumentations-team/albumentations,image,,https://github.com/albumentations-team/albumentations,https://github.com/albumentations-team/albumentations,MIT,2018-06-06 03:10:50.000,2025-04-24 01:46:42.000000,2025-04-24 01:46:39,1289.0,86.0,1670.0,126.0,1210.0,232.0,1006.0,14843.0,Fast and flexible image augmentation library. Paper about the library: https://www.mdpi.com/2078-2489/11/2/125.,168.0,41,True,2025-02-28 18:16:14.000,2.0.5,85.0,albumentations,conda-forge/albumentations,,,['pytorch'],36493.0,35837.0,https://pypi.org/project/albumentations,2025-02-28 18:16:35.000,656.0,6566696.0,6571447.0,https://anaconda.org/conda-forge/albumentations,2025-04-22 14:57:06.407,270834.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +57,DVC,iterative/dvc,ml-experiments,,https://github.com/iterative/dvc,https://github.com/iterative/dvc,Apache-2.0,2017-03-04 08:16:33.000,2025-04-24 00:34:28.000000,2025-04-24 00:34:28,9395.0,14.0,1202.0,135.0,5578.0,263.0,4510.0,14400.0,Data Versioning and ML Experiments.,310.0,41,True,2025-02-15 11:14:43.000,3.59.1,543.0,dvc,conda-forge/dvc,,,,22875.0,22738.0,https://pypi.org/project/dvc,2025-02-15 11:14:43.000,137.0,785367.0,832881.0,https://anaconda.org/conda-forge/dvc,2025-04-22 14:57:08.979,2755839.0,,,,,1.0,,,,,,,,,,dvc,dvc,dvc,,,,,,,, +58,MoviePy,Zulko/moviepy,image,,https://github.com/Zulko/moviepy,https://github.com/Zulko/moviepy,MIT,2013-08-12 09:39:28.000,2025-04-22 14:56:38.733000,2025-02-06 21:30:01,1425.0,24.0,1703.0,253.0,743.0,475.0,1569.0,13335.0,Video editing with Python.,182.0,41,True,2025-01-10 11:54:12.000,2.1.2,89.0,moviepy,conda-forge/moviepy,,,,61521.0,60473.0,https://pypi.org/project/moviepy,2025-01-10 11:54:12.000,1048.0,2966965.0,2970165.0,https://anaconda.org/conda-forge/moviepy,2025-04-22 14:56:38.733,297605.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +59,PyMC3,pymc-devs/pymc,probabilistics,,https://github.com/pymc-devs/pymc,https://github.com/pymc-devs/pymc,Apache-2.0,2009-05-05 09:43:50.000,2025-04-22 14:56:28.348000,2025-04-20 20:10:01,10240.0,61.0,2073.0,223.0,4210.0,359.0,3104.0,8977.0,Bayesian Modeling and Probabilistic Programming in Python.,514.0,41,True,2025-04-03 15:02:31.000,5.21.2,100.0,pymc3,conda-forge/pymc3,,,,6777.0,6585.0,https://pypi.org/project/pymc3,2024-05-31 12:35:21.000,192.0,307663.0,319023.0,https://anaconda.org/conda-forge/pymc3,2025-04-22 14:56:28.348,658046.0,,,,,1.0,1971.0,,,,,,,,,,,,,,,,,,, +60,sktime,alan-turing-institute/sktime,time-series-data,,https://github.com/sktime/sktime,https://github.com/sktime/sktime,BSD-3-Clause,2018-11-06 15:08:24.000,2025-04-24 13:21:06.000000,2025-04-23 08:15:47,5373.0,230.0,1525.0,106.0,4886.0,1111.0,1744.0,8355.0,A unified framework for machine learning with time series.,460.0,41,True,2025-04-12 14:37:46.000,0.37.0,89.0,sktime,conda-forge/sktime-all-extras,,,['sklearn'],4442.0,4297.0,https://pypi.org/project/sktime,2025-04-12 14:37:46.000,145.0,1018309.0,1042649.0,https://anaconda.org/conda-forge/sktime-all-extras,2025-04-22 14:57:58.124,1095264.0,,,,,1.0,111.0,,,,,,sktime/sktime,,,,,,,,,,,,, +61,Shapely,shapely/shapely,geospatial-data,,https://github.com/shapely/shapely,https://github.com/shapely/shapely,BSD-3-Clause,2011-12-31 19:43:11.000,2025-04-22 14:56:20.144000,2025-04-03 08:55:05,2386.0,56.0,582.0,89.0,946.0,257.0,1031.0,4090.0,Manipulation and analysis of geometric objects.,168.0,41,True,2025-04-03 09:13:56.000,2.1.0,128.0,shapely,conda-forge/shapely,,,,107370.0,103447.0,https://pypi.org/project/shapely,2025-04-03 09:13:56.000,3923.0,44559128.0,44771025.0,https://anaconda.org/conda-forge/shapely,2025-04-22 14:56:20.144,11861231.0,,,,,1.0,3818.0,,,,,,,,,,,,,,,,,,, +62,PyFlink,apache/flink,ml-frameworks,,https://github.com/apache/flink,https://github.com/apache/flink,Apache-2.0,2014-06-07 07:00:10.000,2025-04-24 13:07:40.000000,2025-04-24 13:07:39,36756.0,288.0,13469.0,931.0,26486.0,1239.0,,24791.0,Apache Flink Python API.,2007.0,40,True,2025-02-12 19:13:03.000,1.19.2,52.0,apache-flink,,,,,56.0,21.0,https://pypi.org/project/apache-flink,2025-02-12 19:13:03.000,35.0,5544432.0,5544432.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +63,PyTorch Geometric,pyg-team/pytorch_geometric,graph,,https://github.com/pyg-team/pytorch_geometric,https://github.com/pyg-team/pytorch_geometric,MIT,2017-10-06 16:03:03.000,2025-04-24 00:48:37.000000,2025-04-23 08:01:28,7787.0,91.0,3801.0,255.0,3445.0,1180.0,2707.0,22256.0,Graph Neural Network Library for PyTorch.,542.0,40,True,2024-09-26 08:11:27.000,2.6.1,46.0,torch-geometric,conda-forge/pytorch_geometric,,,['pytorch'],9294.0,8939.0,https://pypi.org/project/torch-geometric,2024-09-26 08:11:27.000,355.0,621274.0,623899.0,https://anaconda.org/conda-forge/pytorch_geometric,2025-04-22 14:57:29.443,149672.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +64,flair,flairNLP/flair,nlp,,https://github.com/flairNLP/flair,https://github.com/flairNLP/flair,MIT,2018-06-11 11:04:18.000,2025-04-23 09:08:58.000000,2025-03-31 11:51:48,6652.0,105.0,2108.0,199.0,1287.0,115.0,2301.0,14143.0,A very simple framework for state-of-the-art Natural Language Processing (NLP).,277.0,40,True,2025-02-05 14:46:22.000,0.15.1,35.0,flair,conda-forge/python-flair,,,['pytorch'],4081.0,3932.0,https://pypi.org/project/flair,2025-02-05 14:45:41.000,149.0,105226.0,105953.0,https://anaconda.org/conda-forge/python-flair,2025-04-22 14:57:32.879,41458.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +65,dlib,davisking/dlib,ml-frameworks,,https://github.com/davisking/dlib,https://github.com/davisking/dlib,BSL-1.0,2014-01-29 00:45:33.000,2025-04-22 14:56:27.771000,2025-04-05 11:47:41,8308.0,14.0,3419.0,479.0,746.0,46.0,2192.0,13965.0,A toolkit for making real world machine learning and data analysis applications in C++.,203.0,40,False,2025-04-19 23:36:04.000,19.24.8,40.0,dlib,conda-forge/dlib,,,,37409.0,37176.0,https://pypi.org/project/dlib,2025-04-19 23:36:04.000,233.0,209453.0,228607.0,https://anaconda.org/conda-forge/dlib,2025-04-22 14:56:27.771,1098437.0,,,,,2.0,25572.0,,,,,,,,,,,,,,,,,,, +66,SageMaker SDK,aws/sagemaker-python-sdk,ml-experiments,,https://github.com/aws/sagemaker-python-sdk,https://github.com/aws/sagemaker-python-sdk,Apache-2.0,2017-11-14 01:03:33.000,2025-04-23 20:31:27.000000,2025-04-23 20:31:26,4150.0,123.0,1163.0,135.0,3383.0,334.0,1260.0,2155.0,A library for training and deploying machine learning models on Amazon SageMaker.,477.0,40,True,2025-04-23 13:36:09.000,2.243.3,629.0,sagemaker,conda-forge/sagemaker-python-sdk,,,"['mxnet', 'tensorflow']",5942.0,5763.0,https://pypi.org/project/sagemaker,2025-04-23 13:36:09.000,179.0,23185078.0,23211348.0,https://anaconda.org/conda-forge/sagemaker-python-sdk,2025-04-22 14:57:16.707,1471152.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +67,MXNet,apache/incubator-mxnet,ml-frameworks,,https://github.com/apache/mxnet,https://github.com/apache/mxnet,Apache-2.0,2015-04-30 16:21:15.000,2025-04-22 15:32:24.964000,2023-01-26 21:28:45,11896.0,,6788.0,1068.0,11124.0,1805.0,7758.0,20804.0,"Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler;..",984.0,39,False,2022-10-24 07:38:03.000,1.9.1,983.0,mxnet,mxnet,,,['mxnet'],7998.0,7872.0,https://pypi.org/project/mxnet,2022-05-17 21:11:13.000,120.0,659863.0,660262.0,https://anaconda.org/anaconda/mxnet,2025-04-22 15:32:24.964,11908.0,,,,,2.0,28329.0,,,,,,apache/mxnet,,,,,,6.0,,,,,,, +68,Rasa,RasaHQ/rasa,nlp,,https://github.com/RasaHQ/rasa,https://github.com/RasaHQ/rasa,Apache-2.0,2016-10-14 12:27:49.000,2025-04-11 14:41:21.000000,2025-01-14 10:26:14,32383.0,,4767.0,360.0,6434.0,141.0,6644.0,20033.0,"Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management,..",593.0,39,True,2025-01-14 10:40:21.000,3.6.21,374.0,rasa,,,,['tensorflow'],5180.0,5120.0,https://pypi.org/project/rasa,2025-01-14 10:40:10.000,60.0,218790.0,218790.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +69,deepface,serengil/deepface,image,,https://github.com/serengil/deepface,https://github.com/serengil/deepface,MIT,2020-02-08 20:42:28.000,2025-04-19 11:26:51.000000,2025-04-19 11:26:25,1990.0,160.0,2544.0,176.0,280.0,6.0,1177.0,18781.0,"A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python.",87.0,39,True,2024-08-17 07:30:49.000,0.0.93,92.0,deepface,,,,,7061.0,7017.0,https://pypi.org/project/deepface,2024-08-17 07:24:30.000,44.0,657418.0,657418.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +70,speechbrain,speechbrain/speechbrain,audio,,https://github.com/speechbrain/speechbrain,https://github.com/speechbrain/speechbrain,Apache-2.0,2020-04-28 17:48:45.000,2025-04-16 15:56:40.000000,2025-04-16 15:56:38,10503.0,71.0,1447.0,135.0,1350.0,146.0,1033.0,9735.0,A PyTorch-based Speech Toolkit.,257.0,39,True,2025-04-07 17:05:07.000,1.0.3,19.0,speechbrain,,,,['pytorch'],3389.0,3310.0,https://pypi.org/project/speechbrain,2025-04-07 17:17:04.000,79.0,1346482.0,1346482.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +71,Tokenizers,huggingface/tokenizers,nlp,,https://github.com/huggingface/tokenizers,https://github.com/huggingface/tokenizers,Apache-2.0,2019-11-01 17:52:20.000,2025-04-22 14:57:31.323000,2025-03-18 16:33:44,1860.0,5.0,866.0,122.0,705.0,78.0,978.0,9620.0,Fast State-of-the-Art Tokenizers optimized for Research and Production.,106.0,39,True,2025-03-13 10:50:56.000,0.21.1,110.0,tokenizers,conda-forge/tokenizers,,,,161917.0,160623.0,https://pypi.org/project/tokenizers,2025-03-13 10:50:56.000,1294.0,50783117.0,50833327.0,https://anaconda.org/conda-forge/tokenizers,2025-04-22 14:57:31.323,2861917.0,,,,,1.0,74.0,,,,,,,,,,,,,,,,,,, +72,FiftyOne,voxel51/fiftyone,data-viz,,https://github.com/voxel51/fiftyone,https://github.com/voxel51/fiftyone,Apache-2.0,2020-04-22 13:43:28.000,2025-04-24 14:55:25.000000,2025-04-24 14:41:10,23236.0,645.0,617.0,65.0,4138.0,564.0,1114.0,9422.0,"Visualize, create, and debug image and video datasets and model predictions.",153.0,39,True,2025-04-04 20:25:17.000,1.4.1,157.0,fiftyone,,,,"['tensorflow', 'pytorch', 'jupyter']",958.0,932.0,https://pypi.org/project/fiftyone,2025-04-04 20:23:16.000,26.0,149492.0,149492.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +73,folium,python-visualization/folium,geospatial-data,,https://github.com/python-visualization/folium,https://github.com/python-visualization/folium,MIT,2013-05-09 04:21:35.000,2025-04-24 13:17:17.000000,2025-04-22 15:51:39,1979.0,40.0,2230.0,161.0,951.0,96.0,1091.0,7102.0,Python Data. Leaflet.js Maps.,174.0,39,True,2025-02-27 20:00:19.000,0.19.5,39.0,folium,conda-forge/folium,,,,58808.0,57945.0,https://pypi.org/project/folium,2025-02-27 20:00:19.000,863.0,2162212.0,2234304.0,https://anaconda.org/conda-forge/folium,2025-04-22 14:56:20.778,3676699.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +74,PyVista,pyvista/pyvista,data-viz,,https://github.com/pyvista/pyvista,https://github.com/pyvista/pyvista,MIT,2017-05-31 18:01:42.000,2025-04-24 14:22:25.000000,2025-04-24 03:26:35,5200.0,209.0,553.0,37.0,4246.0,678.0,1193.0,3034.0,3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK).,174.0,39,True,2025-04-19 04:54:46.000,0.45.0,100.0,pyvista,conda-forge/pyvista,,,['jupyter'],5266.0,4579.0,https://pypi.org/project/pyvista,2025-04-19 02:38:38.000,687.0,601343.0,612864.0,https://anaconda.org/conda-forge/pyvista,2025-04-22 15:10:42.110,667682.0,,,,,2.0,893.0,,,,,,,,,,,,,,,,,,, +75,MNE,mne-tools/mne-python,medical-data,,https://github.com/mne-tools/mne-python,https://github.com/mne-tools/mne-python,BSD-3-Clause,2011-01-28 03:31:13.000,2025-04-23 17:14:37.000000,2025-04-23 17:14:37,18322.0,60.0,1332.0,82.0,8245.0,552.0,4442.0,2919.0,MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python.,390.0,39,True,2024-12-18 21:23:23.000,1.9.0,81.0,mne,conda-forge/mne,,,,6020.0,5601.0,https://pypi.org/project/mne,2024-12-18 21:23:23.000,419.0,173413.0,182214.0,https://anaconda.org/conda-forge/mne,2025-04-22 14:56:32.672,519281.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +76,dask.distributed,dask/distributed,distributed-ml,,https://github.com/dask/distributed,https://github.com/dask/distributed,BSD-3-Clause,2015-09-13 18:42:29.000,2025-04-24 08:12:25.000000,2025-04-22 18:29:33,6012.0,41.0,730.0,56.0,5271.0,1543.0,2442.0,1625.0,A distributed task scheduler for Dask.,335.0,39,True,2025-04-22 18:32:37.000,2025.4.0,250.0,distributed,conda-forge/distributed,,,,40969.0,40009.0,https://pypi.org/project/distributed,2025-04-22 18:32:37.000,960.0,3863995.0,4157352.0,https://anaconda.org/conda-forge/distributed,2025-04-22 19:38:25.149,17308111.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +77,OCRmyPDF,ocrmypdf/OCRmyPDF,ocr,,https://github.com/ocrmypdf/OCRmyPDF,https://github.com/ocrmypdf/OCRmyPDF,MPL-2.0,2013-12-20 08:26:28.000,2025-04-24 09:00:58.000000,2025-04-21 19:23:34,4000.0,45.0,1867.0,178.0,207.0,130.0,1118.0,27962.0,"OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched.",110.0,38,True,2025-04-24 09:01:27.000,16.10.1,252.0,ocrmypdf,conda-forge/ocrmypdf,,,,1318.0,1272.0,https://pypi.org/project/ocrmypdf,2025-04-24 09:00:58.000,46.0,235555.0,238039.0,https://anaconda.org/conda-forge/ocrmypdf,2025-04-22 14:57:47.405,96318.0,,,,,1.0,11164.0,,,,,,,,1.0,ocrmypdf,ocrmypdf,,,,,,,,, +78,InsightFace,deepinsight/insightface,image,,https://github.com/deepinsight/insightface,https://github.com/deepinsight/insightface,MIT,2017-09-01 00:36:51.000,2025-04-23 09:19:10.000000,2025-04-23 09:19:10,2360.0,12.0,5498.0,516.0,191.0,1180.0,1389.0,24979.0,State-of-the-art 2D and 3D Face Analysis Project.,66.0,38,True,2023-04-02 08:03:01.222,0.7.3,28.0,insightface,,,,['mxnet'],4046.0,4016.0,https://pypi.org/project/insightface,2022-12-17 02:14:00.699,30.0,236107.0,551308.0,,,,,,,,2.0,7564837.0,,,,,,,,,,,,,,,,,,, +79,haystack,deepset-ai/haystack,nlp,,https://github.com/deepset-ai/haystack,https://github.com/deepset-ai/haystack,Apache-2.0,2019-11-14 09:05:28.000,2025-04-24 14:41:52.000000,2025-04-24 14:17:06,4072.0,242.0,2137.0,150.0,4467.0,127.0,3760.0,20421.0,"AI orchestration framework to build customizable, production-ready LLM applications. Connect components (models,..",287.0,38,True,2025-04-24 14:42:33.000,2.13.1,100.0,haystack,,,,,1078.0,1073.0,https://pypi.org/project/haystack,2021-12-15 14:01:39.322,5.0,5869.0,5869.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +80,gensim,RaRe-Technologies/gensim,nlp,,https://github.com/piskvorky/gensim,https://github.com/piskvorky/gensim,LGPL-2.1,2011-02-10 07:43:04.000,2025-04-22 14:56:41.039000,2025-02-14 14:36:27,4536.0,1.0,4379.0,426.0,1716.0,395.0,1466.0,15982.0,Topic Modelling for Humans.,458.0,38,True,2024-07-19 14:39:26.000,4.3.3,94.0,gensim,conda-forge/gensim,,,,75888.0,74511.0,https://pypi.org/project/gensim,2024-07-19 14:39:26.000,1377.0,4824355.0,4856659.0,https://anaconda.org/conda-forge/gensim,2025-04-22 14:56:41.039,1580337.0,,,,,1.0,6030.0,,,,,,piskvorky/gensim,,,,,,,,,,,,, +81,ChatterBot,gunthercox/ChatterBot,nlp,,https://github.com/gunthercox/ChatterBot,https://github.com/gunthercox/ChatterBot,BSD-3-Clause,2014-09-28 14:49:00.000,2025-04-08 10:17:21.000000,2025-04-08 10:17:12,2006.0,128.0,4470.0,538.0,735.0,149.0,1524.0,14298.0,"ChatterBot is a machine learning, conversational dialog engine for creating chat bots.",107.0,38,True,2025-04-05 21:44:18.000,1.2.6,93.0,chatterbot,,,,,6298.0,6280.0,https://pypi.org/project/chatterbot,2025-04-05 21:37:41.000,18.0,31877.0,31877.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +82,NeMo,NVIDIA/NeMo,nlp,,https://github.com/NVIDIA/NeMo,https://github.com/NVIDIA/NeMo,Apache-2.0,2019-08-05 20:16:42.000,2025-04-24 14:21:22.000000,2025-04-24 13:57:38,8435.0,610.0,2798.0,221.0,9969.0,176.0,2452.0,13708.0,"A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal,..",412.0,38,True,2025-03-31 21:31:41.000,2.2.1,88.0,nemo-toolkit,,,,['pytorch'],35.0,21.0,https://pypi.org/project/nemo-toolkit,2025-04-21 23:24:17.000,14.0,302356.0,308690.0,,,,,,,,1.0,424380.0,,,,,,,,,,,,,,,,,,, +83,pandas-profiling,ydataai/pandas-profiling,data-viz,,https://github.com/ydataai/ydata-profiling,https://github.com/ydataai/ydata-profiling,MIT,2016-01-09 23:47:55.000,2025-04-22 14:56:27.206000,2025-03-26 00:32:10,1575.0,51.0,1704.0,149.0,877.0,251.0,586.0,12867.0,1 Line of code data quality profiling & exploratory data analysis for Pandas and Spark DataFrames.,137.0,38,True,2025-03-26 00:41:27.000,4.16.1,73.0,pandas-profiling,conda-forge/pandas-profiling,,,"['jupyter', 'pandas']",6357.0,6174.0,https://pypi.org/project/pandas-profiling,2023-02-03 17:59:40.571,183.0,368167.0,373035.0,https://anaconda.org/conda-forge/pandas-profiling,2025-04-22 14:56:27.206,506106.0,,,,,2.0,313.0,,,,,,ydataai/ydata-profiling,,,,,,,,,,,,, +84,sentencepiece,google/sentencepiece,nlp,,https://github.com/google/sentencepiece,https://github.com/google/sentencepiece,Apache-2.0,2017-03-07 10:03:48.000,2025-04-22 14:57:29.549000,2025-02-26 15:14:58,992.0,6.0,1205.0,126.0,330.0,49.0,729.0,10817.0,Unsupervised text tokenizer for Neural Network-based text generation.,92.0,38,True,2024-02-19 17:03:42.000,0.2.0,35.0,sentencepiece,conda-forge/sentencepiece,,,,108867.0,107135.0,https://pypi.org/project/sentencepiece,2024-02-19 17:03:42.000,1732.0,27713799.0,27740394.0,https://anaconda.org/conda-forge/sentencepiece,2025-04-22 14:57:29.549,1476214.0,,,,,1.0,55775.0,,,,,,,,,,,,,,,,,,, +85,Theano,Theano/Theano,ml-frameworks,,https://github.com/Theano/Theano,https://github.com/Theano/Theano,BSD-3-Clause,2011-08-10 03:48:06.000,2025-04-22 14:56:25.718000,2024-01-15 03:16:24,28133.0,,2488.0,536.0,4121.0,697.0,2088.0,9944.0,"Theano was a Python library that allows you to define, optimize, and evaluate mathematical expressions involving..",386.0,38,False,2020-07-27 16:13:54.000,1.0.5,45.0,theano,conda-forge/theano,,,,16283.0,16111.0,https://pypi.org/project/theano,2020-07-27 16:13:54.000,172.0,87481.0,111335.0,https://anaconda.org/conda-forge/theano,2025-04-22 14:56:25.718,2504729.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +86,TextBlob,sloria/TextBlob,nlp,,https://github.com/sloria/TextBlob,https://github.com/sloria/TextBlob,MIT,2013-06-30 18:29:18.000,2025-04-22 19:10:45.000000,2025-04-22 19:10:43,624.0,15.0,1158.0,257.0,223.0,97.0,182.0,9323.0,"Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation,..",37.0,38,True,2025-01-13 23:03:01.000,0.19.0,62.0,textblob,conda-forge/textblob,,,,55296.0,54891.0,https://pypi.org/project/textblob,2025-01-13 23:03:01.000,405.0,1281515.0,1284235.0,https://anaconda.org/conda-forge/textblob,2025-04-22 14:56:26.678,282941.0,,,,,1.0,125.0,,,,,,,,,,,,,,,,,,, +87,espnet,espnet/espnet,audio,,https://github.com/espnet/espnet,https://github.com/espnet/espnet,Apache-2.0,2017-12-13 00:45:11.000,2025-04-23 10:16:32.000000,2025-04-21 21:13:32,23038.0,211.0,2190.0,171.0,3476.0,368.0,2142.0,9024.0,End-to-End Speech Processing Toolkit.,492.0,38,True,2025-03-27 15:18:36.000,.202503,55.0,espnet,,,,,449.0,437.0,https://pypi.org/project/espnet,2024-12-04 04:40:26.000,12.0,24044.0,24045.0,,,,,,,,1.0,84.0,,,,,,,,,,,,,,,,,,, +88,GeoPandas,geopandas/geopandas,geospatial-data,,https://github.com/geopandas/geopandas,https://github.com/geopandas/geopandas,BSD-3-Clause,2013-06-27 17:03:47.000,2025-04-22 14:56:20.839000,2025-04-17 19:24:38,2074.0,16.0,947.0,105.0,1745.0,441.0,1301.0,4716.0,Python tools for geographic data.,242.0,38,True,2024-07-02 12:26:55.000,1.0.1,57.0,geopandas,conda-forge/geopandas,,,['pandas'],56734.0,53895.0,https://pypi.org/project/geopandas,2024-07-02 12:26:50.000,2839.0,7612227.0,7691003.0,https://anaconda.org/conda-forge/geopandas,2025-04-22 14:56:20.839,4567417.0,,,,,2.0,2983.0,,,,,,,,,,,,,,,,,,, +89,TensorFlow Datasets,tensorflow/datasets,tensorflow-utils,,https://github.com/tensorflow/datasets,https://github.com/tensorflow/datasets,Apache-2.0,2018-09-10 21:27:22.000,2025-04-22 14:57:51.541000,2025-04-15 08:18:11,6685.0,39.0,1572.0,107.0,4640.0,698.0,769.0,4395.0,"TFDS is a collection of datasets ready to use with TensorFlow, Jax, ...",494.0,38,True,2025-03-12 16:04:38.000,4.9.8,41.0,tensorflow-datasets,conda-forge/tensorflow-datasets,,,['tensorflow'],23610.0,23274.0,https://pypi.org/project/tensorflow-datasets,2025-03-12 16:04:33.000,336.0,1613091.0,1614060.0,https://anaconda.org/conda-forge/tensorflow-datasets,2025-04-22 14:57:51.541,45545.0,,,,,1.0,,,,,,,,,-1.0,,,,,,,,,,, +90,HoloViews,holoviz/holoviews,data-viz,,https://github.com/holoviz/holoviews,https://github.com/holoviz/holoviews,BSD-3-Clause,2014-05-07 16:59:22.000,2025-04-24 13:20:16.000000,2025-04-23 17:34:38,10945.0,40.0,407.0,55.0,3187.0,1084.0,2301.0,2785.0,"With Holoviews, your data visualizes itself.",150.0,38,True,2025-03-13 13:22:18.000,1.20.2,180.0,holoviews,conda-forge/holoviews,,,['jupyter'],15787.0,15351.0,https://pypi.org/project/holoviews,2025-03-31 11:58:36.000,431.0,511248.0,546625.0,https://anaconda.org/conda-forge/holoviews,2025-04-22 14:56:23.771,2039219.0,,,,,2.0,,@pyviz/jupyterlab_pyviz,https://www.npmjs.com/package/@pyviz/jupyterlab_pyviz,2025-01-14 14:45:46.544,5.0,219.0,,,-1.0,,,,,,,,,,, +91,huggingface_hub,huggingface/huggingface_hub,model-serialisation,,https://github.com/huggingface/huggingface_hub,https://github.com/huggingface/huggingface_hub,Apache-2.0,2020-12-22 10:20:28.000,2025-04-24 13:50:58.000000,2025-04-24 13:50:56,1786.0,126.0,672.0,61.0,1762.0,171.0,976.0,2534.0,The official Python client for the Huggingface Hub.,231.0,38,True,2025-04-08 08:34:46.000,0.30.2,167.0,huggingface_hub,conda-forge/huggingface_hub,,,,2769.0,,https://pypi.org/project/huggingface_hub,2025-04-08 08:32:43.000,2769.0,78953654.0,79015113.0,https://anaconda.org/conda-forge/huggingface_hub,2025-04-22 14:57:46.415,3072974.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +92,Nilearn,nilearn/nilearn,medical-data,,https://github.com/nilearn/nilearn,https://github.com/nilearn/nilearn,BSD-3-Clause,2011-01-09 19:02:23.000,2025-04-24 08:12:04.000000,2025-04-24 08:12:04,10920.0,182.0,604.0,63.0,3080.0,298.0,2048.0,1262.0,Machine learning for NeuroImaging in Python.,254.0,38,True,2024-12-23 09:33:25.000,0.11.1,49.0,nilearn,conda-forge/nilearn,,,['sklearn'],4432.0,4123.0,https://pypi.org/project/nilearn,2024-12-23 09:28:14.000,309.0,117100.0,123299.0,https://anaconda.org/conda-forge/nilearn,2025-04-22 14:56:23.063,328274.0,,,,,1.0,295.0,,,,,,,,-1.0,,,,,,,,,,, +93,jieba,fxsjy/jieba,chinese-nlp,,https://github.com/fxsjy/jieba,https://github.com/fxsjy/jieba,MIT,2012-09-29 07:52:01.000,2025-04-22 14:56:34.345000,2020-02-15 08:33:35,523.0,,6713.0,1279.0,167.0,674.0,228.0,34014.0,Chinese Words Segmentation Utilities.,49.0,37,False,2020-01-20 14:27:23.000,0.42.1,32.0,jieba,conda-forge/jieba,,,,38259.0,37421.0,https://pypi.org/project/jieba,2020-01-20 14:27:23.000,838.0,1208188.0,1211931.0,https://anaconda.org/conda-forge/jieba,2025-04-22 14:56:34.345,175960.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +94,fairseq,facebookresearch/fairseq,nlp,,https://github.com/facebookresearch/fairseq,https://github.com/facebookresearch/fairseq,MIT,2017-08-29 16:26:12.000,2025-04-22 14:57:32.679000,2024-10-18 16:40:02,2327.0,,6486.0,421.0,1364.0,1313.0,3055.0,31360.0,Facebook AI Research Sequence-to-Sequence Toolkit written in Python.,429.0,37,True,2022-06-27 19:32:58.000,0.12.2,16.0,fairseq,conda-forge/fairseq,,,['pytorch'],4271.0,4154.0,https://pypi.org/project/fairseq,2022-06-27 19:32:38.000,117.0,93664.0,96103.0,https://anaconda.org/conda-forge/fairseq,2025-04-22 14:57:32.679,138847.0,,,,,2.0,405.0,,,,,,,,,,,,,,,,,,, +95,imgaug,aleju/imgaug,image,,https://github.com/aleju/imgaug,https://github.com/aleju/imgaug,MIT,2015-07-10 20:31:33.000,2025-04-22 14:57:06.395000,2020-06-01 14:58:26,2913.0,,2444.0,229.0,347.0,310.0,226.0,14564.0,Image augmentation for machine learning experiments.,36.0,37,False,2020-02-06 06:18:40.000,0.4.0,11.0,imgaug,conda-forge/imgaug,,,,25806.0,25541.0,https://pypi.org/project/imgaug,2020-02-05 20:54:22.000,265.0,446136.0,449154.0,https://anaconda.org/conda-forge/imgaug,2025-04-22 14:57:06.395,211305.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +96,glfw,glfw/glfw,image,,https://github.com/glfw/glfw,https://github.com/glfw/glfw,Zlib,2013-04-18 15:24:53.000,2025-04-22 14:57:01.127000,2025-01-13 19:00:04,4822.0,,5277.0,383.0,743.0,670.0,1391.0,13717.0,"A multi-platform library for OpenGL, OpenGL ES, Vulkan, window and input.",200.0,37,False,2025-04-15 15:39:39.000,2.9.0,60.0,glfw,conda-forge/glfw,,,,1808.0,1583.0,https://pypi.org/project/glfw,2025-04-15 15:39:39.000,225.0,627856.0,670236.0,https://anaconda.org/conda-forge/glfw,2025-04-22 14:57:01.127,357515.0,,,,,2.0,4262830.0,,,,,,,,,,,,,,,,,,, +97,carla,carla-simulator/carla,others,,https://github.com/carla-simulator/carla,https://github.com/carla-simulator/carla,MIT,2017-10-24 09:06:23.000,2025-04-24 12:15:56.000000,2025-04-24 08:33:50,6603.0,19.0,3843.0,259.0,1863.0,1120.0,4789.0,12364.0,Open-source simulator for autonomous driving research.,182.0,37,True,2024-12-19 14:10:57.000,0.10.0,27.0,carla,,,,,1020.0,1009.0,https://pypi.org/project/carla,2023-11-14 22:51:02.000,11.0,27638.0,27638.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +98,AllenNLP,allenai/allennlp,nlp,,https://github.com/allenai/allennlp,https://github.com/allenai/allennlp,Apache-2.0,2017-05-15 15:52:41.000,2025-04-22 14:56:58.676000,2022-11-22 00:42:46,2719.0,,2254.0,277.0,3096.0,91.0,2477.0,11842.0,"An open-source NLP research library, built on PyTorch.",267.0,37,False,2022-10-18 23:54:05.191,2.10.1,265.0,allennlp,conda-forge/allennlp,,,['pytorch'],4522.0,4397.0,https://pypi.org/project/allennlp,2022-10-18 23:54:05.191,125.0,67833.0,70225.0,https://anaconda.org/conda-forge/allennlp,2025-04-22 14:56:58.676,181808.0,,,,,2.0,71.0,,,,,,,,,,,,,,,,,,, +99,Kornia,kornia/kornia,image,,https://github.com/kornia/kornia,https://github.com/kornia/kornia,Apache-2.0,2018-08-22 10:31:37.000,2025-04-22 15:22:08.000000,2025-04-22 15:22:06,2876.0,24.0,984.0,127.0,2021.0,293.0,679.0,10408.0,Geometric Computer Vision Library for Spatial AI.,285.0,37,True,2025-01-11 05:21:32.000,0.8.0,42.0,kornia,conda-forge/kornia,,,['pytorch'],15653.0,15347.0,https://pypi.org/project/kornia,2025-01-11 05:21:32.000,306.0,2429664.0,2433891.0,https://anaconda.org/conda-forge/kornia,2025-04-22 14:57:25.772,218642.0,,,,,2.0,1804.0,,,,,,,,,,,,,,,,,,, +100,Flax,google/flax,ml-frameworks,,https://github.com/google/flax,https://github.com/google/flax,Apache-2.0,2020-01-10 09:48:37.000,2025-04-24 04:09:45.000000,2025-04-23 21:33:15,5102.0,151.0,693.0,85.0,2883.0,392.0,780.0,6503.0,Flax is a neural network library for JAX that is designed for flexibility.,261.0,37,True,2025-04-23 20:27:05.000,0.10.6,54.0,flax,conda-forge/flax,,,['jax'],14139.0,13526.0,https://pypi.org/project/flax,2025-04-23 20:27:05.000,613.0,1564976.0,1566951.0,https://anaconda.org/conda-forge/flax,2025-04-22 14:57:49.496,96817.0,,,,,2.0,60.0,,,,,,,,,,,,,,,,,,, +101,Ignite,pytorch/ignite,ml-frameworks,,https://github.com/pytorch/ignite,https://github.com/pytorch/ignite,BSD-3-Clause,2017-11-23 17:31:21.000,2025-04-24 09:47:03.000000,2025-04-24 09:03:13,1800.0,51.0,647.0,59.0,1956.0,160.0,1286.0,4653.0,High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.,837.0,37,True,2025-03-29 13:50:06.000,0.5.2,1959.0,pytorch-ignite,pytorch/ignite,,,['pytorch'],3853.0,3744.0,https://pypi.org/project/pytorch-ignite,2025-04-24 00:20:15.000,109.0,177635.0,180410.0,https://anaconda.org/pytorch/ignite,2025-03-30 00:53:29.695,227555.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +102,tensorflow-probability,tensorflow/probability,probabilistics,,https://github.com/tensorflow/probability,https://github.com/tensorflow/probability,Apache-2.0,2017-10-23 23:50:54.000,2025-04-22 14:57:01.266000,2025-04-15 15:35:28,12221.0,15.0,1117.0,154.0,472.0,711.0,762.0,4328.0,Probabilistic reasoning and statistical analysis in TensorFlow.,501.0,37,True,2024-11-08 16:30:13.000,0.25.0,53.0,tensorflow-probability,conda-forge/tensorflow-probability,,,['tensorflow'],621.0,3.0,https://pypi.org/project/tensorflow-probability,2024-11-08 16:25:57.000,618.0,1596114.0,1599598.0,https://anaconda.org/conda-forge/tensorflow-probability,2025-04-22 14:57:01.266,174249.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +103,PyQtGraph,pyqtgraph/pyqtgraph,data-viz,,https://github.com/pyqtgraph/pyqtgraph,https://github.com/pyqtgraph/pyqtgraph,MIT,2013-09-12 07:18:21.000,2025-04-22 14:56:31.078000,2025-04-08 13:20:13,4346.0,121.0,1107.0,154.0,1805.0,435.0,914.0,4058.0,Fast data visualization and GUI tools for scientific / engineering applications.,304.0,37,True,2024-04-29 02:18:56.000,0.13.7,25.0,pyqtgraph,conda-forge/pyqtgraph,,,,13062.0,12036.0,https://pypi.org/project/pyqtgraph,2024-04-29 02:18:56.000,1026.0,393290.0,405067.0,https://anaconda.org/conda-forge/pyqtgraph,2025-04-22 14:56:31.078,683122.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +104,PennyLane,PennyLaneAI/PennyLane,others,,https://github.com/PennyLaneAI/pennylane,https://github.com/PennyLaneAI/pennylane,Apache-2.0,2018-04-17 16:45:42.000,2025-04-24 14:57:24.000000,2025-04-24 09:51:33,5297.0,315.0,647.0,46.0,5881.0,383.0,1172.0,2590.0,"PennyLane is a cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry...",200.0,37,True,2025-04-15 19:49:03.000,0.41.0,62.0,pennylane,conda-forge/pennylane,,,,1696.0,1548.0,https://pypi.org/project/pennylane,2025-04-15 19:49:03.000,148.0,94351.0,100645.0,https://anaconda.org/conda-forge/pennylane,2025-04-22 14:58:05.852,258023.0,,,,,1.0,100.0,,,,,,,,,,,,,,,,,,, +105,Rasterio,rasterio/rasterio,geospatial-data,,https://github.com/rasterio/rasterio,https://github.com/rasterio/rasterio,BSD-3-Clause,2013-11-04 16:36:27.000,2025-04-22 14:56:21.283000,2025-04-14 20:18:34,3928.0,6.0,538.0,144.0,1255.0,151.0,1722.0,2349.0,Rasterio reads and writes geospatial raster datasets.,166.0,37,True,2024-12-02 16:44:51.000,1.4.3,166.0,rasterio,conda-forge/rasterio,,,,18162.0,16626.0,https://pypi.org/project/rasterio,2024-12-02 14:48:24.000,1536.0,2297518.0,2386885.0,https://anaconda.org/conda-forge/rasterio,2025-04-22 14:56:21.283,4557350.0,,,,,2.0,1022.0,,,,,,,,,,,,,,,,,,, +106,imageio,imageio/imageio,image,,https://github.com/imageio/imageio,https://github.com/imageio/imageio,BSD-2-Clause,2013-05-04 22:56:45.000,2025-04-22 14:56:30.839000,2025-02-21 05:44:35,1554.0,1.0,309.0,31.0,511.0,100.0,514.0,1585.0,Python library for reading and writing image data.,122.0,37,True,2025-01-20 02:42:38.000,2.37.0,97.0,imageio,conda-forge/imageio,,,,172614.0,169999.0,https://pypi.org/project/imageio,2025-01-20 02:42:34.000,2615.0,26240511.0,26376607.0,https://anaconda.org/conda-forge/imageio,2025-04-22 14:56:30.839,7756279.0,,,,,2.0,1625.0,,,,,,,,,,,,,,,,,,, +107,pyproj,pyproj4/pyproj,geospatial-data,,https://github.com/pyproj4/pyproj,https://github.com/pyproj4/pyproj,MIT,2014-12-29 21:38:25.000,2025-04-22 14:56:20.271000,2025-04-01 19:28:40,1614.0,21.0,217.0,33.0,730.0,36.0,596.0,1116.0,Python interface to PROJ (cartographic projections and coordinate transformations library).,69.0,37,True,2025-02-16 04:27:19.000,3.7.1,65.0,pyproj,conda-forge/pyproj,,,,44504.0,42556.0,https://pypi.org/project/pyproj,2025-02-16 04:27:19.000,1948.0,10688296.0,10867001.0,https://anaconda.org/conda-forge/pyproj,2025-04-22 14:56:20.271,10186203.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +108,Face Recognition,ageitgey/face_recognition,image,,https://github.com/ageitgey/face_recognition,https://github.com/ageitgey/face_recognition,MIT,2017-03-03 21:52:39.000,2025-04-22 14:57:35.730000,2022-06-10 09:12:18,238.0,,13504.0,1570.0,237.0,795.0,594.0,54637.0,The worlds simplest facial recognition api for Python and the command line.,54.0,36,False,2020-02-20 14:26:01.000,1.3.0,23.0,face_recognition,conda-forge/face_recognition,,,['pytorch'],4852.0,4736.0,https://pypi.org/project/face_recognition,2020-02-20 14:26:01.000,116.0,185511.0,186135.0,https://anaconda.org/conda-forge/face_recognition,2025-04-22 14:57:35.730,33585.0,,,,,2.0,1410.0,,,,,,,,,,,,,,,,,,, +109,Coqui TTS,coqui-ai/TTS,audio,,https://github.com/coqui-ai/TTS,https://github.com/coqui-ai/TTS,MPL-2.0,2020-05-20 15:45:28.000,2025-04-22 14:58:02.848000,2024-02-10 14:20:58,4668.0,,4726.0,313.0,759.0,88.0,1152.0,39557.0,"- a deep learning toolkit for Text-to-Speech, battle-tested in research and production.",166.0,36,False,2023-12-12 15:27:06.000,0.22.0,98.0,tts,conda-forge/tts,,,"['pytorch', 'tensorflow']",2910.0,2857.0,https://pypi.org/project/tts,2023-12-12 15:27:06.000,53.0,244841.0,343458.0,https://anaconda.org/conda-forge/tts,2025-04-22 14:58:02.848,24449.0,,,,,1.0,4803748.0,,,,,,,,,,,,,,,,,,, +110,MMDetection,open-mmlab/mmdetection,image,,https://github.com/open-mmlab/mmdetection,https://github.com/open-mmlab/mmdetection,Apache-2.0,2018-08-22 07:06:06.000,2024-08-21 02:01:07.000000,2024-02-05 13:23:18,2706.0,,9596.0,371.0,3176.0,1889.0,6738.0,30881.0,OpenMMLab Detection Toolbox and Benchmark.,480.0,36,False,2024-01-05 06:25:30.000,3.3.0,53.0,mmdet,,,,['pytorch'],3825.0,3742.0,https://pypi.org/project/mmdet,2024-01-05 06:25:30.000,83.0,198170.0,198170.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +111,pyecharts,pyecharts/pyecharts,data-viz,,https://github.com/pyecharts/pyecharts,https://github.com/pyecharts/pyecharts,MIT,2017-06-22 02:50:25.000,2025-03-10 02:44:04.000000,2025-01-26 07:01:34,1702.0,1.0,2855.0,379.0,485.0,3.0,1931.0,15256.0,Python Echarts Plotting Library.,45.0,36,True,2025-01-24 03:13:18.000,2.0.8,76.0,pyecharts,,,https://github.com/pyecharts/pyecharts/blob/master/README.en.md,['jupyter'],5486.0,5263.0,https://pypi.org/project/pyecharts,2025-01-24 03:10:03.000,223.0,195247.0,195249.0,,,,,,,,2.0,73.0,,,,,,,,,,,,,,,,,,, +112,dgl,dmlc/dgl,graph,,https://github.com/dmlc/dgl,https://github.com/dmlc/dgl,Apache-2.0,2018-04-20 14:49:09.000,2025-02-11 00:26:08.000000,2025-02-11 00:26:08,4416.0,2.0,3018.0,173.0,5070.0,539.0,2359.0,13850.0,"Python package built to ease deep learning on graph, on top of existing DL frameworks.",296.0,36,True,2024-09-03 04:16:25.000,2.4.0,453.0,dgl,,,,,4022.0,3874.0,https://pypi.org/project/dgl,2024-05-13 01:10:39.000,148.0,110598.0,110598.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +113,PySyft,OpenMined/PySyft,privacy-ml,,https://github.com/OpenMined/PySyft,https://github.com/OpenMined/PySyft,Apache-2.0,2017-07-18 20:41:16.000,2025-04-13 12:44:47.000000,2025-04-13 12:43:52,35229.0,191.0,1996.0,195.0,5880.0,49.0,3393.0,9664.0,Perform data science on data that remains in someone elses server.,516.0,36,True,2025-02-13 11:13:19.000,0.9.5,332.0,syft,,,,['pytorch'],6.0,1.0,https://pypi.org/project/syft,2025-04-13 12:44:04.000,5.0,13483.0,13604.0,,,,,,,,1.0,1947.0,,,,,,,,,,,,,,,,,,, +114,Pydub,jiaaro/pydub,audio,,https://github.com/jiaaro/pydub,https://github.com/jiaaro/pydub,MIT,2011-05-02 18:42:38.000,2025-04-22 14:56:58.184000,2022-12-08 17:49:19,746.0,,1067.0,134.0,240.0,371.0,274.0,9326.0,Manipulate audio with a simple and easy high level interface.,95.0,36,False,2021-03-10 02:10:41.000,0.25.1,68.0,pydub,conda-forge/pydub,,,,96467.0,95098.0,https://pypi.org/project/pydub,2021-03-10 02:09:53.000,1369.0,9012409.0,9015692.0,https://anaconda.org/conda-forge/pydub,2025-04-22 14:56:58.184,160875.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +115,PyCaret,pycaret/pycaret,ml-experiments,,https://github.com/pycaret/pycaret,https://github.com/pycaret/pycaret,MIT,2019-11-23 18:40:48.000,2025-04-22 14:57:34.170000,2025-03-06 20:05:48,5371.0,14.0,1786.0,134.0,1065.0,386.0,1957.0,9286.0,"An open-source, low-code machine learning library in Python.",142.0,36,True,2024-04-28 18:46:27.000,3.3.2,98.0,pycaret,conda-forge/pycaret,,,,7549.0,7518.0,https://pypi.org/project/pycaret,2024-04-28 18:46:21.000,31.0,336492.0,337714.0,https://anaconda.org/conda-forge/pycaret,2025-04-22 14:57:34.170,67804.0,,,,,2.0,731.0,,,,,,,,,,,,,,,,,,, +116,PyOD,yzhao062/pyod,others,,https://github.com/yzhao062/pyod,https://github.com/yzhao062/pyod,BSD-2-Clause,2017-10-03 20:29:04.000,2025-04-22 14:57:22.910000,2025-03-24 19:26:46,1889.0,2.0,1399.0,149.0,261.0,232.0,151.0,9144.0,"A Python Library for Outlier and Anomaly Detection, Integrating Classical and Deep Learning Techniques.",63.0,36,True,2025-03-24 19:29:27.000,2.0.4,96.0,pyod,conda-forge/pyod,,,,5200.0,5069.0,https://pypi.org/project/pyod,2025-03-24 19:29:27.000,131.0,561946.0,564476.0,https://anaconda.org/conda-forge/pyod,2025-04-22 14:57:22.910,149290.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +117,einops,arogozhnikov/einops,ml-frameworks,,https://github.com/arogozhnikov/einops,https://github.com/arogozhnikov/einops,MIT,2018-09-22 00:45:08.000,2025-04-22 14:57:12.206000,2025-02-09 04:33:30,708.0,4.0,360.0,65.0,137.0,36.0,159.0,8866.0,"Flexible and powerful tensor operations for readable and reliable code (for pytorch, jax, TF and others).",33.0,36,True,2025-02-09 03:17:01.000,0.8.1,16.0,einops,conda-forge/einops,,,,73324.0,70767.0,https://pypi.org/project/einops,2025-02-09 03:17:01.000,2557.0,9402473.0,9409319.0,https://anaconda.org/conda-forge/einops,2025-04-22 14:57:12.206,369702.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +118,AutoGluon,autogluon/autogluon,hyperopt,,https://github.com/autogluon/autogluon,https://github.com/autogluon/autogluon,Apache-2.0,2019-07-29 18:51:24.000,2025-04-24 09:05:55.000000,2025-04-23 19:56:22,2549.0,85.0,1001.0,96.0,2890.0,410.0,1240.0,8765.0,Fast and Accurate ML in 3 Lines of Code.,135.0,36,True,2024-11-27 17:04:12.000,1.2.0,1814.0,autogluon,conda-forge/autogluon,autogluon/autogluon,https://auto.gluon.ai,"['pytorch', 'sklearn']",1099.0,1068.0,https://pypi.org/project/autogluon,2025-04-24 09:05:55.000,31.0,222971.0,224423.0,https://anaconda.org/conda-forge/autogluon,2025-04-22 14:58:34.463,33011.0,https://hub.docker.com/r/autogluon/autogluon,2024-03-07 07:21:23.461952,19.0,15890.0,1.0,,,,,,,,,,,,,,,,,,,, +119,Metaflow,Netflix/metaflow,ml-experiments,,https://github.com/Netflix/metaflow,https://github.com/Netflix/metaflow,Apache-2.0,2019-09-17 17:48:25.000,2025-04-24 07:51:11.000000,2025-04-22 00:40:30,1272.0,105.0,824.0,293.0,1684.0,334.0,452.0,8743.0,"Build, Manage and Deploy AI/ML Systems.",105.0,36,True,2025-04-22 01:37:08.000,2.15.9,188.0,metaflow,conda-forge/metaflow,,,,939.0,887.0,https://pypi.org/project/metaflow,2025-04-22 01:37:08.000,52.0,285088.0,290114.0,https://anaconda.org/conda-forge/metaflow,2025-04-22 14:57:18.349,286518.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +120,Autograd,HIPS/autograd,others,,https://github.com/HIPS/autograd,https://github.com/HIPS/autograd,MIT,2014-11-24 15:50:23.000,2025-04-22 14:56:26.156000,2025-04-21 17:44:25,1476.0,14.0,912.0,212.0,275.0,183.0,250.0,7240.0,Efficiently computes derivatives of NumPy code.,61.0,36,True,2024-08-22 19:07:12.000,1.7.0,30.0,autograd,conda-forge/autograd,,,,13047.0,12764.0,https://pypi.org/project/autograd,2024-08-22 19:07:12.000,283.0,4019782.0,4035495.0,https://anaconda.org/conda-forge/autograd,2025-04-22 14:56:26.156,534244.0,,,,,1.0,,,,,,,,,3.0,,,,,,,,,,, +121,MONAI,Project-MONAI/MONAI,medical-data,,https://github.com/Project-MONAI/MONAI,https://github.com/Project-MONAI/MONAI,Apache-2.0,2019-10-11 16:41:38.000,2025-04-22 14:58:07.903000,2025-04-13 08:27:57,3223.0,34.0,1169.0,91.0,3592.0,417.0,2821.0,6337.0,AI Toolkit for Healthcare Imaging.,222.0,36,True,2024-10-17 00:54:28.000,1.4.0,103.0,monai,conda-forge/monai,,,['pytorch'],4131.0,3995.0,https://pypi.org/project/monai,2024-12-10 07:27:41.000,136.0,255047.0,256226.0,https://anaconda.org/conda-forge/monai,2025-04-22 14:58:07.903,47191.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +122,plotnine,has2k1/plotnine,data-viz,,https://github.com/has2k1/plotnine,https://github.com/has2k1/plotnine,MIT,2017-04-24 19:00:44.000,2025-04-23 09:46:44.000000,2025-04-22 15:39:00,2547.0,97.0,233.0,61.0,150.0,76.0,638.0,4191.0,A Grammar of Graphics for Python.,112.0,36,True,2025-01-02 11:19:20.000,0.14.5,37.0,plotnine,conda-forge/plotnine,,,,11922.0,11553.0,https://pypi.org/project/plotnine,2025-04-23 09:46:44.000,369.0,2347658.0,2355579.0,https://anaconda.org/conda-forge/plotnine,2025-04-22 14:56:36.903,459475.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +123,Ax,facebook/Ax,hyperopt,,https://github.com/facebook/Ax,https://github.com/facebook/Ax,MIT,2019-02-09 15:23:44.000,2025-04-24 13:13:29.000000,2025-04-24 13:10:33,4076.0,359.0,321.0,67.0,2867.0,89.0,764.0,2475.0,Adaptive Experimentation Platform.,185.0,36,True,2025-02-03 18:26:32.000,0.5.0,44.0,ax-platform,conda-forge/ax-platform,,,['pytorch'],1007.0,950.0,https://pypi.org/project/ax-platform,2025-02-03 18:26:32.000,57.0,150286.0,151100.0,https://anaconda.org/conda-forge/ax-platform,2025-04-22 14:57:55.741,37459.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +124,metrics,Lightning-AI/metrics,distributed-ml,,https://github.com/Lightning-AI/torchmetrics,https://github.com/Lightning-AI/torchmetrics,Apache-2.0,2020-12-22 20:02:42.000,2025-04-23 08:13:17.000000,2025-04-23 08:13:17,2141.0,110.0,421.0,33.0,1885.0,71.0,871.0,2255.0,"Machine learning metrics for distributed, scalable PyTorch applications.",273.0,36,True,2025-04-07 19:33:42.000,1.7.1,58.0,metrics,conda-forge/torchmetrics,,,['pytorch'],40624.0,40620.0,https://pypi.org/project/metrics,2025-02-26 14:13:26.000,4.0,6459.0,45722.0,https://anaconda.org/conda-forge/torchmetrics,2025-04-22 14:57:48.806,1917389.0,,,,,2.0,6532.0,,,,,,Lightning-AI/torchmetrics,,,,,,,,,,,,, +125,ArcGIS API,Esri/arcgis-python-api,geospatial-data,,https://github.com/Esri/arcgis-python-api,https://github.com/Esri/arcgis-python-api,Apache-2.0,2016-03-16 01:09:14.000,2025-04-21 20:12:43.000000,2025-04-21 20:12:37,5183.0,80.0,1110.0,153.0,1428.0,68.0,767.0,1984.0,Documentation and samples for ArcGIS API for Python.,97.0,36,True,2025-04-07 20:25:27.000,2.4.1,51.0,arcgis,,esridocker/arcgis-api-python-notebook,,,982.0,941.0,https://pypi.org/project/arcgis,2025-04-17 15:35:46.000,41.0,97334.0,97476.0,,,,https://hub.docker.com/r/esridocker/arcgis-api-python-notebook,,,,2.0,14697.0,,,,,,,,,,,,,,,,,,, +126,Graphviz,xflr6/graphviz,data-viz,,https://github.com/xflr6/graphviz,https://github.com/xflr6/graphviz,MIT,2014-01-12 17:49:29.000,2025-04-22 15:32:21.966000,2024-05-13 18:28:50,1241.0,,213.0,32.0,48.0,12.0,174.0,1703.0,Simple Python interface for Graphviz.,23.0,36,True,2024-03-21 07:50:43.000,0.20.3,58.0,graphviz,anaconda/python-graphviz,,,,90704.0,87805.0,https://pypi.org/project/graphviz,2024-03-21 07:50:43.000,2899.0,17955026.0,17955586.0,https://anaconda.org/anaconda/python-graphviz,2025-04-22 15:32:21.966,53767.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +127,arviz,arviz-devs/arviz,interpretability,,https://github.com/arviz-devs/arviz,https://github.com/arviz-devs/arviz,Apache-2.0,2015-07-29 11:51:10.000,2025-04-22 14:57:05.519000,2025-04-22 11:04:59,1596.0,20.0,432.0,49.0,1554.0,193.0,696.0,1674.0,Exploratory analysis of Bayesian models with Python.,171.0,36,True,2025-03-06 16:06:50.000,0.21.0,40.0,arviz,conda-forge/arviz,,,,10672.0,10307.0,https://pypi.org/project/arviz,2025-03-06 16:06:50.000,365.0,1982764.0,2022589.0,https://anaconda.org/conda-forge/arviz,2025-04-22 14:57:05.519,2349578.0,,,,,1.0,182.0,,,,,,,,,,,,,,,,,,, +128,TensorFlow Text,tensorflow/text,nlp,,https://github.com/tensorflow/text,https://github.com/tensorflow/text,Apache-2.0,2019-05-29 22:10:03.000,2025-04-04 21:04:24.000000,2025-03-24 18:10:07,917.0,15.0,350.0,40.0,1119.0,195.0,173.0,1255.0,Making text a first-class citizen in TensorFlow.,184.0,36,True,2025-04-04 21:04:24.000,2.19.0,76.0,tensorflow-text,,,,['tensorflow'],9289.0,9061.0,https://pypi.org/project/tensorflow-text,2025-04-04 20:51:29.000,228.0,7006236.0,7006236.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +129,Netron,lutzroeder/netron,interpretability,,https://github.com/lutzroeder/netron,https://github.com/lutzroeder/netron,MIT,2010-12-26 12:53:43.000,2025-04-23 12:13:01.000000,2025-04-23 12:12:55,8971.0,187.0,2881.0,306.0,253.0,21.0,1171.0,30017.0,"Visualizer for neural network, deep learning and machine learning models.",2.0,35,True,2025-04-16 16:42:54.000,8.2.8,704.0,netron,,,,"['pytorch', 'tensorflow']",99.0,13.0,https://pypi.org/project/netron,2025-04-16 16:42:54.000,86.0,43042.0,92613.0,,,,,,,,1.0,49571.0,,,,,,,,,,,,,,,,,,, +130,tinygrad,geohot/tinygrad,pytorch-utils,,https://github.com/tinygrad/tinygrad,https://github.com/tinygrad/tinygrad,MIT,2020-10-18 16:23:12.000,2025-04-24 13:35:35.000000,2025-04-24 13:34:07,8566.0,954.0,3257.0,273.0,9031.0,131.0,771.0,28629.0,You like pytorch? You like micrograd? You love tinygrad!.,392.0,35,True,2025-02-21 03:09:38.000,0.10.2,11.0,,,,,['pytorch'],199.0,199.0,,,,,,,,,,,,,1.0,,,,,,,tinygrad/tinygrad,,,,,,,,,,,,, +131,fastText,facebookresearch/fastText,nlp,,https://github.com/facebookresearch/fastText,https://github.com/facebookresearch/fastText,MIT,2016-07-16 13:38:42.000,2025-04-22 14:56:42.880000,2024-03-13 15:16:33,391.0,,4719.0,845.0,268.0,555.0,611.0,26172.0,Library for fast text representation and classification.,68.0,35,False,2024-06-12 09:44:40.000,0.9.3,37.0,fasttext,conda-forge/fasttext,,,,7934.0,7687.0,https://pypi.org/project/fasttext,2024-06-12 09:44:40.000,247.0,1145171.0,1147541.0,https://anaconda.org/conda-forge/fasttext,2025-04-22 14:56:42.880,130384.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +132,Jina,jina-ai/jina,ml-frameworks,,https://github.com/jina-ai/serve,https://github.com/jina-ai/serve,Apache-2.0,2020-02-13 17:04:44.000,2025-04-22 14:57:59.713000,2025-03-24 13:59:53,8644.0,5.0,2218.0,216.0,4225.0,3.0,1944.0,21543.0,Build multimodal AI applications with cloud-native stack.,178.0,35,True,2025-03-24 13:59:31.000,3.34.0,2492.0,jina,conda-forge/jina-core,jinaai/jina,,,29.0,,https://pypi.org/project/jina,2025-03-24 13:59:31.000,29.0,84710.0,115650.0,https://anaconda.org/conda-forge/jina-core,2025-04-22 14:57:59.713,92167.0,https://hub.docker.com/r/jinaai/jina,2025-03-24 14:11:41.059929,8.0,1785445.0,2.0,,,,,,,jina-ai/serve,,,,,,,,,,,,, +133,horovod,horovod/horovod,distributed-ml,,https://github.com/horovod/horovod,https://github.com/horovod/horovod,Apache-2.0,2017-08-09 19:39:59.000,2025-04-22 08:33:56.000000,2025-02-01 10:46:42,1341.0,1.0,2254.0,333.0,1604.0,397.0,1867.0,14452.0,"Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.",174.0,35,True,2023-06-12 09:28:02.604,0.28.1,77.0,horovod,,,,,1397.0,1363.0,https://pypi.org/project/horovod,2023-06-12 09:28:02.604,34.0,93040.0,93040.0,,,,,,,,2.0,,,,,,,,stable/horovod,,,,,,,,,,,, +134,Annoy,spotify/annoy,nn-search,,https://github.com/spotify/annoy,https://github.com/spotify/annoy,Apache-2.0,2013-04-01 20:29:40.000,2025-04-22 14:56:27.546000,2024-07-29 00:37:39,894.0,,1182.0,315.0,270.0,64.0,345.0,13690.0,Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk.,88.0,35,True,2023-06-14 16:39:02.504,1.17.3,47.0,annoy,conda-forge/python-annoy,,,,5247.0,5046.0,https://pypi.org/project/annoy,2023-06-14 16:39:02.504,201.0,800944.0,813209.0,https://anaconda.org/conda-forge/python-annoy,2025-04-22 14:56:27.546,674600.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +135,Datasette,simonw/datasette,others,,https://github.com/simonw/datasette,https://github.com/simonw/datasette,Apache-2.0,2017-10-23 00:39:03.000,2025-04-22 14:57:50.610000,2025-04-22 05:38:53,2693.0,25.0,726.0,102.0,506.0,621.0,1279.0,9968.0,An open source multi-tool for exploring and publishing data.,82.0,35,True,2024-11-29 01:18:11.000,0.65.1,157.0,datasette,conda-forge/datasette,,,,1951.0,1495.0,https://pypi.org/project/datasette,2025-04-22 05:45:11.000,456.0,198785.0,200021.0,https://anaconda.org/conda-forge/datasette,2025-04-22 14:57:50.610,59314.0,,,,,2.0,70.0,,,,,,,,,datasette,,,,,,,,,, +136,cuDF,rapidsai/cudf,gpu-utilities,,https://github.com/rapidsai/cudf,https://github.com/rapidsai/cudf,Apache-2.0,2017-05-07 03:43:37.000,2025-04-24 14:40:57.000000,2025-04-24 12:53:20,40659.0,525.0,941.0,155.0,11741.0,1099.0,5817.0,8878.0,cuDF - GPU DataFrame Library.,304.0,35,True,2025-04-09 18:14:04.000,25.04.00,61.0,cudf,,,,,84.0,62.0,https://pypi.org/project/cudf,2020-06-01 20:07:47.000,22.0,3710.0,3710.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +137,SpeechRecognition,Uberi/speech_recognition,audio,,https://github.com/Uberi/speech_recognition,https://github.com/Uberi/speech_recognition,BSD-3-Clause,2014-04-23 04:53:54.000,2025-04-22 14:56:26.401000,2025-04-15 23:58:09,760.0,33.0,2413.0,274.0,207.0,321.0,340.0,8699.0,"Speech recognition module for Python, supporting several engines and APIs, online and offline.",54.0,35,True,2025-03-23 02:19:06.000,3.14.2,65.0,SpeechRecognition,conda-forge/speechrecognition,,,,702.0,21.0,https://pypi.org/project/SpeechRecognition,2025-03-23 02:18:03.000,681.0,1470663.0,1474986.0,https://anaconda.org/conda-forge/speechrecognition,2025-04-22 14:56:26.401,242139.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +138,BentoML,bentoml/BentoML,model-serialisation,,https://github.com/bentoml/BentoML,https://github.com/bentoml/BentoML,Apache-2.0,2019-04-02 01:39:27.000,2025-04-23 06:46:41.000000,2025-04-23 06:46:39,3555.0,106.0,836.0,76.0,3941.0,137.0,970.0,7646.0,"The easiest way to serve AI apps and models - Build Model Inference APIs, Job queues, LLM apps, Multi-model pipelines,..",248.0,35,True,2025-04-22 23:06:50.000,1.4.11,191.0,bentoml,,,,,2629.0,2589.0,https://pypi.org/project/bentoml,2025-04-22 23:06:50.000,40.0,110712.0,110726.0,,,,,,,,2.0,470.0,,,,,,,,,,,,,,,,,,, +139,librosa,librosa/librosa,audio,,https://github.com/librosa/librosa,https://github.com/librosa/librosa,ISC,2012-10-20 14:21:01.000,2025-04-22 14:56:25.574000,2025-03-11 15:07:03,3298.0,7.0,983.0,136.0,684.0,64.0,1184.0,7572.0,Python library for audio and music analysis.,125.0,35,True,2025-03-11 15:09:52.000,0.11.0,46.0,librosa,conda-forge/librosa,,,,1627.0,,https://pypi.org/project/librosa,2025-03-11 15:09:52.000,1627.0,3645941.0,3661464.0,https://anaconda.org/conda-forge/librosa,2025-04-22 14:56:25.574,884846.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +140,H2O-3,h2oai/h2o-3,distributed-ml,,https://github.com/h2oai/h2o-3,https://github.com/h2oai/h2o-3,Apache-2.0,2014-03-03 16:08:07.000,2025-04-24 00:42:00.000000,2025-04-11 00:08:24,32622.0,52.0,2012.0,381.0,6968.0,2888.0,6715.0,7128.0,"H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM)..",277.0,35,True,,,157.0,h2o,,,,,153.0,98.0,https://pypi.org/project/h2o,2025-03-27 20:59:49.000,55.0,191096.0,191096.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +141,DeepChem,deepchem/deepchem,others,,https://github.com/deepchem/deepchem,https://github.com/deepchem/deepchem,MIT,2015-09-24 23:20:28.000,2025-04-22 14:57:21.461000,2025-04-21 18:22:54,10597.0,22.0,1852.0,141.0,2658.0,772.0,1246.0,5921.0,"Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, Materials Science and Biology.",257.0,35,True,2024-04-03 16:21:23.000,2.8.0,985.0,deepchem,conda-forge/deepchem,,,['tensorflow'],590.0,573.0,https://pypi.org/project/deepchem,2025-04-22 04:48:17.000,17.0,61354.0,63335.0,https://anaconda.org/conda-forge/deepchem,2025-04-22 14:57:21.461,114949.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +142,MLxtend,rasbt/mlxtend,sklearn-utils,,https://github.com/rasbt/mlxtend,https://github.com/rasbt/mlxtend,BSD-3-Clause,2014-08-14 01:56:16.000,2025-04-22 14:56:38.886000,2025-01-26 15:57:33,1660.0,3.0,876.0,116.0,542.0,148.0,347.0,4994.0,A library of extension and helper modules for Pythons data analysis and machine learning libraries.,112.0,35,True,2025-01-26 16:02:43.000,0.23.4,55.0,mlxtend,conda-forge/mlxtend,,,['sklearn'],19481.0,19284.0,https://pypi.org/project/mlxtend,2025-01-26 16:02:43.000,197.0,694422.0,700590.0,https://anaconda.org/conda-forge/mlxtend,2025-04-22 14:56:38.886,351603.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +143,opencv-python,opencv/opencv-python,image,,https://github.com/opencv/opencv-python,https://github.com/opencv/opencv-python,MIT,2016-04-08 13:36:40.000,2025-01-16 13:51:35.000000,2025-01-16 09:47:38,1004.0,,871.0,90.0,236.0,138.0,706.0,4811.0,"Automated CI toolchain to produce precompiled opencv-python, opencv-python-headless, opencv-contrib-python and opencv-..",53.0,35,True,2025-01-16 13:56:09.000,84,75.0,opencv-python,,,,,573745.0,562228.0,https://pypi.org/project/opencv-python,2025-01-16 13:51:35.000,11517.0,17233353.0,17233353.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +144,Core ML Tools,apple/coremltools,model-serialisation,,https://github.com/apple/coremltools,https://github.com/apple/coremltools,BSD-3-Clause,2017-06-30 07:39:02.000,2025-04-24 05:37:57.000000,2025-04-24 05:37:57,1230.0,14.0,663.0,123.0,988.0,371.0,1138.0,4686.0,"Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.",191.0,35,True,2025-01-22 03:00:48.000,8.2,52.0,coremltools,conda-forge/coremltools,,,,4848.0,4761.0,https://pypi.org/project/coremltools,2025-01-21 20:59:17.000,87.0,419186.0,421096.0,https://anaconda.org/conda-forge/coremltools,2025-04-22 14:57:38.011,94690.0,,,,,2.0,14373.0,,,,,,,,,,,,,,,,,,, +145,spark-nlp,JohnSnowLabs/spark-nlp,nlp,,https://github.com/JohnSnowLabs/spark-nlp,https://github.com/JohnSnowLabs/spark-nlp,Apache-2.0,2017-09-24 19:36:44.000,2025-04-23 23:38:16.000000,2025-02-20 15:08:38,8652.0,10.0,722.0,99.0,13440.0,47.0,879.0,3952.0,State of the Art Natural Language Processing.,114.0,35,True,2025-01-30 16:15:18.000,5.5.3,151.0,spark-nlp,,,,['spark'],624.0,587.0,https://pypi.org/project/spark-nlp,2025-01-30 15:03:13.000,37.0,4207926.0,4207926.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +146,VisPy,vispy/vispy,data-viz,,https://github.com/vispy/vispy,https://github.com/vispy/vispy,BSD-3-Clause,2013-03-21 18:43:22.000,2025-04-22 14:56:42.714000,2025-04-22 13:58:25,7424.0,18.0,622.0,115.0,1209.0,377.0,1120.0,3413.0,High-performance interactive 2D/3D data visualization library.,205.0,35,True,2025-04-22 14:57:44.000,0.15.0,40.0,vispy,conda-forge/vispy,,,['jupyter'],2161.0,1963.0,https://pypi.org/project/vispy,2025-04-22 14:24:54.000,195.0,149470.0,163818.0,https://anaconda.org/conda-forge/vispy,2025-04-22 14:56:42.714,787910.0,,,,,2.0,,vispy,https://www.npmjs.com/package/vispy,2020-03-15 14:39:41.516,3.0,23.0,,,1.0,,,,,,,,,,, +147,optimum,huggingface/optimum,gpu-utilities,,https://github.com/huggingface/optimum,https://github.com/huggingface/optimum,Apache-2.0,2021-07-20 12:36:40.000,2025-04-24 14:38:14.000000,2025-04-24 14:38:13,1204.0,37.0,515.0,54.0,1414.0,398.0,493.0,2865.0,"Accelerate inference and training of Transformers, Diffusers, TIMM and Sentence Transformers with easy to use hardware..",143.0,35,True,2025-01-30 16:26:59.000,1.24.0,75.0,optimum,conda-forge/optimum,,,,5489.0,5291.0,https://pypi.org/project/optimum,2025-01-30 16:08:05.000,198.0,1293363.0,1294401.0,https://anaconda.org/conda-forge/optimum,2025-04-22 14:58:14.435,37368.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +148,torchaudio,pytorch/audio,audio,,https://github.com/pytorch/audio,https://github.com/pytorch/audio,BSD-2-Clause,2017-05-05 00:38:05.000,2025-04-24 14:50:05.000000,2025-04-18 00:26:14,2331.0,6.0,686.0,73.0,2935.0,283.0,731.0,2649.0,"Data manipulation and transformation for audio signal processing, powered by PyTorch.",233.0,35,True,2025-04-23 14:46:42.000,2.7.0,41.0,torchaudio,,,,['pytorch'],1841.0,,https://pypi.org/project/torchaudio,2025-04-23 14:46:42.000,1841.0,12800856.0,12800856.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +149,scikit-learn-intelex,intel/scikit-learn-intelex,sklearn-utils,,https://github.com/uxlfoundation/scikit-learn-intelex,https://github.com/uxlfoundation/scikit-learn-intelex,Apache-2.0,2018-08-07 06:45:41.000,2025-04-24 11:18:09.000000,2025-04-24 11:17:25,2130.0,126.0,182.0,24.0,2148.0,51.0,201.0,1274.0,Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.,85.0,35,True,2025-04-23 12:35:02.000,2025.5.0,36.0,scikit-learn-intelex,conda-forge/scikit-learn-intelex,,,['sklearn'],13525.0,13460.0,https://pypi.org/project/scikit-learn-intelex,2025-04-22 09:41:39.000,65.0,75959.0,86576.0,https://anaconda.org/conda-forge/scikit-learn-intelex,2025-04-22 19:11:13.625,509644.0,,,,,1.0,,,,,,,uxlfoundation/scikit-learn-intelex,,,,,,,,,,,,, +150,agate,wireservice/agate,others,,https://github.com/wireservice/agate,https://github.com/wireservice/agate,MIT,2014-04-25 13:59:09.000,2025-04-22 14:56:31.741000,2025-02-27 19:54:56,1562.0,5.0,154.0,40.0,132.0,4.0,645.0,1177.0,A Python data analysis library that is optimized for humans instead of machines.,53.0,35,True,2025-01-29 06:24:06.000,1.13.0,38.0,agate,conda-forge/agate,,,,4891.0,4837.0,https://pypi.org/project/agate,2025-01-29 06:24:06.000,54.0,16229853.0,16236540.0,https://anaconda.org/conda-forge/agate,2025-04-22 14:56:31.741,314335.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +151,NIPYPE,nipy/nipype,medical-data,,https://github.com/nipy/nipype,https://github.com/nipy/nipype,Apache-2.0,2010-07-22 17:06:49.000,2025-04-22 14:56:25.529000,2025-03-19 23:23:04,15120.0,25.0,530.0,49.0,2342.0,420.0,974.0,778.0,Workflows and interfaces for neuroimaging packages.,264.0,35,True,2025-03-19 23:38:43.000,1.10.0,68.0,nipype,conda-forge/nipype,,,,6699.0,6546.0,https://pypi.org/project/nipype,2025-03-19 23:30:05.000,153.0,348845.0,362918.0,https://anaconda.org/conda-forge/nipype,2025-04-22 14:56:25.529,788109.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +152,EasyOCR,JaidedAI/EasyOCR,ocr,,https://github.com/JaidedAI/EasyOCR,https://github.com/JaidedAI/EasyOCR,Apache-2.0,2020-03-14 11:46:39.000,2024-09-24 11:34:43.000000,2024-09-24 11:18:06,618.0,,3258.0,320.0,268.0,461.0,604.0,26435.0,"Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic,..",129.0,34,True,2024-09-24 11:34:43.000,1.7.2,33.0,easyocr,,,,,14035.0,13782.0,https://pypi.org/project/easyocr,2024-09-24 11:34:43.000,253.0,854305.0,1203796.0,,,,,,,,2.0,20270499.0,,,,,,,,,,,,,,,,,,, +153,qdrant,qdrant/qdrant,nlp,,https://github.com/qdrant/qdrant,https://github.com/qdrant/qdrant,Apache-2.0,2020-05-30 21:37:01.000,2025-04-24 13:52:11.000000,2025-04-22 11:31:35,4205.0,380.0,1578.0,131.0,4652.0,348.0,1119.0,23179.0,"Qdrant - High-performance, massive-scale Vector Database and Vector Search Engine for the next generation of AI. Also..",132.0,34,True,2025-04-22 16:34:34.000,1.14.0,98.0,,,,,,117.0,117.0,,,,,7999.0,,,,,,,,2.0,383999.0,,,,,,,,,,,,,,,,,,, +154,ivy,unifyai/ivy,ml-frameworks,,https://github.com/ivy-llc/ivy,https://github.com/ivy-llc/ivy,Apache-2.0,2021-01-19 08:37:25.000,2025-04-19 15:27:44.000000,2025-04-19 15:27:41,18861.0,9.0,5684.0,68.0,11763.0,941.0,15960.0,14183.0,Convert Machine Learning Code Between Frameworks.,1481.0,34,True,2025-02-21 00:06:46.000,1.0.0.4,137.0,ivy,,,,,16.0,,https://pypi.org/project/ivy,2025-02-21 00:07:49.000,16.0,28929.0,28929.0,,,,,,,,2.0,,,,,,,ivy-llc/ivy,,,,,,,,,,,,, +155,Perspective,finos/perspective,data-viz,,https://github.com/finos/perspective,https://github.com/finos/perspective,Apache-2.0,2017-11-02 16:27:54.000,2025-04-24 07:17:19.000000,2025-04-11 06:38:59,6311.0,82.0,1215.0,123.0,1811.0,111.0,770.0,9087.0,"A data visualization and analytics component, especially well-suited for large and/or streaming datasets.",99.0,34,True,2025-04-11 13:45:36.000,3.5.1,152.0,perspective-python,conda-forge/perspective,,,['jupyter'],211.0,175.0,https://pypi.org/project/perspective-python,2025-04-11 13:44:48.000,30.0,20106.0,55615.0,https://anaconda.org/conda-forge/perspective,2025-04-22 14:57:27.650,1989796.0,,,,,2.0,10979.0,@finos/perspective-jupyterlab,https://www.npmjs.com/package/@finos/perspective-jupyterlab,2025-04-11 13:43:42.266,6.0,681.0,,,,,,,,,,,,,, +156,Hyperopt,hyperopt/hyperopt,hyperopt,,https://github.com/hyperopt/hyperopt,https://github.com/hyperopt/hyperopt,BSD-3-Clause,2011-09-06 22:24:59.000,2025-04-22 14:56:55.071000,2024-12-27 12:36:14,1223.0,,1051.0,118.0,279.0,143.0,605.0,7393.0,Distributed Asynchronous Hyperparameter Optimization in Python.,105.0,34,True,2021-11-17 10:07:00.808,0.2.7,13.0,hyperopt,conda-forge/hyperopt,,,,21117.0,20664.0,https://pypi.org/project/hyperopt,2021-11-17 10:07:00.808,453.0,2260860.0,2276168.0,https://anaconda.org/conda-forge/hyperopt,2025-04-22 14:56:55.071,826664.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +157,InterpretML,interpretml/interpret,interpretability,,https://github.com/interpretml/interpret,https://github.com/interpretml/interpret,MIT,2019-05-03 05:47:52.000,2025-04-17 18:38:48.000000,2025-04-17 18:38:38,3694.0,77.0,743.0,144.0,134.0,106.0,364.0,6467.0,Fit interpretable models. Explain blackbox machine learning.,48.0,34,True,2025-03-27 02:51:02.000,0.6.10,58.0,interpret,,,,['jupyter'],931.0,878.0,https://pypi.org/project/interpret,2025-03-26 16:45:55.000,53.0,187994.0,187994.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +158,DEAP,deap/deap,distributed-ml,,https://github.com/DEAP/deap,https://github.com/DEAP/deap,LGPL-3.0,2014-05-21 20:07:39.000,2025-04-22 14:56:24.106000,2025-01-09 14:42:49,2349.0,,1124.0,189.0,242.0,279.0,289.0,6067.0,Distributed Evolutionary Algorithms in Python.,90.0,34,False,2025-01-09 14:08:44.000,1.4.2,28.0,deap,conda-forge/deap,,,,6563.0,6303.0,https://pypi.org/project/deap,2025-01-09 14:08:44.000,260.0,237375.0,247120.0,https://anaconda.org/conda-forge/deap,2025-04-22 14:56:24.106,526250.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +159,ClearML,allegroai/clearml,ml-experiments,,https://github.com/clearml/clearml,https://github.com/clearml/clearml,Apache-2.0,2019-06-10 08:18:32.000,2025-04-24 12:31:08.000000,2025-04-24 12:31:07,2511.0,43.0,672.0,95.0,287.0,483.0,624.0,5953.0,"ClearML - Auto-Magical CI/CD to streamline your AI workload. Experiment Management, Data Management, Pipeline,..",104.0,34,True,2025-03-09 17:03:24.000,1.18.0,179.0,clearml,,allegroai/trains,,,1767.0,1712.0,https://pypi.org/project/clearml,2025-04-20 10:29:49.000,55.0,359214.0,359695.0,,,,https://hub.docker.com/r/allegroai/trains,2020-10-05 10:16:46.865671,,30448.0,2.0,3244.0,,,,,,clearml/clearml,,,,,,,,,,,,, +160,Chainer,chainer/chainer,ml-frameworks,,https://github.com/chainer/chainer,https://github.com/chainer/chainer,MIT,2015-06-05 05:50:37.000,2025-04-22 14:57:21.231000,2022-10-17 02:18:00,30611.0,,1366.0,280.0,6588.0,12.0,2032.0,5912.0,A flexible framework of neural networks for deep learning.,328.0,34,False,2022-06-29 08:19:03.000,7.8.1.post1,111.0,chainer,conda-forge/chainer,,,,3470.0,3412.0,https://pypi.org/project/chainer,2022-01-05 05:33:36.000,58.0,10398.0,10763.0,https://anaconda.org/conda-forge/chainer,2025-04-22 14:57:21.231,22663.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +161,Captum,pytorch/captum,interpretability,,https://github.com/pytorch/captum,https://github.com/pytorch/captum,BSD-3-Clause,2019-08-27 15:34:41.000,2025-04-22 14:58:08.009000,2025-04-09 19:38:13,1280.0,33.0,512.0,294.0,983.0,254.0,346.0,5188.0,Model interpretability and understanding for PyTorch.,127.0,34,True,2025-03-27 04:51:30.000,0.8.0,11.0,captum,conda-forge/captum,,,['pytorch'],3287.0,3116.0,https://pypi.org/project/captum,2025-03-27 04:48:08.000,171.0,294719.0,297681.0,https://anaconda.org/conda-forge/captum,2025-04-22 14:58:08.009,118503.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +162,StatsForecast,Nixtla/statsforecast,time-series-data,,https://github.com/Nixtla/statsforecast,https://github.com/Nixtla/statsforecast,Apache-2.0,2021-11-24 02:19:14.000,2025-04-23 19:42:46.000000,2025-04-23 19:40:15,1367.0,13.0,305.0,38.0,523.0,107.0,255.0,4246.0,Lightning fast forecasting with statistical and econometric models.,51.0,34,True,2025-02-18 19:42:02.000,2.0.1,39.0,statsforecast,conda-forge/statsforecast,,,,1688.0,1620.0,https://pypi.org/project/statsforecast,2025-02-18 19:42:02.000,68.0,975172.0,979823.0,https://anaconda.org/conda-forge/statsforecast,2025-04-22 14:58:12.826,172093.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +163,datashader,holoviz/datashader,data-viz,,https://github.com/holoviz/datashader,https://github.com/holoviz/datashader,BSD-3-Clause,2015-12-23 18:02:20.000,2025-04-22 14:56:42.924000,2025-04-10 15:02:35,1561.0,17.0,371.0,92.0,807.0,140.0,462.0,3398.0,Quickly and accurately render even the largest data.,62.0,34,True,2025-04-10 16:54:56.000,0.18.0,56.0,datashader,conda-forge/datashader,,,,6162.0,5922.0,https://pypi.org/project/datashader,2025-04-10 16:53:11.000,240.0,189355.0,213505.0,https://anaconda.org/conda-forge/datashader,2025-04-22 14:56:42.924,1424901.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +164,BoTorch,pytorch/botorch,hyperopt,,https://github.com/pytorch/botorch,https://github.com/pytorch/botorch,MIT,2018-07-30 23:59:57.000,2025-04-23 21:04:16.000000,2025-04-23 21:01:43,2183.0,93.0,413.0,49.0,1941.0,76.0,506.0,3240.0,Bayesian optimization in PyTorch.,142.0,34,True,2025-02-03 16:52:59.000,0.13.0,48.0,botorch,conda-forge/botorch,,,['pytorch'],1556.0,1456.0,https://pypi.org/project/botorch,2025-02-03 16:52:59.000,100.0,208995.0,211671.0,https://anaconda.org/conda-forge/botorch,2025-04-22 14:57:33.214,149900.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +165,pgmpy,pgmpy/pgmpy,probabilistics,,https://github.com/pgmpy/pgmpy,https://github.com/pgmpy/pgmpy,MIT,2013-09-20 08:18:58.000,2025-04-22 15:13:05.000000,2025-04-22 15:13:04,3129.0,69.0,730.0,75.0,1028.0,302.0,696.0,2869.0,"Python Library for learning (Structure and Parameter), inference (Probabilistic and Causal), and simulations in..",139.0,34,True,2025-03-31 18:26:31.000,1.0.0,27.0,pgmpy,,,,,1622.0,1550.0,https://pypi.org/project/pgmpy,2025-03-31 17:39:00.000,72.0,147376.0,147386.0,,,,,,,,1.0,605.0,,,,,,,,,,,,,,,,,,, +166,Thinc,explosion/thinc,ml-frameworks,,https://github.com/explosion/thinc,https://github.com/explosion/thinc,MIT,2014-10-16 16:34:59.000,2025-04-22 14:56:32.490000,2025-03-07 10:28:57,5346.0,1.0,280.0,76.0,801.0,19.0,133.0,2844.0,"A refreshing functional take on deep learning, compatible with your favorite libraries.",67.0,34,True,2025-04-04 11:49:38.000,8.3.6,245.0,thinc,conda-forge/thinc,,,,65887.0,65729.0,https://pypi.org/project/thinc,2025-04-04 11:49:38.000,158.0,17181562.0,17240778.0,https://anaconda.org/conda-forge/thinc,2025-04-22 14:56:32.490,3493134.0,,,,,2.0,1191.0,,,,,,,,,,,,,,,,,,, +167,snakemake,snakemake/snakemake,ml-experiments,,https://github.com/snakemake/snakemake,https://github.com/snakemake/snakemake,MIT,2015-10-17 15:43:54.867,2025-04-24 13:00:29.000000,2025-04-24 12:57:55,5558.0,176.0,592.0,18.0,1663.0,1190.0,782.0,2455.0,"This is the development home of the workflow management system Snakemake. For general information, see.",372.0,34,True,2025-04-24 13:00:29.000,9.3.1,399.0,snakemake,bioconda/snakemake,,,,2624.0,2347.0,https://pypi.org/project/snakemake,2025-04-24 13:00:29.000,277.0,75590.0,87838.0,https://anaconda.org/bioconda/snakemake,2025-04-22 15:28:35.518,1396362.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +168,cartopy,SciTools/cartopy,data-viz,,https://github.com/SciTools/cartopy,https://github.com/SciTools/cartopy,BSD-3-Clause,2012-08-03 07:43:59.000,2025-04-22 14:56:20.995000,2025-04-17 02:57:42,3150.0,18.0,375.0,55.0,1238.0,317.0,1000.0,1489.0,Cartopy - a cartographic python library with matplotlib support.,133.0,34,True,2024-10-08 23:24:50.000,0.24.1,32.0,cartopy,conda-forge/cartopy,,,,7998.0,7280.0,https://pypi.org/project/cartopy,2024-10-08 23:24:50.000,718.0,552121.0,632122.0,https://anaconda.org/conda-forge/cartopy,2025-04-22 14:56:20.995,4720079.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +169,Wand,emcconville/wand,image,,https://github.com/emcconville/wand,https://github.com/emcconville/wand,MIT,2011-09-30 21:36:38.000,2025-04-22 14:57:10.980000,2025-04-01 02:03:08,1881.0,5.0,200.0,32.0,216.0,26.0,405.0,1441.0,The ctypes-based simple ImageMagick binding for Python.,109.0,34,True,2023-11-04 01:41:17.000,0.6.13,56.0,wand,conda-forge/wand,,,,21019.0,20762.0,https://pypi.org/project/wand,2023-11-03 23:18:50.000,257.0,1148440.0,1151025.0,https://anaconda.org/conda-forge/wand,2025-04-22 14:57:10.980,130234.0,,,,,2.0,51635.0,,,,,,,,,,,,,,,,,,, +170,Fiona,Toblerity/Fiona,geospatial-data,,https://github.com/Toblerity/Fiona,https://github.com/Toblerity/Fiona,BSD-3-Clause,2011-12-31 19:47:00.000,2025-04-22 14:56:20.833000,2025-02-20 23:53:44,1571.0,1.0,207.0,46.0,633.0,34.0,778.0,1182.0,Fiona reads and writes geographic data files.,78.0,34,True,2024-09-16 20:20:31.000,1.10.1,117.0,fiona,conda-forge/fiona,,,,25865.0,25482.0,https://pypi.org/project/fiona,2024-09-16 20:14:20.000,383.0,4326633.0,4445393.0,https://anaconda.org/conda-forge/fiona,2025-04-22 14:56:20.833,6769328.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +171,Satpy,pytroll/satpy,geospatial-data,,https://github.com/pytroll/satpy,https://github.com/pytroll/satpy,GPL-3.0,2016-02-09 20:29:43.000,2025-04-24 13:27:11.000000,2025-04-24 13:27:10,14743.0,222.0,306.0,34.0,1984.0,520.0,708.0,1100.0,Python package for earth-observing satellite data processing.,177.0,34,False,2025-03-21 15:40:35.000,0.55.0,101.0,satpy,conda-forge/satpy,,,,201.0,169.0,https://pypi.org/project/satpy,2025-03-21 15:40:35.000,32.0,10562.0,15171.0,https://anaconda.org/conda-forge/satpy,2025-04-22 14:56:52.544,267339.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +172,NiBabel,nipy/nibabel,medical-data,,https://github.com/nipy/nibabel,https://github.com/nipy/nibabel,MIT,2010-07-22 16:28:30.000,2025-04-22 14:56:22.960000,2025-03-18 15:42:20,6120.0,12.0,259.0,34.0,868.0,130.0,416.0,695.0,Python package to access a cacophony of neuro-imaging file formats.,106.0,34,True,2024-10-23 14:19:52.000,5.3.2,45.0,nibabel,conda-forge/nibabel,,,,28921.0,27740.0,https://pypi.org/project/nibabel,2024-10-23 14:19:52.000,1181.0,792176.0,807482.0,https://anaconda.org/conda-forge/nibabel,2025-04-22 14:56:22.960,887768.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +173,detectron2,facebookresearch/detectron2,image,,https://github.com/facebookresearch/detectron2,https://github.com/facebookresearch/detectron2,Apache-2.0,2019-09-05 21:30:20.000,2025-04-22 14:57:26.066000,2025-04-13 16:47:48,1541.0,1.0,7505.0,392.0,703.0,542.0,3087.0,31816.0,"Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.",277.0,33,True,2021-11-15 22:08:26.000,0.6,10.0,detectron2,conda-forge/detectron2,,,['pytorch'],2430.0,2417.0,https://pypi.org/project/detectron2,2020-02-06 00:35:57.000,13.0,,11595.0,https://anaconda.org/conda-forge/detectron2,2025-04-22 14:57:26.066,660941.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +174,MindsDB,mindsdb/mindsdb,ml-frameworks,,https://github.com/mindsdb/mindsdb,https://github.com/mindsdb/mindsdb,ICU,2018-08-02 17:56:45.000,2025-04-24 14:23:11.000000,2025-04-23 21:39:42,19246.0,227.0,4957.0,398.0,6123.0,149.0,4060.0,27806.0,AIs query engine - Platform for building AI that can learn and answer questions over large scale federated data.,872.0,33,False,2025-04-22 11:56:45.000,25.4.4.0,537.0,mindsdb,,,,['pytorch'],,,https://pypi.org/project/mindsdb,2025-04-22 11:57:55.000,,19616.0,19616.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +175,spleeter,deezer/spleeter,audio,,https://github.com/deezer/spleeter,https://github.com/deezer/spleeter,MIT,2019-09-26 15:40:46.000,2025-04-22 14:57:16.666000,2025-04-02 16:22:19,540.0,2.0,2918.0,389.0,127.0,259.0,561.0,26744.0,Deezer source separation library including pretrained models.,22.0,33,True,2025-04-03 08:14:05.000,2.4.2,38.0,spleeter,conda-forge/spleeter,,,['tensorflow'],1009.0,991.0,https://pypi.org/project/spleeter,2025-04-03 08:14:05.000,18.0,30260.0,91723.0,https://anaconda.org/conda-forge/spleeter,2025-04-22 14:57:16.666,107645.0,,,,,2.0,3947323.0,,,,,,,,,,,,,,,,,,, +176,Recommenders,microsoft/recommenders,recommender-systems,,https://github.com/recommenders-team/recommenders,https://github.com/recommenders-team/recommenders,MIT,2018-09-19 10:06:07.000,2025-04-23 13:41:34.000000,2025-01-19 03:16:46,9035.0,,3156.0,278.0,1320.0,161.0,721.0,20112.0,Best Practices on Recommendation Systems.,137.0,33,True,2024-12-24 07:39:57.000,1.2.1,14.0,recommenders,,,,,169.0,165.0,https://pypi.org/project/recommenders,2024-12-24 07:18:07.000,4.0,20976.0,20985.0,,,,,,,,1.0,729.0,,,,,,recommenders-team/recommenders,,,,,,,,,,,,, +177,Magenta,magenta/magenta,audio,,https://github.com/magenta/magenta,https://github.com/magenta/magenta,Apache-2.0,2016-05-05 20:10:40.000,2025-04-22 16:44:35.000000,2025-01-17 12:10:18,1423.0,,3739.0,742.0,1143.0,417.0,589.0,19448.0,Magenta: Music and Art Generation with Machine Intelligence.,155.0,33,True,2023-12-02 01:16:14.308,0.1.0,68.0,magenta,,,,['tensorflow'],580.0,575.0,https://pypi.org/project/magenta,2022-08-01 18:23:00.243,5.0,9431.0,9431.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +178,Prophet,facebook/prophet,time-series-data,,https://github.com/facebook/prophet,https://github.com/facebook/prophet,MIT,2016-11-16 01:50:08.000,2025-04-22 14:57:50.177000,2024-10-20 08:37:57,818.0,,4535.0,452.0,471.0,437.0,1737.0,19124.0,Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear..,183.0,33,True,2024-10-02 23:56:39.000,1.1.6-patched-pypi,18.0,fbprophet,conda-forge/prophet,,,,112.0,21.0,https://pypi.org/project/fbprophet,2020-09-05 16:12:50.000,91.0,238056.0,267541.0,https://anaconda.org/conda-forge/prophet,2025-04-22 14:57:50.177,1413842.0,,,,,1.0,2981.0,,,,,,,,,,,,,,,,,,, +179,zipline,quantopian/zipline,financial-data,,https://github.com/quantopian/zipline,https://github.com/quantopian/zipline,Apache-2.0,2012-10-19 15:50:29.000,2025-04-22 14:57:35.321000,2020-10-14 16:36:49,6226.0,,4706.0,1019.0,1869.0,363.0,658.0,18403.0,"Zipline, a Pythonic Algorithmic Trading Library.",161.0,33,False,2020-10-05 15:46:20.429,1.4.1,30.0,zipline,conda-forge/zipline,,,,1039.0,1029.0,https://pypi.org/project/zipline,2020-10-05 15:46:20.429,10.0,3086.0,3269.0,https://anaconda.org/conda-forge/zipline,2025-04-22 14:57:35.321,10065.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +180,tensor2tensor,tensorflow/tensor2tensor,tensorflow-utils,,https://github.com/tensorflow/tensor2tensor,https://github.com/tensorflow/tensor2tensor,Apache-2.0,2017-06-15 16:57:39.000,2023-06-02 18:55:09.000000,2023-04-01 10:19:28,4379.0,,3518.0,471.0,671.0,590.0,672.0,16079.0,Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.,244.0,33,False,2020-06-17 16:31:34.798,1.15.7,79.0,tensor2tensor,,,,['tensorflow'],1557.0,1543.0,https://pypi.org/project/tensor2tensor,2020-06-17 16:31:34.798,14.0,11016.0,11016.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +181,Lime,marcotcr/lime,interpretability,,https://github.com/marcotcr/lime,https://github.com/marcotcr/lime,BSD-2-Clause,2016-03-15 22:18:10.000,2025-04-22 14:56:30.659000,2021-07-29 23:17:25,531.0,,1811.0,260.0,120.0,120.0,535.0,11856.0,Lime: Explaining the predictions of any machine learning classifier.,62.0,33,False,2020-04-03 22:05:03.000,0.2.0.0,39.0,lime,conda-forge/lime,,,,8588.0,8385.0,https://pypi.org/project/lime,2020-06-26 21:38:15.000,203.0,187520.0,191968.0,https://anaconda.org/conda-forge/lime,2025-04-22 14:56:30.659,258005.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +182,wordcloud,amueller/word_cloud,data-viz,,https://github.com/amueller/word_cloud,https://github.com/amueller/word_cloud,MIT,2012-11-04 22:57:59.000,2025-04-22 14:56:26.236000,2025-04-12 19:24:14,581.0,1.0,2332.0,216.0,264.0,139.0,420.0,10366.0,A little word cloud generator in Python.,73.0,33,True,2024-11-10 14:34:59.000,1.9.4,21.0,wordcloud,conda-forge/wordcloud,,,,567.0,21.0,https://pypi.org/project/wordcloud,2024-11-10 14:34:59.000,546.0,1822375.0,1833919.0,https://anaconda.org/conda-forge/wordcloud,2025-04-22 14:56:26.236,658023.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +183,TPOT,EpistasisLab/tpot,hyperopt,,https://github.com/EpistasisLab/tpot,https://github.com/EpistasisLab/tpot,LGPL-3.0,2015-11-03 21:08:40.000,2025-04-22 14:56:28.015000,2025-02-26 17:12:17,527.0,15.0,1575.0,286.0,441.0,299.0,640.0,9886.0,A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.,85.0,33,False,2025-02-26 17:16:32.000,1.0.0,64.0,tpot,conda-forge/tpot,,,['sklearn'],3469.0,3423.0,https://pypi.org/project/tpot,2025-02-26 17:16:32.000,46.0,46556.0,51613.0,https://anaconda.org/conda-forge/tpot,2025-04-22 14:56:28.015,293307.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +184,PaddleSeg,PaddlePaddle/PaddleSeg,image,,https://github.com/PaddlePaddle/PaddleSeg,https://github.com/PaddlePaddle/PaddleSeg,Apache-2.0,2019-08-26 02:32:22.000,2025-04-17 11:22:20.000000,2024-12-25 06:44:36,2948.0,,1687.0,90.0,1711.0,21.0,2151.0,8980.0,"Easy-to-use image segmentation library with awesome pre-trained model zoo, supporting wide-range of practical tasks in..",131.0,33,True,2024-11-05 11:28:52.000,2.10.0,20.0,paddleseg,,,,['paddle'],1421.0,1414.0,https://pypi.org/project/paddleseg,2022-11-30 11:24:02.578,7.0,2046.0,2046.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +185,Pyro,pyro-ppl/pyro,probabilistics,,https://github.com/pyro-ppl/pyro,https://github.com/pyro-ppl/pyro,Apache-2.0,2017-06-16 05:03:47.000,2025-04-22 14:57:47.967000,2025-04-14 17:45:56,2511.0,12.0,987.0,200.0,2343.0,261.0,852.0,8734.0,Deep universal probabilistic programming with Python and PyTorch.,160.0,33,True,2024-06-02 00:37:37.000,1.9.1,36.0,pyro-ppl,conda-forge/pyro-ppl,,,['pytorch'],186.0,,https://pypi.org/project/pyro-ppl,2024-06-02 00:37:37.000,186.0,392095.0,396850.0,https://anaconda.org/conda-forge/pyro-ppl,2025-04-22 14:57:47.967,233036.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +186,Vowpal Wabbit,VowpalWabbit/vowpal_wabbit,ml-frameworks,,https://github.com/VowpalWabbit/vowpal_wabbit,https://github.com/VowpalWabbit/vowpal_wabbit,BSD-3-Clause,2009-07-31 19:36:58.000,2025-04-22 14:57:07.942000,2024-08-01 18:55:53,10421.0,,1925.0,347.0,3432.0,134.0,1142.0,8555.0,Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as..,338.0,33,True,2024-08-08 17:57:21.000,9.10.0,30.0,vowpalwabbit,conda-forge/vowpalwabbit,,,,42.0,2.0,https://pypi.org/project/vowpalwabbit,2024-08-08 17:57:21.000,40.0,48817.0,55225.0,https://anaconda.org/conda-forge/vowpalwabbit,2025-04-22 14:57:07.942,346065.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +187,Darts,unit8co/darts,time-series-data,,https://github.com/unit8co/darts,https://github.com/unit8co/darts,Apache-2.0,2018-09-13 15:17:28.000,2025-04-22 14:57:58.224000,2025-04-20 08:45:39,1336.0,54.0,924.0,62.0,1116.0,244.0,1449.0,8536.0,A python library for user-friendly forecasting and anomaly detection on time series.,133.0,33,True,2025-04-18 15:15:15.000,0.35.0,48.0,u8darts,conda-forge/u8darts-all,unit8/darts,,,10.0,,https://pypi.org/project/u8darts,2025-04-18 15:15:15.000,10.0,78182.0,79893.0,https://anaconda.org/conda-forge/u8darts-all,2025-04-22 14:57:58.224,76263.0,https://hub.docker.com/r/unit8/darts,2025-04-18 14:58:21.859121,,1395.0,1.0,,,,,,,,,,,,,,,,,,,, +188,Bayesian Optimization,fmfn/BayesianOptimization,hyperopt,,https://github.com/bayesian-optimization/BayesianOptimization,https://github.com/bayesian-optimization/BayesianOptimization,MIT,2014-06-06 08:18:56.000,2025-04-22 07:26:22.000000,2025-04-22 07:24:58,400.0,7.0,1550.0,131.0,181.0,7.0,371.0,8196.0,A Python implementation of global optimization with gaussian processes.,48.0,33,True,2024-12-23 09:51:44.000,2.0.3,21.0,bayesian-optimization,,,,,3773.0,3619.0,https://pypi.org/project/bayesian-optimization,2024-12-27 08:24:39.000,154.0,437258.0,437259.0,,,,,,,,1.0,177.0,,,,,,bayesian-optimization/BayesianOptimization,,,,,,,,,,,,, +189,tensorboardX,lanpa/tensorboardX,ml-experiments,,https://github.com/lanpa/tensorboardX,https://github.com/lanpa/tensorboardX,MIT,2017-06-13 13:54:19.000,2025-04-24 12:30:05.000000,2025-04-24 12:30:04,549.0,6.0,862.0,83.0,296.0,81.0,377.0,7932.0,"tensorboard for pytorch (and chainer, mxnet, numpy, ...).",85.0,33,True,2023-07-30 14:05:26.000,2.6.2,24.0,tensorboardX,conda-forge/tensorboardx,,,,57259.0,56634.0,https://pypi.org/project/tensorboardX,2023-08-20 13:38:18.000,625.0,2762146.0,2784591.0,https://anaconda.org/conda-forge/tensorboardx,2025-04-22 14:56:45.200,1279122.0,,,,,2.0,478.0,,,,,,,,,,,,,,,,,,, +190,stanza,stanfordnlp/stanza,nlp,,https://github.com/stanfordnlp/stanza,https://github.com/stanfordnlp/stanza,Apache-2.0,2017-09-26 08:00:56.000,2025-04-23 15:05:12.000000,2024-12-24 06:19:04,4785.0,,895.0,139.0,512.0,95.0,825.0,7443.0,"Stanford NLP Python library for tokenization, sentence segmentation, NER, and parsing of many human languages.",69.0,33,True,2024-12-29 06:54:23.000,1.10.1,30.0,stanza,stanfordnlp/stanza,,,,3972.0,3776.0,https://pypi.org/project/stanza,2024-12-24 06:07:22.000,196.0,359593.0,359734.0,https://anaconda.org/stanfordnlp/stanza,2025-03-25 16:28:39.162,8601.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +191,imbalanced-learn,scikit-learn-contrib/imbalanced-learn,sklearn-utils,,https://github.com/scikit-learn-contrib/imbalanced-learn,https://github.com/scikit-learn-contrib/imbalanced-learn,MIT,2014-08-16 05:08:26.000,2025-04-22 14:56:42.907000,2025-04-01 07:54:33,886.0,3.0,1289.0,141.0,525.0,48.0,571.0,6977.0,A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning.,87.0,33,True,2024-12-20 18:36:46.000,0.13.0,39.0,imbalanced-learn,conda-forge/imbalanced-learn,,,['sklearn'],476.0,,https://pypi.org/project/imbalanced-learn,2024-12-20 16:50:20.000,476.0,14226676.0,14238533.0,https://anaconda.org/conda-forge/imbalanced-learn,2025-04-22 14:56:42.907,687742.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +192,OpenNMT,OpenNMT/OpenNMT-py,nlp,,https://github.com/OpenNMT/OpenNMT-py,https://github.com/OpenNMT/OpenNMT-py,MIT,2017-02-22 19:01:50.000,2025-03-06 03:47:21.000000,2024-06-27 17:56:21,2895.0,,2256.0,177.0,1154.0,33.0,1429.0,6867.0,Open Source Neural Machine Translation and (Large) Language Models in PyTorch.,191.0,33,True,2024-03-18 14:02:12.000,3.5.1,50.0,OpenNMT-py,,,,['pytorch'],350.0,327.0,https://pypi.org/project/OpenNMT-py,2024-03-18 14:02:12.000,23.0,13479.0,13479.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +193,kaggle,Kaggle/kaggle-api,ml-experiments,,https://github.com/Kaggle/kaggle-api,https://github.com/Kaggle/kaggle-api,Apache-2.0,2018-01-25 03:02:39.000,2025-04-23 23:47:08.000000,2025-04-22 17:49:13,262.0,44.0,1151.0,207.0,215.0,148.0,370.0,6584.0,Official Kaggle API.,49.0,33,True,2025-03-14 22:46:23.000,1.7.4.2,79.0,kaggle,conda-forge/kaggle,,,,252.0,21.0,https://pypi.org/project/kaggle,2025-03-14 22:09:26.000,231.0,357208.0,361268.0,https://anaconda.org/conda-forge/kaggle,2025-04-22 14:57:05.316,223350.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +194,tensorpack,tensorpack/tensorpack,ml-frameworks,,https://github.com/tensorpack/tensorpack,https://github.com/tensorpack/tensorpack,Apache-2.0,2015-12-25 23:08:44.000,2025-04-22 14:58:03.026000,2023-08-06 00:30:36,2944.0,,1811.0,194.0,206.0,13.0,1343.0,6310.0,"A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility.",58.0,33,False,2020-04-24 19:04:45.487,0.10.1,37.0,tensorpack,conda-forge/tensorpack,,,['tensorflow'],1744.0,1726.0,https://pypi.org/project/tensorpack,2021-01-22 19:59:12.425,18.0,12988.0,13303.0,https://anaconda.org/conda-forge/tensorpack,2025-04-22 14:58:03.026,13163.0,,,,,2.0,187.0,,,,,,,,,,,,,,,,,,, +195,PML,KevinMusgrave/pytorch-metric-learning,pytorch-utils,,https://github.com/KevinMusgrave/pytorch-metric-learning,https://github.com/KevinMusgrave/pytorch-metric-learning,MIT,2019-10-23 17:20:35.000,2025-04-20 04:17:24.000000,2024-12-11 19:01:35,1284.0,,657.0,61.0,149.0,74.0,454.0,6127.0,"The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.",46.0,33,True,2024-12-11 19:23:54.000,2.8.1,215.0,pytorch-metric-learning,metric-learning/pytorch-metric-learning,,,['pytorch'],2677.0,2622.0,https://pypi.org/project/pytorch-metric-learning,2024-12-11 19:21:13.000,55.0,765304.0,765505.0,https://anaconda.org/metric-learning/pytorch-metric-learning,2025-03-25 16:28:35.582,12715.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +196,torchdiffeq,rtqichen/torchdiffeq,pytorch-utils,,https://github.com/rtqichen/torchdiffeq,https://github.com/rtqichen/torchdiffeq,MIT,2018-11-14 17:51:25.000,2025-04-22 14:57:25.759000,2025-04-04 01:06:00,257.0,7.0,930.0,126.0,43.0,76.0,149.0,5911.0,Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.,22.0,33,True,2024-11-21 20:20:09.000,0.2.5,9.0,torchdiffeq,conda-forge/torchdiffeq,,,['pytorch'],5099.0,4983.0,https://pypi.org/project/torchdiffeq,2024-11-21 20:20:09.000,116.0,1077669.0,1078027.0,https://anaconda.org/conda-forge/torchdiffeq,2025-04-22 14:57:25.759,21128.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +197,aim,aimhubio/aim,ml-experiments,,https://github.com/aimhubio/aim,https://github.com/aimhubio/aim,Apache-2.0,2019-05-31 18:25:07.000,2025-04-23 20:10:50.000000,2025-04-08 14:28:52,2260.0,22.0,337.0,42.0,2244.0,383.0,674.0,5526.0,Aim An easy-to-use & supercharged open-source experiment tracker.,82.0,33,True,2025-03-21 18:01:33.000,3.28.0,1257.0,aim,conda-forge/aim,,,,905.0,864.0,https://pypi.org/project/aim,2025-04-23 20:10:50.000,41.0,180143.0,182767.0,https://anaconda.org/conda-forge/aim,2025-04-22 14:57:56.531,118099.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +198,mlpack,mlpack/mlpack,ml-frameworks,,https://github.com/mlpack/mlpack,https://github.com/mlpack/mlpack,BSD-3-Clause,2014-12-17 18:16:59.000,2025-04-22 21:36:20.000000,2025-04-22 21:36:20,30627.0,38.0,1652.0,185.0,2282.0,16.0,1631.0,5328.0,"mlpack: a fast, header-only C++ machine learning library.",332.0,33,True,2025-04-04 18:37:44.000,4.6.0,50.0,mlpack,conda-forge/mlpack,,,,6.0,,https://pypi.org/project/mlpack,2025-04-04 18:37:44.000,6.0,7155.0,13192.0,https://anaconda.org/conda-forge/mlpack,2025-04-22 14:56:52.929,350159.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +199,geopy,geopy/geopy,geospatial-data,,https://github.com/geopy/geopy,https://github.com/geopy/geopy,MIT,2010-03-04 22:05:28.000,2025-04-22 14:56:20.783000,2023-11-23 21:41:49,1136.0,,648.0,88.0,275.0,42.0,254.0,4621.0,Geocoding library for Python.,133.0,33,False,2023-11-23 21:50:14.000,2.4.1,61.0,geopy,conda-forge/geopy,,,,901.0,,https://pypi.org/project/geopy,2023-11-23 21:49:30.000,901.0,7271192.0,7299126.0,https://anaconda.org/conda-forge/geopy,2025-04-22 14:56:20.783,1620155.0,,,,,3.0,148.0,,,,,,,,,,,,,,,,,,, +200,TorchServe,pytorch/serve,model-serialisation,,https://github.com/pytorch/serve,https://github.com/pytorch/serve,Apache-2.0,2019-10-03 03:17:43.000,2025-04-23 02:27:53.000000,2025-03-17 18:20:57,3891.0,6.0,879.0,54.0,1744.0,439.0,1274.0,4346.0,"Serve, optimize and scale PyTorch models in production.",220.0,33,True,2024-09-30 22:46:39.000,0.12.0,26.0,torchserve,pytorch/torchserve,pytorch/torchserve,,['pytorch'],882.0,858.0,https://pypi.org/project/torchserve,2024-09-30 18:57:42.000,24.0,91360.0,121249.0,https://anaconda.org/pytorch/torchserve,2025-03-25 16:24:31.948,491005.0,https://hub.docker.com/r/pytorch/torchserve,2024-09-30 22:07:15.226668,32.0,1424181.0,2.0,7682.0,,,,,,,,,,,,,,,,,,, +201,nevergrad,facebookresearch/nevergrad,hyperopt,,https://github.com/facebookresearch/nevergrad,https://github.com/facebookresearch/nevergrad,MIT,2018-11-21 00:33:17.000,2025-04-23 15:34:16.000000,2025-04-23 15:27:35,1145.0,13.0,364.0,56.0,1426.0,126.0,186.0,4050.0,A Python toolbox for performing gradient-free optimization.,58.0,33,True,2025-04-23 15:34:16.000,1.0.12,53.0,nevergrad,conda-forge/nevergrad,,,,964.0,892.0,https://pypi.org/project/nevergrad,2025-04-23 15:34:16.000,72.0,133916.0,134948.0,https://anaconda.org/conda-forge/nevergrad,2025-04-22 14:57:24.222,60943.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +202,tensorflow-hub,tensorflow/hub,tensorflow-utils,,https://github.com/tensorflow/hub,https://github.com/tensorflow/hub,Apache-2.0,2018-03-12 07:55:42.000,2025-04-22 14:56:51.855000,2025-01-17 12:09:38,1188.0,,1657.0,153.0,210.0,14.0,693.0,3493.0,A library for transfer learning by reusing parts of TensorFlow models.,107.0,33,True,2024-01-30 15:53:29.000,0.16.1,20.0,tensorflow-hub,conda-forge/tensorflow-hub,,,['tensorflow'],303.0,,https://pypi.org/project/tensorflow-hub,2024-01-30 14:49:07.000,303.0,2022253.0,2024349.0,https://anaconda.org/conda-forge/tensorflow-hub,2025-04-22 14:56:51.855,117404.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +203,hdbscan,scikit-learn-contrib/hdbscan,others,,https://github.com/scikit-learn-contrib/hdbscan,https://github.com/scikit-learn-contrib/hdbscan,BSD-3-Clause,2015-04-22 13:32:37.000,2025-04-22 15:49:59.000000,2025-04-22 15:49:58,1071.0,4.0,505.0,56.0,156.0,359.0,175.0,2902.0,A high performance implementation of HDBSCAN clustering.,96.0,33,True,2024-11-18 16:14:10.000,0.8.40,57.0,hdbscan,conda-forge/hdbscan,,,['sklearn'],6353.0,6001.0,https://pypi.org/project/hdbscan,2024-11-18 16:14:10.000,352.0,710168.0,755902.0,https://anaconda.org/conda-forge/hdbscan,2025-04-22 14:56:25.731,2469687.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +204,scikit-optimize,scikit-optimize/scikit-optimize,hyperopt,,https://github.com/scikit-optimize/scikit-optimize,https://github.com/scikit-optimize/scikit-optimize,BSD-3-Clause,2016-03-20 21:10:54.000,2025-04-22 14:56:38.802000,2021-10-12 13:32:38,1570.0,,545.0,62.0,546.0,318.0,393.0,2769.0,Sequential model-based optimization with a `scipy.optimize` interface.,76.0,33,False,2024-06-04 19:12:54.000,0.10.2,23.0,scikit-optimize,conda-forge/scikit-optimize,,,,8338.0,7970.0,https://pypi.org/project/scikit-optimize,2024-06-04 19:12:54.000,368.0,750180.0,764025.0,https://anaconda.org/conda-forge/scikit-optimize,2025-04-22 14:56:38.802,775329.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +205,Lifelines,CamDavidsonPilon/lifelines,medical-data,,https://github.com/CamDavidsonPilon/lifelines,https://github.com/CamDavidsonPilon/lifelines,MIT,2013-08-28 00:16:42.000,2025-04-22 14:56:24.379000,2024-10-29 11:59:38,2311.0,,559.0,68.0,487.0,267.0,713.0,2436.0,Survival analysis in Python.,120.0,33,True,2024-10-29 12:00:41.000,0.30.0,172.0,lifelines,conda-forge/lifelines,,,,3911.0,3750.0,https://pypi.org/project/lifelines,2024-10-29 12:00:41.000,161.0,2759977.0,2767056.0,https://anaconda.org/conda-forge/lifelines,2025-04-22 14:56:24.379,417691.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +206,jellyfish,jamesturk/jellyfish,nlp,,https://github.com/jamesturk/jellyfish,https://github.com/jamesturk/jellyfish,MIT,2010-07-09 20:41:11.000,2025-04-22 14:56:27.864000,2025-03-31 15:33:49,582.0,7.0,160.0,41.0,86.0,4.0,138.0,2123.0,a python library for doing approximate and phonetic matching of strings.,34.0,33,True,2025-03-31 15:41:38.000,1.2.0,47.0,jellyfish,conda-forge/jellyfish,,,,14600.0,14301.0,https://pypi.org/project/jellyfish,2025-03-31 15:41:38.000,299.0,7527165.0,7550405.0,https://anaconda.org/conda-forge/jellyfish,2025-04-22 14:56:27.864,1347944.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +207,Pythran,serge-sans-paille/pythran,others,,https://github.com/serge-sans-paille/pythran,https://github.com/serge-sans-paille/pythran,BSD-3-Clause,2012-05-29 08:02:14.000,2025-04-23 21:03:56.000000,2025-04-23 20:51:12,3823.0,51.0,194.0,46.0,1424.0,134.0,755.0,2028.0,Ahead of Time compiler for numeric kernels.,74.0,33,True,2024-10-31 09:34:16.000,0.17.0,62.0,pythran,conda-forge/pythran,,,,3354.0,3333.0,https://pypi.org/project/pythran,2024-10-31 09:34:16.000,21.0,323750.0,343848.0,https://anaconda.org/conda-forge/pythran,2025-04-22 14:56:51.391,1105411.0,,,,,2.0,,,,,,,,,,,,,,pythran,python-pythran,,,,, +208,lets-plot,JetBrains/lets-plot,data-viz,,https://github.com/JetBrains/lets-plot,https://github.com/JetBrains/lets-plot,MIT,2019-03-20 16:13:03.000,2025-04-24 11:50:06.000000,2025-04-21 16:13:14,4798.0,236.0,53.0,209.0,624.0,161.0,523.0,1652.0,Multiplatform plotting library based on the Grammar of Graphics.,21.0,33,True,2025-03-28 12:26:01.000,4.6.2,87.0,lets-plot,,,,,193.0,178.0,https://pypi.org/project/lets-plot,2025-03-28 12:20:53.000,15.0,53512.0,53561.0,,,,,,,,2.0,3230.0,,,,,,,,,,,,,,,,,,, +209,Geocoder,DenisCarriere/geocoder,geospatial-data,,https://github.com/DenisCarriere/geocoder,https://github.com/DenisCarriere/geocoder,MIT,2014-01-13 04:19:21.000,2025-04-22 14:56:32.225000,2018-10-12 15:53:05,1251.0,,285.0,49.0,160.0,114.0,220.0,1639.0,Python Geocoder.,75.0,33,False,2021-12-15 15:58:16.110,1.1.4,110.0,geocoder,conda-forge/geocoder,,,,14957.0,14745.0,https://pypi.org/project/geocoder,2021-12-15 15:58:16.110,212.0,1052800.0,1093846.0,https://anaconda.org/conda-forge/geocoder,2025-04-22 14:56:32.225,164186.0,,,,,3.0,,,,,,,,,,,,,,,,geocoder,,,, +210,tensorly,tensorly/tensorly,others,,https://github.com/tensorly/tensorly,https://github.com/tensorly/tensorly,BSD-2-Clause,2016-10-21 23:14:52.000,2025-04-22 18:09:56.000000,2025-04-22 18:09:56,1999.0,10.0,294.0,43.0,298.0,65.0,217.0,1609.0,TensorLy: Tensor Learning in Python.,72.0,33,True,2024-11-12 14:54:17.000,0.9.0,21.0,tensorly,conda-forge/tensorly,,,,1093.0,994.0,https://pypi.org/project/tensorly,2024-11-12 14:54:17.000,99.0,76109.0,83043.0,https://anaconda.org/conda-forge/tensorly,2025-04-22 14:56:50.737,374456.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +211,Hail,hail-is/hail,medical-data,,https://github.com/hail-is/hail,https://github.com/hail-is/hail,MIT,2015-10-27 20:55:42.000,2025-04-23 21:04:01.000000,2025-04-23 16:35:03,11675.0,47.0,248.0,53.0,12413.0,250.0,2231.0,1000.0,Cloud-native genomic dataframes and batch computing.,97.0,33,True,2025-03-07 12:38:30.000,0.2.134,156.0,hail,,,,['spark'],206.0,164.0,https://pypi.org/project/hail,2025-03-07 12:38:30.000,42.0,23303.0,23303.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +212,patsy,pydata/patsy,probabilistics,,https://github.com/pydata/patsy,https://github.com/pydata/patsy,BSD-2-Clause,2012-07-10 12:30:06.000,2025-04-22 14:56:26.344000,2025-02-24 17:16:03,588.0,7.0,104.0,34.0,77.0,72.0,84.0,966.0,Describing statistical models in Python using symbolic formulas.,22.0,33,True,2024-11-12 14:10:52.000,1.0.1,15.0,patsy,conda-forge/patsy,,,,122563.0,122030.0,https://pypi.org/project/patsy,2024-11-12 14:10:52.000,533.0,15647095.0,16005951.0,https://anaconda.org/conda-forge/patsy,2025-04-22 14:56:26.344,15430809.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +213,DIPY,dipy/dipy,medical-data,,https://github.com/dipy/dipy,https://github.com/dipy/dipy,,2010-02-06 11:43:08.000,2025-04-22 14:56:23.610000,2025-04-22 14:14:46,14953.0,196.0,445.0,54.0,2334.0,162.0,845.0,755.0,"DIPY is the paragon 3D/4D+ medical imaging library in Python. Contains generic methods for spatial normalization,..",168.0,33,False,2025-03-16 06:33:35.000,1.11.0,30.0,dipy,conda-forge/dipy,,,,1625.0,1489.0,https://pypi.org/project/dipy,2025-03-16 06:33:35.000,136.0,41882.0,53011.0,https://anaconda.org/conda-forge/dipy,2025-04-22 14:56:23.610,612127.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +214,ColossalAI,hpcaitech/colossalai,distributed-ml,,https://github.com/hpcaitech/ColossalAI,https://github.com/hpcaitech/ColossalAI,Apache-2.0,2021-10-28 16:19:44.000,2025-04-24 09:47:49.000000,2025-04-18 08:40:53,3809.0,23.0,4491.0,392.0,4306.0,463.0,1289.0,40813.0,"Making large AI models cheaper, faster and more accessible.",195.0,32,True,2025-03-04 01:51:48.000,0.4.9,49.0,,,,,,498.0,498.0,,,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +215,FinRL,AI4Finance-Foundation/FinRL,reinforcement-learning,,https://github.com/AI4Finance-Foundation/FinRL,https://github.com/AI4Finance-Foundation/FinRL,MIT,2020-07-26 13:18:16.000,2025-04-23 06:59:18.000000,2025-04-23 06:59:18,3064.0,86.0,2642.0,219.0,504.0,256.0,483.0,11531.0,FinRL: Financial Reinforcement Learning.,124.0,32,True,2023-02-07 13:58:00.815,0.3.6,8.0,finrl,,,,,86.0,86.0,https://pypi.org/project/finrl,2022-01-08 13:58:14.000,,3080.0,3080.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +216,Ludwig,ludwig-ai/ludwig,ml-frameworks,,https://github.com/ludwig-ai/ludwig,https://github.com/ludwig-ai/ludwig,Apache-2.0,2018-12-27 23:58:12.000,2025-03-31 20:00:41.000000,2024-10-17 22:52:09,3861.0,,1193.0,192.0,2870.0,45.0,1037.0,11431.0,"Low-code framework for building custom LLMs, neural networks, and other AI models.",157.0,32,True,2024-07-30 00:29:49.000,0.10.4,56.0,ludwig,,,,['tensorflow'],308.0,302.0,https://pypi.org/project/ludwig,2024-07-30 00:29:49.000,6.0,2491.0,2491.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +217,Turi Create,apple/turicreate,ml-frameworks,,https://github.com/apple/turicreate,https://github.com/apple/turicreate,BSD-3-Clause,2017-12-01 00:42:04.000,2023-11-01 06:14:06.000000,2021-11-29 19:55:31,1571.0,,1137.0,339.0,1683.0,523.0,1294.0,11201.0,Turi Create simplifies the development of custom machine learning models.,88.0,32,False,2020-09-30 22:51:40.000,6.4.1,31.0,turicreate,,,,,398.0,393.0,https://pypi.org/project/turicreate,2020-09-30 22:51:40.000,5.0,18348.0,18480.0,,,,,,,,3.0,11659.0,,,,,,,,,,,,,,,,,,, +218,ParlAI,facebookresearch/ParlAI,nlp,,https://github.com/facebookresearch/ParlAI,https://github.com/facebookresearch/ParlAI,MIT,2017-04-24 17:10:44.000,2023-11-03 14:30:00.000000,2023-11-03 14:30:00,4358.0,,2091.0,279.0,3401.0,51.0,1494.0,10527.0,A framework for training and evaluating AI models on a variety of openly available dialogue datasets.,218.0,32,False,2023-06-06 20:46:16.091,1.7.2,25.0,parlai,,,,['pytorch'],280.0,271.0,https://pypi.org/project/parlai,2023-06-06 20:46:16.091,9.0,2118.0,2118.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +219,Sonnet,deepmind/sonnet,ml-frameworks,,https://github.com/google-deepmind/sonnet,https://github.com/google-deepmind/sonnet,Apache-2.0,2017-04-03 11:34:35.000,2025-04-22 14:57:17.453000,2025-02-14 11:41:58,869.0,3.0,1299.0,420.0,93.0,32.0,161.0,9842.0,TensorFlow-based neural network library.,61.0,32,True,2024-01-02 11:15:06.000,2.0.2,29.0,dm-sonnet,conda-forge/sonnet,,,['tensorflow'],1445.0,1426.0,https://pypi.org/project/dm-sonnet,2024-01-02 11:15:06.000,19.0,22193.0,22829.0,https://anaconda.org/conda-forge/sonnet,2025-04-22 14:57:17.453,41373.0,,,,,3.0,,,,,,,google-deepmind/sonnet,,,,,,,,,,,,, +220,fuzzywuzzy,seatgeek/fuzzywuzzy,nlp,,https://github.com/seatgeek/fuzzywuzzy,https://github.com/seatgeek/fuzzywuzzy,GPL-2.0,2011-07-08 19:32:34.000,2025-04-22 14:56:25.369000,2021-09-09 20:54:41,384.0,,876.0,261.0,148.0,107.0,104.0,9257.0,Fuzzy String Matching in Python.,70.0,32,False,2020-02-13 22:14:12.000,0.18.0,27.0,fuzzywuzzy,conda-forge/fuzzywuzzy,,,,1211.0,21.0,https://pypi.org/project/fuzzywuzzy,2020-02-13 21:06:25.000,1190.0,9311859.0,9323098.0,https://anaconda.org/conda-forge/fuzzywuzzy,2025-04-22 14:56:25.369,595691.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +221,PyTorch3D,facebookresearch/pytorch3d,image,,https://github.com/facebookresearch/pytorch3d,https://github.com/facebookresearch/pytorch3d,,2019-10-25 02:23:45.000,2025-03-28 15:26:58.000000,2025-03-28 15:16:54,1209.0,9.0,1325.0,150.0,187.0,277.0,1387.0,9211.0,PyTorch3D is FAIRs library of reusable components for deep learning with 3D data.,157.0,32,False,2024-09-13 14:37:23.000,V0.7.8,19.0,pytorch3d,pytorch3d/pytorch3d,,,['pytorch'],1261.0,1247.0,https://pypi.org/project/pytorch3d,2022-04-28 15:53:26.000,14.0,4916.0,9774.0,https://anaconda.org/pytorch3d/pytorch3d,2025-03-25 16:29:23.925,315830.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +222,tsfresh,blue-yonder/tsfresh,time-series-data,,https://github.com/blue-yonder/tsfresh,https://github.com/blue-yonder/tsfresh,MIT,2016-10-26 11:29:17.000,2025-04-22 14:56:43.035000,2025-02-16 16:07:41,570.0,3.0,1221.0,171.0,446.0,70.0,476.0,8717.0,Automatic extraction of relevant features from time series:.,99.0,32,True,2025-02-16 16:10:09.000,0.21.0,33.0,tsfresh,conda-forge/tsfresh,,,['sklearn'],121.0,21.0,https://pypi.org/project/tsfresh,2025-02-16 16:10:09.000,100.0,248814.0,273228.0,https://anaconda.org/conda-forge/tsfresh,2025-04-22 14:56:43.035,1440478.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +223,Apex,NVIDIA/apex,gpu-utilities,,https://github.com/NVIDIA/apex,https://github.com/NVIDIA/apex,BSD-3-Clause,2018-04-23 16:28:52.000,2025-04-22 14:57:14.720000,2025-04-11 02:10:33,1210.0,13.0,1401.0,98.0,689.0,735.0,531.0,8629.0,A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch.,131.0,32,True,,,4.0,,conda-forge/nvidia-apex,,,['pytorch'],3147.0,3147.0,,,,,8839.0,https://anaconda.org/conda-forge/nvidia-apex,2025-04-22 14:57:14.720,477308.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +224,BigDL,intel-analytics/BigDL,distributed-ml,,https://github.com/intel/ipex-llm,https://github.com/intel/ipex-llm,Apache-2.0,2016-08-29 07:59:50.000,2025-04-24 09:53:14.000000,2025-04-24 09:53:14,4054.0,151.0,1345.0,261.0,10207.0,1134.0,1742.0,7788.0,"Accelerate local LLM inference and finetuning (LLaMA, Mistral, ChatGLM, Qwen, DeepSeek, Mixtral, Gemma, Phi, MiniCPM,..",115.0,32,True,2025-04-07 07:23:54.000,2.2.0,869.0,bigdl,,,,,7.0,,https://pypi.org/project/bigdl,2024-03-24 14:04:20.000,2.0,27190.0,27197.0,,,,,,,,2.0,680.0,,,,,,intel/ipex-llm,,,,,,,,,,com.intel.analytics.bigdl:bigdl-SPARK_2.4,https://search.maven.org/artifact/com.intel.analytics.bigdl/bigdl-SPARK_2.4,2021-04-20 01:33:14,5.0 +225,UMAP,lmcinnes/umap,data-viz,,https://github.com/lmcinnes/umap,https://github.com/lmcinnes/umap,BSD-3-Clause,2017-07-02 01:11:17.000,2025-04-22 14:56:49.243000,2025-02-28 21:29:16,1874.0,9.0,825.0,127.0,295.0,503.0,343.0,7736.0,Uniform Manifold Approximation and Projection.,139.0,32,True,2025-02-28 21:30:46.000,release-0.5.8,41.0,umap-learn,conda-forge/umap-learn,,,,1061.0,1.0,https://pypi.org/project/umap-learn,2024-10-28 18:05:55.000,1060.0,1575935.0,1626922.0,https://anaconda.org/conda-forge/umap-learn,2025-04-22 14:56:49.243,2957262.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +226,featuretools,alteryx/featuretools,hyperopt,,https://github.com/alteryx/featuretools,https://github.com/alteryx/featuretools,BSD-3-Clause,2017-09-08 22:15:17.000,2025-04-22 14:56:57.460000,2024-11-13 18:39:43,1380.0,,881.0,158.0,1735.0,154.0,865.0,7429.0,An open source python library for automated feature engineering.,74.0,32,True,2024-05-14 18:59:58.000,1.31.0,106.0,featuretools,conda-forge/featuretools,,,,2093.0,2019.0,https://pypi.org/project/featuretools,2024-05-14 18:59:58.000,74.0,89999.0,94178.0,https://anaconda.org/conda-forge/featuretools,2025-04-22 14:56:57.460,242421.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +227,Opik,comet-ml/opik,nlp,,https://github.com/comet-ml/opik,https://github.com/comet-ml/opik,Apache-2.0,2023-05-10 12:57:13.000,2025-04-24 14:37:02.000000,2025-04-24 13:29:11,1602.0,720.0,488.0,62.0,1671.0,77.0,185.0,6758.0,"Debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing,..",50.0,32,True,2025-04-23 09:09:39.000,1.7.11,120.0,opik,,,,,16.0,6.0,https://pypi.org/project/opik,2025-04-23 09:09:52.000,10.0,205462.0,205462.0,,,,,,,,2.0,12.0,,,,,,,,,,,,,,,,,,, +228,pandas-ta,twopirllc/pandas-ta,probabilistics,,https://github.com/twopirllc/pandas-ta,https://github.com/twopirllc/pandas-ta,MIT,2019-02-19 16:41:09.000,2025-04-22 14:58:01.732000,2024-06-24 00:50:16,586.0,,1176.0,113.0,278.0,107.0,611.0,6047.0,Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 150+ Indicators.,45.0,32,True,2021-07-28 20:21:21.000,0.3.14,19.0,pandas-ta,conda-forge/pandas-ta,,,['pandas'],5481.0,5339.0,https://pypi.org/project/pandas-ta,2021-07-28 20:51:17.000,142.0,179877.0,180484.0,https://anaconda.org/conda-forge/pandas-ta,2025-04-22 14:58:01.732,25523.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +229,skorch,skorch-dev/skorch,ml-frameworks,,https://github.com/skorch-dev/skorch,https://github.com/skorch-dev/skorch,BSD-3-Clause,2017-07-18 00:13:54.000,2025-04-24 12:58:03.000000,2025-04-24 12:58:00,1115.0,7.0,392.0,80.0,559.0,66.0,469.0,6010.0,A scikit-learn compatible neural network library that wraps PyTorch.,67.0,32,True,2025-01-10 13:04:37.000,1.1.0,21.0,skorch,conda-forge/skorch,,,"['pytorch', 'sklearn']",1727.0,1633.0,https://pypi.org/project/skorch,2025-01-10 13:01:10.000,94.0,125660.0,140169.0,https://anaconda.org/conda-forge/skorch,2025-04-22 14:56:55.090,798010.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +230,pyfolio,quantopian/pyfolio,financial-data,,https://github.com/quantopian/pyfolio,https://github.com/quantopian/pyfolio,Apache-2.0,2015-06-01 15:31:39.000,2025-04-22 14:56:47.184000,2020-07-15 13:46:58,1184.0,,1760.0,305.0,297.0,161.0,268.0,5926.0,Portfolio and risk analytics in Python.,60.0,32,False,2019-04-15 15:00:21.000,0.9.2,22.0,pyfolio,conda-forge/pyfolio,,,,1259.0,1245.0,https://pypi.org/project/pyfolio,2019-04-15 15:00:21.000,14.0,13379.0,13553.0,https://anaconda.org/conda-forge/pyfolio,2025-04-22 14:56:47.184,15014.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +231,ART,Trusted-AI/adversarial-robustness-toolbox,adversarial,,https://github.com/Trusted-AI/adversarial-robustness-toolbox,https://github.com/Trusted-AI/adversarial-robustness-toolbox,MIT,2018-03-15 14:40:43.000,2025-04-24 07:38:59.000000,2025-02-28 08:53:01,12558.0,3.0,1185.0,99.0,1456.0,22.0,883.0,5213.0,"Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction,..",141.0,32,True,2025-01-22 10:09:43.000,1.19.1,63.0,adversarial-robustness-toolbox,conda-forge/adversarial-robustness-toolbox,,,,734.0,714.0,https://pypi.org/project/adversarial-robustness-toolbox,2025-01-22 09:57:58.000,20.0,28801.0,30029.0,https://anaconda.org/conda-forge/adversarial-robustness-toolbox,2025-04-22 14:57:32.684,69999.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +232,cuML,rapidsai/cuml,gpu-utilities,,https://github.com/rapidsai/cuml,https://github.com/rapidsai/cuml,Apache-2.0,2018-10-11 15:45:35.000,2025-04-24 14:50:46.000000,2025-04-22 14:12:08,15822.0,192.0,566.0,77.0,3967.0,989.0,1690.0,4659.0,cuML - RAPIDS Machine Learning Library.,182.0,32,True,2025-04-09 21:28:25.000,25.04.00,45.0,cuml,,,,,14.0,,https://pypi.org/project/cuml,2020-06-01 20:09:10.000,14.0,4614.0,4614.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +233,hnswlib,nmslib/hnswlib,nn-search,,https://github.com/nmslib/hnswlib,https://github.com/nmslib/hnswlib,Apache-2.0,2017-07-06 13:08:46.000,2025-04-22 14:57:43.850000,2024-06-17 19:23:44,491.0,,679.0,65.0,239.0,251.0,165.0,4656.0,Header-only C++/python library for fast approximate nearest neighbors.,72.0,32,True,2023-12-03 04:16:17.000,0.8.0,11.0,hnswlib,conda-forge/hnswlib,,,,8058.0,7924.0,https://pypi.org/project/hnswlib,2023-12-03 04:16:17.000,134.0,482484.0,489132.0,https://anaconda.org/conda-forge/hnswlib,2025-04-22 14:57:43.850,345702.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +234,imutils,PyImageSearch/imutils,image,,https://github.com/PyImageSearch/imutils,https://github.com/PyImageSearch/imutils,MIT,2015-01-11 20:05:39.000,2025-04-22 14:57:06.837000,2022-01-27 13:24:16,139.0,,1026.0,150.0,118.0,162.0,79.0,4563.0,"A series of convenience functions to make basic image processing operations such as translation, rotation, resizing,..",21.0,32,False,2021-01-15 10:53:17.000,0.5.4,29.0,imutils,conda-forge/imutils,,,,52312.0,51877.0,https://pypi.org/project/imutils,2021-01-15 10:53:17.000,435.0,446374.0,450409.0,https://anaconda.org/conda-forge/imutils,2025-04-22 14:57:06.837,230010.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +235,rubrix,recognai/rubrix,nlp,,https://github.com/argilla-io/argilla,https://github.com/argilla-io/argilla,Apache-2.0,2021-04-28 14:37:42.000,2025-04-22 14:58:07.112000,2025-03-10 08:42:43,3625.0,12.0,425.0,31.0,3445.0,52.0,2155.0,4468.0,Argilla is a collaboration tool for AI engineers and domain experts to build high-quality datasets.,112.0,32,True,2025-03-11 08:58:41.000,2.8.0,100.0,rubrix,conda-forge/rubrix,,,,2982.0,2982.0,https://pypi.org/project/rubrix,2022-10-24 18:22:00.951,,3601.0,4712.0,https://anaconda.org/conda-forge/rubrix,2025-04-22 14:58:07.112,44444.0,,,,,2.0,,,,,,,argilla-io/argilla,,,,,,,,,,,,, +236,pytorch-forecasting,jdb78/pytorch-forecasting,time-series-data,,https://github.com/sktime/pytorch-forecasting,https://github.com/sktime/pytorch-forecasting,MIT,2020-07-03 13:05:24.000,2025-04-22 14:57:35.705000,2025-04-18 09:57:29,1956.0,19.0,664.0,43.0,966.0,511.0,327.0,4263.0,Time series forecasting with PyTorch.,67.0,32,True,2025-02-06 17:46:54.000,1.3.0,38.0,pytorch-forecasting,conda-forge/pytorch-forecasting,,,,588.0,566.0,https://pypi.org/project/pytorch-forecasting,2025-02-06 19:41:43.000,22.0,141919.0,143300.0,https://anaconda.org/conda-forge/pytorch-forecasting,2025-04-22 14:57:35.705,76005.0,,,,,2.0,,,,,,,sktime/pytorch-forecasting,,,,,,,,,,,,, +237,STUMPY,TDAmeritrade/stumpy,time-series-data,,https://github.com/TDAmeritrade/stumpy,https://github.com/TDAmeritrade/stumpy,BSD-3-Clause,2019-05-03 19:23:44.000,2025-04-22 14:57:05.227000,2025-04-08 00:46:33,1380.0,13.0,331.0,56.0,254.0,70.0,464.0,3897.0,STUMPY is a powerful and scalable Python library for modern time series analysis.,41.0,32,True,2024-07-09 04:43:23.000,1.13.0,29.0,stumpy,conda-forge/stumpy,,,,1223.0,1193.0,https://pypi.org/project/stumpy,2024-07-09 04:21:56.000,30.0,296428.0,315077.0,https://anaconda.org/conda-forge/stumpy,2025-04-22 14:57:05.227,1081690.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +238,torchtext,pytorch/text,nlp,,https://github.com/pytorch/text,https://github.com/pytorch/text,BSD-3-Clause,2016-12-12 00:56:03.000,2025-04-24 11:35:11.000000,2025-02-24 22:58:28,1312.0,1.0,812.0,333.0,1473.0,332.0,519.0,3536.0,"Models, data loaders and abstractions for language processing, powered by PyTorch.",156.0,32,True,2024-04-24 16:20:45.000,0.18.0,34.0,torchtext,,,,['pytorch'],285.0,,https://pypi.org/project/torchtext,2024-04-24 15:49:45.000,285.0,844450.0,844450.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +239,filterpy,rlabbe/filterpy,probabilistics,,https://github.com/rlabbe/filterpy,https://github.com/rlabbe/filterpy,MIT,2014-07-15 02:15:19.000,2025-04-22 14:56:37.895000,2022-08-22 18:21:12,586.0,,630.0,79.0,85.0,74.0,162.0,3531.0,"Python Kalman filtering and optimal estimation library. Implements Kalman filter, particle filter, Extended Kalman..",43.0,32,False,2021-12-15 15:49:27.374,0.0.13,49.0,filterpy,conda-forge/filterpy,,,,9236.0,9116.0,https://pypi.org/project/filterpy,2021-12-15 15:49:27.374,120.0,1648491.0,1785794.0,https://anaconda.org/conda-forge/filterpy,2025-04-22 14:56:37.895,274606.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +240,NeuralForecast,Nixtla/neuralforecast,time-series-data,,https://github.com/Nixtla/neuralforecast,https://github.com/Nixtla/neuralforecast,Apache-2.0,2021-04-26 00:15:19.000,2025-04-24 13:27:28.000000,2025-04-10 22:10:28,1236.0,16.0,395.0,34.0,588.0,106.0,504.0,3459.0,Scalable and user friendly neural forecasting algorithms.,50.0,32,True,2025-02-28 15:49:17.000,3.0.0,31.0,neuralforecast,conda-forge/neuralforecast,,,,372.0,346.0,https://pypi.org/project/neuralforecast,2025-02-28 15:49:17.000,26.0,69892.0,70855.0,https://anaconda.org/conda-forge/neuralforecast,2025-04-22 14:58:13.961,35656.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +241,FairScale,facebookresearch/fairscale,distributed-ml,,https://github.com/facebookresearch/fairscale,https://github.com/facebookresearch/fairscale,BSD-3-Clause,2020-07-07 19:02:01.000,2025-04-22 14:58:04.549000,2025-01-12 23:14:25,705.0,,287.0,49.0,830.0,103.0,285.0,3306.0,PyTorch extensions for high performance and large scale training.,76.0,32,True,2022-12-11 18:09:31.906,0.4.13,35.0,fairscale,conda-forge/fairscale,,,['pytorch'],8261.0,8108.0,https://pypi.org/project/fairscale,2022-12-11 18:09:31.906,153.0,519956.0,530582.0,https://anaconda.org/conda-forge/fairscale,2025-04-22 14:58:04.549,435672.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +242,category_encoders,scikit-learn-contrib/category_encoders,sklearn-utils,,https://github.com/scikit-learn-contrib/category_encoders,https://github.com/scikit-learn-contrib/category_encoders,BSD-3-Clause,2015-11-29 19:32:37.000,2025-04-22 14:56:25.923000,2025-03-24 01:18:35,980.0,6.0,396.0,38.0,157.0,44.0,259.0,2438.0,A library of sklearn compatible categorical variable encoders.,71.0,32,True,2025-03-15 16:16:43.000,2.8.1,36.0,category_encoders,conda-forge/category_encoders,,,['sklearn'],3719.0,3410.0,https://pypi.org/project/category_encoders,2025-03-15 16:17:21.000,309.0,1968538.0,1975979.0,https://anaconda.org/conda-forge/category_encoders,2025-04-22 14:56:25.923,312556.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +243,TFX,tensorflow/tfx,tensorflow-utils,,https://github.com/tensorflow/tfx,https://github.com/tensorflow/tfx,Apache-2.0,2019-02-04 17:14:36.000,2025-03-26 04:26:13.000000,2025-03-26 04:24:50,5969.0,4.0,714.0,87.0,6060.0,257.0,889.0,2142.0,TFX is an end-to-end platform for deploying production ML pipelines.,194.0,32,True,2024-12-11 20:13:47.000,1.16.0,100.0,tfx,,,,['tensorflow'],1797.0,1780.0,https://pypi.org/project/tfx,2024-12-11 20:13:47.000,17.0,43579.0,43579.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +244,Opacus,pytorch/opacus,privacy-ml,,https://github.com/pytorch/opacus,https://github.com/pytorch/opacus,Apache-2.0,2019-12-07 01:58:09.000,2025-04-22 14:58:08.566000,2025-04-10 19:23:49,768.0,18.0,359.0,44.0,429.0,68.0,262.0,1786.0,Training PyTorch models with differential privacy.,85.0,32,True,2025-02-18 22:03:17.000,1.5.3,25.0,opacus,conda-forge/opacus,,,['pytorch'],1117.0,1075.0,https://pypi.org/project/opacus,2025-02-18 22:03:17.000,42.0,92440.0,93026.0,https://anaconda.org/conda-forge/opacus,2025-04-22 14:58:08.566,22810.0,,,,,2.0,139.0,,,,,,,,,,,,,,,,,,, +245,TF Addons,tensorflow/addons,tensorflow-utils,,https://github.com/tensorflow/addons,https://github.com/tensorflow/addons,Apache-2.0,2018-11-26 23:57:17.000,2025-03-26 21:42:40.000000,2024-04-15 22:25:34,1519.0,,612.0,55.0,1887.0,92.0,899.0,1698.0,Useful extra functionality for TensorFlow 2.x maintained by SIG-addons.,207.0,32,True,2023-11-28 01:45:31.000,0.23.0,38.0,tensorflow-addons,,,,['tensorflow'],371.0,,https://pypi.org/project/tensorflow-addons,2023-11-28 01:45:31.000,371.0,1149266.0,1149266.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +246,pmdarima,alkaline-ml/pmdarima,time-series-data,,https://github.com/alkaline-ml/pmdarima,https://github.com/alkaline-ml/pmdarima,MIT,2017-03-30 14:58:30.000,2025-04-22 14:57:38.334000,2024-11-07 23:05:03,1082.0,,239.0,35.0,256.0,65.0,274.0,1639.0,"A statistical library designed to fill the void in Pythons time series analysis capabilities, including the equivalent..",23.0,32,True,2023-10-23 16:52:00.000,2.0.4,44.0,pmdarima,conda-forge/pmdarima,,,,11851.0,11698.0,https://pypi.org/project/pmdarima,2023-10-23 14:02:41.000,153.0,2693182.0,2717494.0,https://anaconda.org/conda-forge/pmdarima,2025-04-22 14:57:38.334,1312854.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +247,ipyleaflet,jupyter-widgets/ipyleaflet,geospatial-data,,https://github.com/jupyter-widgets/ipyleaflet,https://github.com/jupyter-widgets/ipyleaflet,MIT,2014-05-07 16:32:10.000,2025-04-22 14:56:22.880000,2024-12-05 15:39:58,1196.0,,360.0,67.0,618.0,299.0,363.0,1511.0,A Jupyter - Leaflet.js bridge.,92.0,32,True,2024-07-22 08:02:59.000,0.19.2,84.0,ipyleaflet,conda-forge/ipyleaflet,,,['jupyter'],16569.0,16285.0,https://pypi.org/project/ipyleaflet,2024-07-22 08:02:59.000,275.0,212858.0,240664.0,https://anaconda.org/conda-forge/ipyleaflet,2025-04-22 14:56:22.880,1423006.0,,,,,3.0,,jupyter-leaflet,https://www.npmjs.com/package/jupyter-leaflet,2024-07-22 08:02:28.803,9.0,3688.0,,,,,,,,,,,,,, +248,pyjanitor,pyjanitor-devs/pyjanitor,others,,https://github.com/pyjanitor-devs/pyjanitor,https://github.com/pyjanitor-devs/pyjanitor,MIT,2018-03-04 22:43:33.000,2025-04-22 14:56:48.797000,2025-04-22 08:59:27,1656.0,23.0,171.0,16.0,887.0,112.0,467.0,1413.0,Clean APIs for data cleaning. Python implementation of R package Janitor.,110.0,32,True,2025-03-07 00:16:27.000,0.31.0,67.0,pyjanitor,conda-forge/pyjanitor,,,,963.0,921.0,https://pypi.org/project/pyjanitor,2025-03-07 00:16:23.000,42.0,93324.0,97649.0,https://anaconda.org/conda-forge/pyjanitor,2025-04-22 14:56:48.797,255225.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +249,arch,bashtage/arch,financial-data,,https://github.com/bashtage/arch,https://github.com/bashtage/arch,,2014-08-29 15:41:28.000,2025-04-22 14:57:17.475000,2025-03-19 18:19:56,1190.0,23.0,257.0,49.0,561.0,33.0,189.0,1391.0,ARCH models in Python.,37.0,32,False,2024-11-04 16:01:44.000,7.2.0,49.0,arch,conda-forge/arch-py,,,,2938.0,2825.0,https://pypi.org/project/arch,2024-11-04 16:01:44.000,113.0,442610.0,452376.0,https://anaconda.org/conda-forge/arch-py,2025-04-22 14:57:17.475,566467.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +250,igraph,igraph/python-igraph,graph,,https://github.com/igraph/python-igraph,https://github.com/igraph/python-igraph,GPL-2.0,2015-01-08 23:55:16.000,2025-04-22 14:56:30.980000,2025-04-20 11:46:54,2964.0,27.0,255.0,35.0,245.0,51.0,515.0,1360.0,Python interface for igraph.,79.0,32,False,2024-10-28 12:53:42.000,0.11.8,43.0,python-igraph,conda-forge/igraph,,,,4903.0,4497.0,https://pypi.org/project/python-igraph,2024-10-28 12:53:42.000,406.0,217573.0,236637.0,https://anaconda.org/conda-forge/igraph,2025-04-22 14:56:30.980,750216.0,,,,,1.0,566852.0,,,,,,,,,,,,,,,,,,, +251,hvPlot,holoviz/hvplot,data-viz,,https://github.com/holoviz/hvplot,https://github.com/holoviz/hvplot,BSD-3-Clause,2018-03-19 14:22:41.000,2025-04-22 14:56:54.531000,2025-04-16 10:01:57,767.0,27.0,111.0,24.0,630.0,371.0,489.0,1184.0,"A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews.",51.0,32,True,2024-12-16 22:32:41.000,0.11.2,81.0,hvplot,conda-forge/hvplot,,,,7174.0,6956.0,https://pypi.org/project/hvplot,2024-12-16 15:36:13.000,218.0,211412.0,224396.0,https://anaconda.org/conda-forge/hvplot,2025-04-22 14:56:54.531,753124.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +252,scikit-survival,sebp/scikit-survival,sklearn-utils,,https://github.com/sebp/scikit-survival,https://github.com/sebp/scikit-survival,GPL-3.0,2016-12-26 22:15:53.000,2025-04-22 14:58:04.628000,2025-04-12 22:13:37,1243.0,33.0,218.0,21.0,166.0,30.0,211.0,1181.0,Survival analysis built on top of scikit-learn.,22.0,32,False,2025-03-25 22:02:59.000,0.24.1,32.0,scikit-survival,conda-forge/scikit-survival,,,['sklearn'],882.0,838.0,https://pypi.org/project/scikit-survival,2025-03-25 22:02:59.000,44.0,164819.0,170761.0,https://anaconda.org/conda-forge/scikit-survival,2025-04-22 14:58:04.628,243624.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +253,snowballstemmer,snowballstem/snowball,nlp,,https://github.com/snowballstem/snowball,https://github.com/snowballstem/snowball,BSD-3-Clause,2013-02-23 07:17:42.000,2025-04-24 04:49:47.000000,2025-04-24 04:47:21,1233.0,132.0,174.0,35.0,129.0,25.0,87.0,783.0,Snowball compiler and stemming algorithms.,35.0,32,True,2021-11-16 18:38:34.000,2.2.0,10.0,snowballstemmer,conda-forge/snowballstemmer,,,,459.0,10.0,https://pypi.org/project/snowballstemmer,2021-11-16 18:38:34.000,449.0,19202210.0,19294687.0,https://anaconda.org/conda-forge/snowballstemmer,2025-04-22 14:56:26.216,9617685.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +254,Qlib,microsoft/qlib,financial-data,,https://github.com/microsoft/qlib,https://github.com/microsoft/qlib,MIT,2020-08-14 06:46:00.000,2025-04-24 14:33:48.000000,2025-04-02 10:50:52,2013.0,3.0,3045.0,317.0,967.0,249.0,715.0,18918.0,"Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and..",136.0,31,True,2024-12-23 07:36:40.000,0.9.6,35.0,pyqlib,,,,['pytorch'],22.0,21.0,https://pypi.org/project/pyqlib,2024-12-23 07:38:34.000,1.0,8367.0,8381.0,,,,,,,,2.0,788.0,,,,,,,,,,,,,,,,,,, +255,NNI,microsoft/nni,hyperopt,,https://github.com/microsoft/nni,https://github.com/microsoft/nni,MIT,2018-06-01 05:51:44.000,2024-07-03 10:55:10.000000,2023-10-26 05:31:53,3012.0,,1816.0,283.0,3507.0,417.0,1684.0,14173.0,"An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural..",192.0,31,False,2023-09-14 12:12:06.000,3.0,55.0,nni,,,,,68.0,21.0,https://pypi.org/project/nni,2023-09-14 12:22:00.000,47.0,25955.0,25955.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +256,PaddleHub,PaddlePaddle/PaddleHub,others,,https://github.com/PaddlePaddle/PaddleHub,https://github.com/PaddlePaddle/PaddleHub,Apache-2.0,2018-12-21 06:00:48.000,2024-08-07 03:17:23.000000,2024-08-07 03:17:23,2667.0,,2074.0,182.0,1007.0,574.0,727.0,12852.0,"Awesome pre-trained models toolkit based on PaddlePaddle. (400+ models including Image, Text, Audio, Video and Cross-..",70.0,31,True,2023-09-20 10:33:08.000,2.4.0,50.0,paddlehub,,,,['paddle'],1914.0,1907.0,https://pypi.org/project/paddlehub,2023-09-20 10:33:08.000,7.0,6850.0,6861.0,,,,,,,,2.0,842.0,,,,,,,,,,,,,,,,,,, +257,cleanlab,cleanlab/cleanlab,others,,https://github.com/cleanlab/cleanlab,https://github.com/cleanlab/cleanlab,AGPL-3.0,2018-05-11 01:55:21.000,2025-04-22 14:57:24.018000,2025-04-10 06:03:37,1772.0,22.0,812.0,87.0,824.0,97.0,293.0,10493.0,"The standard data-centric AI package for data quality and machine learning with messy, real-world data and labels.",55.0,31,False,2025-02-27 15:49:54.000,2.7.1,33.0,cleanlab,conda-forge/cleanlab,,,,482.0,461.0,https://pypi.org/project/cleanlab,2025-02-27 15:49:54.000,21.0,29612.0,30484.0,https://anaconda.org/conda-forge/cleanlab,2025-04-22 14:57:24.018,41890.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +258,TFlearn,tflearn/tflearn,ml-frameworks,,https://github.com/tflearn/tflearn,https://github.com/tflearn/tflearn,MIT,2016-03-31 12:05:53.000,2024-05-06 11:34:20.000000,2020-11-30 04:34:51,613.0,,2410.0,454.0,263.0,579.0,365.0,9621.0,Deep learning library featuring a higher-level API for TensorFlow.,145.0,31,False,2020-11-11 19:26:11.000,0.5.0,8.0,tflearn,,,,['tensorflow'],5203.0,5189.0,https://pypi.org/project/tflearn,2020-11-11 19:13:47.000,14.0,3509.0,3509.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +259,AutoKeras,keras-team/autokeras,hyperopt,,https://github.com/keras-team/autokeras,https://github.com/keras-team/autokeras,Apache-2.0,2017-11-19 23:18:20.000,2024-12-16 18:00:41.000000,2024-12-16 18:00:41,1394.0,,1399.0,298.0,897.0,150.0,760.0,9218.0,AutoML library for deep learning.,145.0,31,True,2024-03-20 21:40:33.000,2.0.0,59.0,autokeras,,,,['tensorflow'],851.0,838.0,https://pypi.org/project/autokeras,2024-03-20 21:40:33.000,13.0,17871.0,18089.0,,,,,,,,2.0,19445.0,,,,,,,,,,,,,,,,,,, +260,imageai,OlafenwaMoses/ImageAI,image,,https://github.com/OlafenwaMoses/ImageAI,https://github.com/OlafenwaMoses/ImageAI,MIT,2018-03-19 23:12:33.000,2025-04-22 14:57:32.711000,2024-02-20 22:38:05,385.0,,2163.0,288.0,98.0,311.0,446.0,8775.0,A python library built to empower developers to build applications and systems with self-contained Computer Vision..,19.0,31,False,2023-01-02 17:10:24.749,3.0.3,13.0,imageai,conda-forge/imageai,,,,1789.0,1770.0,https://pypi.org/project/imageai,2023-01-02 17:10:24.749,19.0,10232.0,21869.0,https://anaconda.org/conda-forge/imageai,2025-04-22 14:57:32.711,9108.0,,,,,2.0,964229.0,,,,,,,,,,,,,,,,,,, +261,auto-sklearn,automl/auto-sklearn,hyperopt,,https://github.com/automl/auto-sklearn,https://github.com/automl/auto-sklearn,BSD-3-Clause,2015-07-02 15:38:10.000,2025-04-22 14:57:49.654000,2023-04-18 11:08:13,2759.0,,1282.0,212.0,727.0,201.0,829.0,7812.0,Automated Machine Learning with scikit-learn.,88.0,31,False,2023-02-13 12:35:21.000,0.15.0,42.0,auto-sklearn,conda-forge/auto-sklearn,,,['sklearn'],696.0,662.0,https://pypi.org/project/auto-sklearn,2022-09-20 10:32:07.471,34.0,16189.0,16831.0,https://anaconda.org/conda-forge/auto-sklearn,2025-04-22 14:57:49.654,30863.0,,,,,2.0,68.0,,,,,,,,,,,,,,,,,,, +262,DeepPavlov,deepmipt/DeepPavlov,nlp,,https://github.com/deeppavlov/DeepPavlov,https://github.com/deeppavlov/DeepPavlov,Apache-2.0,2017-11-17 14:35:29.000,2025-04-01 14:19:35.000000,2024-11-26 06:34:41,2711.0,,1151.0,207.0,1052.0,28.0,615.0,6862.0,An open source library for deep learning end-to-end dialog systems and chatbots.,78.0,31,True,2024-08-12 17:22:54.000,1.7.0,64.0,deeppavlov,,,,['tensorflow'],433.0,429.0,https://pypi.org/project/deeppavlov,2024-08-12 17:22:54.000,4.0,11702.0,11702.0,,,,,,,,2.0,,,,,,,deeppavlov/DeepPavlov,,,,,,,,,,,,, +263,Tesseract,madmaze/pytesseract,ocr,,https://github.com/madmaze/pytesseract,https://github.com/madmaze/pytesseract,Apache-2.0,2010-10-27 23:02:49.000,2025-04-22 14:57:07.821000,2025-02-17 21:20:41,638.0,4.0,721.0,106.0,201.0,12.0,360.0,6084.0,Python-tesseract is an optical character recognition (OCR) tool for python.,50.0,31,True,2024-08-16 02:36:10.000,0.3.13,28.0,pytesseract,conda-forge/pytesseract,,,,971.0,,https://pypi.org/project/pytesseract,2024-08-16 02:36:10.000,971.0,3118641.0,3130132.0,https://anaconda.org/conda-forge/pytesseract,2025-04-22 14:57:07.821,655002.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +264,River,online-ml/river,others,,https://github.com/online-ml/river,https://github.com/online-ml/river,BSD-3-Clause,2019-01-24 15:18:26.000,2025-04-22 14:57:50.380000,2025-03-03 22:29:36,3949.0,5.0,559.0,84.0,644.0,122.0,501.0,5301.0,Online machine learning in Python.,125.0,31,True,2024-11-25 23:59:25.000,0.22.0,23.0,river,conda-forge/river,,,,773.0,709.0,https://pypi.org/project/river,2024-11-25 23:28:09.000,64.0,82693.0,84957.0,https://anaconda.org/conda-forge/river,2025-04-22 14:57:50.380,108686.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +265,ta,bukosabino/ta,financial-data,,https://github.com/bukosabino/ta,https://github.com/bukosabino/ta,MIT,2018-01-02 18:08:48.000,2025-04-22 14:57:46.184000,2023-11-02 13:49:44,662.0,,1044.0,150.0,132.0,139.0,104.0,4591.0,Technical Analysis Library using Pandas and Numpy.,34.0,31,False,2023-11-02 13:53:35.000,0.11.0,56.0,ta,conda-forge/ta,,,,7583.0,7476.0,https://pypi.org/project/ta,2023-11-02 13:53:35.000,107.0,280476.0,281189.0,https://anaconda.org/conda-forge/ta,2025-04-22 14:57:46.184,35679.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +266,sacred,IDSIA/sacred,ml-experiments,,https://github.com/IDSIA/sacred,https://github.com/IDSIA/sacred,MIT,2014-03-31 18:05:29.000,2025-04-22 14:58:05.313000,2024-11-26 07:14:46,1352.0,,383.0,69.0,376.0,103.0,460.0,4297.0,"Sacred is a tool to help you configure, organize, log and reproduce experiments developed at IDSIA.",106.0,31,True,2024-11-26 07:16:52.000,0.8.7,31.0,sacred,conda-forge/sacred,,,,3561.0,3501.0,https://pypi.org/project/sacred,2024-11-26 07:16:52.000,60.0,30422.0,30631.0,https://anaconda.org/conda-forge/sacred,2025-04-22 14:58:05.313,8570.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +267,AzureML SDK,Azure/MachineLearningNotebooks,ml-experiments,,https://github.com/Azure/MachineLearningNotebooks,https://github.com/Azure/MachineLearningNotebooks,MIT,2018-08-17 17:29:14.000,2025-04-11 20:16:33.000000,2025-03-14 16:42:02,1307.0,2.0,2506.0,1931.0,541.0,390.0,1078.0,4184.0,Python notebooks with ML and deep learning examples with Azure Machine Learning Python SDK | Microsoft.,65.0,31,True,2024-12-10 14:48:18.000,1.59.0,107.0,azureml-sdk,,,,,31.0,,https://pypi.org/project/azureml-sdk,2025-04-11 20:16:33.000,31.0,274348.0,274356.0,,,,,,,,2.0,662.0,,,,,,,,,,,,,,,,,,, +268,Porcupine,Picovoice/Porcupine,audio,,https://github.com/Picovoice/porcupine,https://github.com/Picovoice/porcupine,Apache-2.0,2018-03-08 01:55:25.000,2025-04-16 16:10:48.000000,2025-04-15 18:11:46,1339.0,63.0,515.0,65.0,820.0,2.0,571.0,4062.0,On-device wake word detection powered by deep learning.,42.0,31,True,2025-02-05 18:37:30.000,3.0.5,37.0,pvporcupine,,,,,84.0,46.0,https://pypi.org/project/pvporcupine,2025-02-05 18:37:30.000,38.0,20455.0,20455.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +269,ftfy,rspeer/python-ftfy,nlp,,https://github.com/rspeer/python-ftfy,https://github.com/rspeer/python-ftfy,Apache-2.0,2012-08-24 16:14:59.000,2025-04-22 14:56:35.312000,2024-10-30 21:00:25,674.0,,122.0,73.0,75.0,10.0,137.0,3902.0,"Fixes mojibake and other glitches in Unicode text, after the fact.",20.0,31,True,2024-10-26 00:51:07.000,6.3.1,55.0,ftfy,conda-forge/ftfy,,,,30445.0,29874.0,https://pypi.org/project/ftfy,2024-10-26 00:50:33.000,571.0,5981732.0,5988099.0,https://anaconda.org/conda-forge/ftfy,2025-04-22 14:56:35.312,324750.0,,,,,2.0,59.0,,,,,,,,,,,,,,,,,,, +270,GPyTorch,cornellius-gp/gpytorch,probabilistics,,https://github.com/cornellius-gp/gpytorch,https://github.com/cornellius-gp/gpytorch,MIT,2017-06-09 14:48:20.000,2025-04-22 14:57:22.764000,2025-02-07 03:38:27,3939.0,9.0,561.0,56.0,931.0,370.0,990.0,3690.0,A highly efficient implementation of Gaussian Processes in PyTorch.,139.0,31,True,2025-01-29 15:57:10.000,1.14,42.0,gpytorch,conda-forge/gpytorch,,,['pytorch'],3010.0,2817.0,https://pypi.org/project/gpytorch,2025-01-29 16:03:32.000,193.0,287563.0,290983.0,https://anaconda.org/conda-forge/gpytorch,2025-04-22 14:57:22.764,201824.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +271,ImageHash,JohannesBuchner/imagehash,image,,https://github.com/JohannesBuchner/imagehash,https://github.com/JohannesBuchner/imagehash,BSD-2-Clause,2013-03-02 23:32:48.000,2025-04-22 14:56:29.803000,2025-04-17 10:10:37,347.0,2.0,340.0,61.0,78.0,23.0,126.0,3598.0,A Python Perceptual Image Hashing Module.,28.0,31,True,2025-02-01 08:45:36.000,4.3.2,21.0,ImageHash,conda-forge/imagehash,,,,17078.0,16809.0,https://pypi.org/project/ImageHash,2025-02-01 08:45:36.000,269.0,1796267.0,1804616.0,https://anaconda.org/conda-forge/imagehash,2025-04-22 14:56:29.803,442528.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +272,NMSLIB,nmslib/nmslib,nn-search,,https://github.com/nmslib/nmslib,https://github.com/nmslib/nmslib,Apache-2.0,2013-07-10 11:06:06.000,2025-04-22 14:57:24.066000,2024-09-21 03:01:04,1581.0,,455.0,92.0,127.0,95.0,348.0,3476.0,Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods..,49.0,31,True,2021-02-03 16:40:09.000,2.1.1,32.0,nmslib,conda-forge/nmslib,,,,1414.0,1351.0,https://pypi.org/project/nmslib,2021-02-03 00:02:08.000,63.0,382779.0,386409.0,https://anaconda.org/conda-forge/nmslib,2025-04-22 14:57:24.066,196041.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +273,dyNET,clab/dynet,ml-frameworks,,https://github.com/clab/dynet,https://github.com/clab/dynet,Apache-2.0,2015-02-08 23:09:21.000,2023-12-01 17:10:01.000000,2023-11-08 12:40:01,3273.0,,704.0,181.0,737.0,277.0,710.0,3425.0,DyNet: The Dynamic Neural Network Toolkit.,161.0,31,False,2020-10-21 14:31:01.000,2.1.2,24.0,dyNET,,,,,288.0,270.0,https://pypi.org/project/dyNET,2020-10-21 14:31:01.000,18.0,120748.0,120934.0,,,,,,,,3.0,19057.0,,,,,,,,,,,,,,,,,,, +274,lightly,lightly-ai/lightly,image,,https://github.com/lightly-ai/lightly,https://github.com/lightly-ai/lightly,MIT,2020-10-13 13:02:56.000,2025-04-23 15:21:35.000000,2025-04-22 14:04:35,1362.0,29.0,292.0,28.0,1228.0,77.0,520.0,3368.0,A python library for self-supervised learning on images.,65.0,31,True,2025-04-22 14:11:54.000,1.5.20,133.0,lightly,,,,['pytorch'],450.0,430.0,https://pypi.org/project/lightly,2025-04-22 14:11:54.000,20.0,55509.0,55509.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +275,Haiku,deepmind/dm-haiku,ml-frameworks,,https://github.com/google-deepmind/dm-haiku,https://github.com/google-deepmind/dm-haiku,Apache-2.0,2020-02-18 07:14:02.000,2025-04-23 05:01:39.129000,2025-04-22 10:16:14,1003.0,6.0,244.0,34.0,566.0,73.0,177.0,3014.0,JAX-based neural network library.,85.0,31,True,2025-04-22 10:24:45.000,0.0.14,17.0,dm-haiku,conda-forge/dm-haiku,,,,2623.0,2433.0,https://pypi.org/project/dm-haiku,2025-04-22 10:24:45.000,190.0,190936.0,191584.0,https://anaconda.org/conda-forge/dm-haiku,2025-04-23 05:01:39.129,32428.0,,,,,3.0,,,,,,,google-deepmind/dm-haiku,,,,,,,,,,,,, +276,tslearn,tslearn-team/tslearn,time-series-data,,https://github.com/tslearn-team/tslearn,https://github.com/tslearn-team/tslearn,BSD-2-Clause,2017-05-04 13:08:13.000,2025-04-22 14:56:47.976000,2024-07-01 04:53:53,1639.0,,342.0,58.0,195.0,139.0,197.0,2969.0,The machine learning toolkit for time series analysis in Python.,43.0,31,True,2023-12-12 14:39:23.000,0.6.3,100.0,tslearn,conda-forge/tslearn,,,['sklearn'],1814.0,1735.0,https://pypi.org/project/tslearn,2023-12-12 14:39:23.000,79.0,385961.0,413177.0,https://anaconda.org/conda-forge/tslearn,2025-04-22 14:56:47.976,1578560.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +277,Keras Tuner,keras-team/keras-tuner,hyperopt,,https://github.com/keras-team/keras-tuner,https://github.com/keras-team/keras-tuner,Apache-2.0,2019-06-06 22:38:21.000,2025-04-22 14:57:22.925000,2024-06-24 17:09:39,1087.0,,397.0,58.0,500.0,223.0,275.0,2879.0,A Hyperparameter Tuning Library for Keras.,61.0,31,True,2024-03-04 19:41:39.000,1.4.7,35.0,keras-tuner,conda-forge/keras-tuner,,,['tensorflow'],5794.0,5679.0,https://pypi.org/project/keras-tuner,2024-03-04 19:41:39.000,115.0,345597.0,346839.0,https://anaconda.org/conda-forge/keras-tuner,2025-04-22 14:57:22.925,54662.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +278,shapash,MAIF/shapash,interpretability,,https://github.com/MAIF/shapash,https://github.com/MAIF/shapash,Apache-2.0,2020-04-29 07:34:23.000,2025-04-22 14:29:43.000000,2025-04-22 14:29:43,1720.0,13.0,344.0,36.0,378.0,44.0,190.0,2865.0,Shapash: User-friendly Explainability and Interpretability to Develop Reliable and Transparent Machine Learning Models.,41.0,31,True,2025-03-20 15:18:23.000,2.7.9,52.0,shapash,,,,['jupyter'],194.0,190.0,https://pypi.org/project/shapash,2025-03-20 15:18:23.000,4.0,12349.0,12349.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +279,USearch,unum-cloud/usearch,nn-search,,https://github.com/unum-cloud/usearch,https://github.com/unum-cloud/usearch,Apache-2.0,2023-02-22 09:20:20.000,2025-04-16 18:39:50.000000,2025-04-16 17:25:32,2008.0,36.0,175.0,35.0,397.0,89.0,120.0,2672.0,"Fast Open-Source Search & Clustering engine for Vectors & Strings in C++, C, Python, JavaScript, Rust, Java,..",70.0,31,True,2025-04-16 18:39:50.000,2.17.7,138.0,usearch,,unum/usearch,,,227.0,177.0,https://pypi.org/project/usearch,2025-04-16 18:39:50.000,35.0,180015.0,192292.0,,,,https://hub.docker.com/r/unum/usearch,2025-04-16 17:29:14.657970,1.0,205.0,2.0,63692.0,usearch,https://www.npmjs.com/package/usearch,2025-01-23 09:38:41.221,15.0,9238.0,,,,,,,,,,,,,, +280,bt,pmorissette/bt,financial-data,,https://github.com/pmorissette/bt,https://github.com/pmorissette/bt,MIT,2014-06-19 16:06:28.000,2025-04-22 14:57:50.748000,2025-04-08 20:43:24,580.0,19.0,442.0,94.0,128.0,82.0,267.0,2493.0,bt - flexible backtesting for Python.,34.0,31,True,2025-04-12 14:41:05.000,1.1.2,30.0,bt,conda-forge/bt,,,,1685.0,1670.0,https://pypi.org/project/bt,2025-04-12 14:40:43.000,15.0,10924.0,12600.0,https://anaconda.org/conda-forge/bt,2025-04-22 14:57:50.748,80461.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +281,mpld3,mpld3/mpld3,data-viz,,https://github.com/mpld3/mpld3,https://github.com/mpld3/mpld3,BSD-3-Clause,2013-12-18 01:48:30.000,2025-04-22 14:56:21.641000,2024-10-30 12:23:10,890.0,,361.0,82.0,169.0,218.0,149.0,2376.0,An interactive data visualization tool which brings matplotlib graphics to the browser using D3.,53.0,31,True,2023-12-23 13:04:29.963,0.5.10,19.0,mpld3,conda-forge/mpld3,,,,7447.0,7292.0,https://pypi.org/project/mpld3,2023-12-23 13:03:02.000,146.0,339043.0,344072.0,https://anaconda.org/conda-forge/mpld3,2025-04-22 14:56:21.641,228693.0,,,,,3.0,,mpld3,https://www.npmjs.com/package/mpld3,2023-12-23 13:04:29.963,9.0,1087.0,,,,,,,,,,,,,, +282,explainerdashboard,oegedijk/explainerdashboard,interpretability,,https://github.com/oegedijk/explainerdashboard,https://github.com/oegedijk/explainerdashboard,MIT,2019-10-30 08:26:16.000,2025-04-22 14:57:40.990000,2024-12-29 21:20:41,1376.0,,334.0,22.0,50.0,38.0,203.0,2374.0,Quickly build Explainable AI dashboards that show the inner workings of so-called blackbox machine learning models.,21.0,31,True,2024-12-29 21:23:32.000,0.4.8,92.0,explainerdashboard,conda-forge/explainerdashboard,,,,632.0,619.0,https://pypi.org/project/explainerdashboard,2024-12-29 21:23:32.000,13.0,72043.0,73278.0,https://anaconda.org/conda-forge/explainerdashboard,2025-04-22 14:57:40.990,64252.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +283,equinox,patrick-kidger/equinox,jax-utils,,https://github.com/patrick-kidger/equinox,https://github.com/patrick-kidger/equinox,Apache-2.0,2021-07-29 02:21:39.000,2025-04-21 22:12:14.000000,2025-04-21 18:52:14,1004.0,35.0,159.0,20.0,472.0,187.0,356.0,2324.0,Elegant easy-to-use neural networks + scientific computing in JAX. https://docs.kidger.site/equinox/.,65.0,31,True,2025-03-27 22:12:35.000,0.12.1,58.0,equinox,,,,['jax'],1392.0,1160.0,https://pypi.org/project/equinox,2025-03-27 22:12:31.000,232.0,288177.0,288177.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +284,evaluate,huggingface/evaluate,interpretability,,https://github.com/huggingface/evaluate,https://github.com/huggingface/evaluate,Apache-2.0,2022-03-30 15:08:26.000,2025-01-10 14:45:40.000000,2025-01-10 14:45:39,954.0,,269.0,44.0,358.0,230.0,144.0,2191.0,Evaluate: A library for easily evaluating machine learning models and datasets.,130.0,31,True,2024-09-11 10:17:30.000,0.4.3,16.0,evaluate,,,,,20463.0,20060.0,https://pypi.org/project/evaluate,2024-09-11 10:15:30.000,403.0,2830287.0,2830287.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +285,torchrec,pytorch/torchrec,recommender-systems,,https://github.com/pytorch/torchrec,https://github.com/pytorch/torchrec,BSD-3-Clause,2021-07-12 23:15:48.000,2025-04-24 11:35:17.000000,2025-04-24 00:42:22,2476.0,141.0,484.0,36.0,2696.0,338.0,138.0,2102.0,Pytorch domain library for recommendation systems.,338.0,31,True,2025-01-30 19:33:09.000,1.1.0-rc4,77.0,torchrec-nightly-cpu,,,,,197.0,197.0,https://pypi.org/project/torchrec-nightly-cpu,2022-05-12 18:55:21.000,,2898.0,2898.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +286,tesserocr,sirfz/tesserocr,ocr,,https://github.com/sirfz/tesserocr,https://github.com/sirfz/tesserocr,MIT,2015-12-17 23:29:36.000,2025-04-22 14:57:14.353000,2025-02-12 10:35:29,217.0,6.0,255.0,56.0,81.0,50.0,233.0,2088.0,A Python wrapper for the tesseract-ocr API.,31.0,31,True,2025-02-12 12:40:28.000,2.8.0,23.0,tesserocr,conda-forge/tesserocr,,,,1267.0,1224.0,https://pypi.org/project/tesserocr,2025-02-12 12:40:28.000,43.0,124261.0,128592.0,https://anaconda.org/conda-forge/tesserocr,2025-04-22 14:57:14.353,246445.0,,,,,2.0,939.0,,,,,,,,,,,,,,,,,,, +287,audiomentations,iver56/audiomentations,audio,,https://github.com/iver56/audiomentations,https://github.com/iver56/audiomentations,MIT,2019-02-12 16:36:24.000,2025-04-24 07:22:55.000000,2025-04-24 07:22:53,1339.0,61.0,196.0,19.0,193.0,52.0,147.0,2018.0,"A Python library for audio data augmentation. Useful for making audio ML models work well in the real world, not just..",32.0,31,True,2025-03-20 12:11:32.000,0.40.0,44.0,audiomentations,,,,,774.0,749.0,https://pypi.org/project/audiomentations,2025-03-20 12:11:32.000,25.0,73396.0,73396.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +288,PyCUDA,inducer/pycuda,gpu-utilities,,https://github.com/inducer/pycuda,https://github.com/inducer/pycuda,MIT,2011-04-06 02:53:31.000,2025-04-22 14:57:49.237000,2025-02-07 22:00:39,1613.0,2.0,291.0,57.0,143.0,86.0,196.0,1926.0,"CUDA integration for Python, plus shiny features.",82.0,31,True,2025-02-07 22:03:18.000,2025.1,56.0,pycuda,conda-forge/pycuda,,,,3836.0,3670.0,https://pypi.org/project/pycuda,2025-02-07 22:02:42.000,166.0,78446.0,97870.0,https://anaconda.org/conda-forge/pycuda,2025-04-22 14:57:49.237,951784.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +289,PyKEEN,pykeen/pykeen,graph,,https://github.com/pykeen/pykeen,https://github.com/pykeen/pykeen,MIT,2020-02-24 07:26:03.000,2025-04-24 10:43:42.000000,2025-04-24 10:43:41,2935.0,38.0,196.0,26.0,771.0,118.0,470.0,1785.0,A Python library for learning and evaluating knowledge graph embeddings.,43.0,31,True,2025-04-24 10:52:18.000,1.11.1,50.0,pykeen,,,,,328.0,307.0,https://pypi.org/project/pykeen,2025-04-24 10:43:35.000,21.0,10575.0,10579.0,,,,,,,,2.0,239.0,,,,,,,,,,,,,,,,,,, +290,dstack,dstackai/dstack,others,,https://github.com/dstackai/dstack,https://github.com/dstackai/dstack,MPL-2.0,2022-01-04 10:29:46.000,2025-04-24 12:26:47.000000,2025-04-24 11:12:14,2672.0,251.0,169.0,13.0,1286.0,102.0,1152.0,1763.0,"dstack is an open-source alternative to Kubernetes and Slurm, designed to simplify GPU allocation and AI workload..",52.0,31,True,2025-04-23 10:39:03.000,0.19.5,274.0,dstack,,,,,18.0,18.0,https://pypi.org/project/dstack,2025-04-23 09:43:44.000,,10847.0,10847.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +291,PySAL,pysal/pysal,geospatial-data,,https://github.com/pysal/pysal,https://github.com/pysal/pysal,BSD-3-Clause,2013-02-19 17:27:42.000,2025-04-22 14:56:25.462000,2025-02-06 17:53:01,4399.0,21.0,304.0,76.0,680.0,20.0,636.0,1385.0,PySAL: Python Spatial Analysis Library Meta-Package.,79.0,31,True,2025-01-31 17:29:10.000,25.01,42.0,pysal,conda-forge/pysal,,,,1842.0,1783.0,https://pypi.org/project/pysal,2025-02-06 17:54:03.000,59.0,28139.0,38973.0,https://anaconda.org/conda-forge/pysal,2025-04-22 14:56:25.462,617589.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +292,skforecast,JoaquinAmatRodrigo/skforecast,time-series-data,,https://github.com/skforecast/skforecast,https://github.com/skforecast/skforecast,BSD-3-Clause,2021-02-10 11:40:34.000,2025-04-24 12:14:45.000000,2025-04-01 09:29:43,4546.0,229.0,155.0,8.0,740.0,26.0,168.0,1295.0,Time series forecasting with machine learning models.,19.0,31,True,2025-03-18 16:41:13.000,.0.15.1,31.0,skforecast,,,,['sklearn'],457.0,439.0,https://pypi.org/project/skforecast,2025-03-18 16:29:47.000,18.0,87916.0,87916.0,,,,,,,,2.0,,,,,,,skforecast/skforecast,,,,,,,,,,,,, +293,geojson,jazzband/geojson,geospatial-data,,https://github.com/jazzband/geojson,https://github.com/jazzband/geojson,BSD-3-Clause,2011-07-01 20:39:48.000,2025-04-22 14:56:20.890000,2024-12-21 19:30:30,501.0,,123.0,31.0,135.0,27.0,77.0,958.0,Python bindings and utilities for GeoJSON.,58.0,31,True,2024-12-21 19:35:29.000,3.2.0,32.0,geojson,conda-forge/geojson,,,,20739.0,20016.0,https://pypi.org/project/geojson,2024-12-21 19:35:29.000,723.0,3046992.0,3083473.0,https://anaconda.org/conda-forge/geojson,2025-04-22 14:56:20.890,948528.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +294,mpi4py,mpi4py/mpi4py,distributed-ml,,https://github.com/mpi4py/mpi4py,https://github.com/mpi4py/mpi4py,BSD-3-Clause,2013-09-05 14:44:25.000,2025-04-24 05:22:17.000000,2025-04-23 20:54:45,3313.0,84.0,123.0,14.0,355.0,6.0,199.0,848.0,Python bindings for MPI.,27.0,31,True,2025-02-13 18:35:50.000,4.0.3,32.0,mpi4py,conda-forge/mpi4py,,,,829.0,,https://pypi.org/project/mpi4py,2025-02-13 18:35:50.000,829.0,417474.0,487340.0,https://anaconda.org/conda-forge/mpi4py,2025-04-22 14:56:27.436,3742125.0,,,,,2.0,32427.0,,,,,,,,,,,,,,,,,,, +295,tensorflow-upstream,ROCmSoftwarePlatform/tensorflow-upstream,ml-frameworks,,https://github.com/ROCm/tensorflow-upstream,https://github.com/ROCm/tensorflow-upstream,Apache-2.0,2018-04-09 21:24:50.000,2025-04-23 21:32:03.000000,2025-04-21 19:29:01,182754.0,2921.0,99.0,50.0,2545.0,17.0,374.0,690.0,TensorFlow ROCm port.,4875.0,31,True,2022-12-06 16:42:53.965,2.9.4,100.0,tensorflow-rocm,,,,['tensorflow'],9.0,,https://pypi.org/project/tensorflow-rocm,2024-01-10 14:33:03.000,9.0,6051.0,6051.0,,,,,,,,3.0,29.0,,,,,,ROCm/tensorflow-upstream,,,,,,,,,,,,, +296,Cython BLIS,explosion/cython-blis,others,,https://github.com/explosion/cython-blis,https://github.com/explosion/cython-blis,BSD-3-Clause,2017-10-15 09:56:16.000,2025-04-22 14:57:03.201000,2025-04-03 12:23:24,643.0,11.0,39.0,9.0,79.0,14.0,27.0,226.0,Fast matrix-multiplication as a self-contained Python library no system dependencies!.,13.0,31,False,2025-04-03 15:08:36.000,1.3.0,56.0,blis,conda-forge/cython-blis,,,,61084.0,60964.0,https://pypi.org/project/blis,2025-04-03 15:08:36.000,120.0,17199871.0,17245037.0,https://anaconda.org/conda-forge/cython-blis,2025-04-22 14:57:03.201,2482450.0,,,,,2.0,2132.0,,,,,,,,,,,,,,,,,,, +297,vit-pytorch,lucidrains/vit-pytorch,image,,https://github.com/lucidrains/vit-pytorch,https://github.com/lucidrains/vit-pytorch,MIT,2020-10-03 22:47:24.000,2025-03-05 18:50:39.000000,2025-03-05 18:50:34,341.0,1.0,3244.0,158.0,58.0,139.0,142.0,22590.0,"Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single..",23.0,30,True,2025-03-05 15:57:34.000,1.10.1,217.0,vit-pytorch,,,,['pytorch'],655.0,638.0,https://pypi.org/project/vit-pytorch,2025-03-05 15:57:34.000,17.0,26348.0,26348.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +298,PaddleDetection,PaddlePaddle/PaddleDetection,image,,https://github.com/PaddlePaddle/PaddleDetection,https://github.com/PaddlePaddle/PaddleDetection,Apache-2.0,2019-10-25 07:21:14.000,2025-04-17 08:18:33.000000,2025-04-16 07:54:15,2322.0,5.0,2914.0,199.0,3810.0,1250.0,4564.0,13341.0,"Object Detection toolkit based on PaddlePaddle. It supports object detection, instance segmentation, multiple object..",186.0,30,True,2025-02-14 04:57:35.000,2.8.1,11.0,paddledet,,,,['paddle'],2.0,,https://pypi.org/project/paddledet,2022-09-19 20:42:09.271,2.0,1441.0,1441.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +299,pretrainedmodels,Cadene/pretrained-models.pytorch,pytorch-utils,,https://github.com/Cadene/pretrained-models.pytorch,https://github.com/Cadene/pretrained-models.pytorch,BSD-3-Clause,2017-04-09 15:54:23.000,2025-04-22 14:57:27.662000,2020-04-16 08:02:22,154.0,,1834.0,211.0,51.0,101.0,94.0,9075.0,"Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.",22.0,30,False,2018-10-29 08:18:45.000,0.7.4,16.0,pretrainedmodels,conda-forge/pretrainedmodels,,,['pytorch'],86.0,20.0,https://pypi.org/project/pretrainedmodels,2018-10-29 08:18:45.000,66.0,161893.0,162805.0,https://anaconda.org/conda-forge/pretrainedmodels,2025-04-22 14:57:27.662,52938.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +300,CleverHans,cleverhans-lab/cleverhans,adversarial,,https://github.com/cleverhans-lab/cleverhans,https://github.com/cleverhans-lab/cleverhans,MIT,2016-09-15 00:28:04.000,2025-04-22 14:57:28.932000,2023-01-31 19:40:04,3203.0,,1389.0,189.0,786.0,45.0,423.0,6300.0,"An adversarial example library for constructing attacks, building defenses, and benchmarking both.",132.0,30,False,2021-07-24 08:53:21.000,4.0.0,8.0,cleverhans,conda-forge/cleverhans,,,['tensorflow'],810.0,803.0,https://pypi.org/project/cleverhans,2021-07-24 08:53:21.000,7.0,3377.0,3558.0,https://anaconda.org/conda-forge/cleverhans,2025-04-22 14:57:28.932,10543.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +301,SynapseML,microsoft/SynapseML,distributed-ml,,https://github.com/microsoft/SynapseML,https://github.com/microsoft/SynapseML,MIT,2017-06-05 08:23:44.000,2025-04-19 03:20:10.000000,2025-04-19 03:20:09,1676.0,18.0,842.0,142.0,1626.0,396.0,404.0,5124.0,Simple and Distributed Machine Learning.,122.0,30,True,2025-04-17 03:16:00.000,1.0.11,63.0,synapseml,,,,,7.0,,https://pypi.org/project/synapseml,2025-04-17 03:16:00.000,7.0,588649.0,588649.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +302,D-Tale,man-group/dtale,data-viz,,https://github.com/man-group/dtale,https://github.com/man-group/dtale,LGPL-2.1,2019-07-15 09:34:48.000,2025-04-22 14:57:21.478000,2025-03-20 19:24:03,831.0,3.0,418.0,68.0,309.0,66.0,536.0,4897.0,Visualizer for pandas data structures.,30.0,30,True,2025-03-20 21:17:58.000,3.17.0,191.0,dtale,conda-forge/dtale,,,"['pandas', 'jupyter']",1489.0,1436.0,https://pypi.org/project/dtale,2025-03-20 21:14:33.000,53.0,178030.0,185014.0,https://anaconda.org/conda-forge/dtale,2025-04-22 14:57:21.478,412079.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +303,GluonTS,awslabs/gluon-ts,time-series-data,,https://github.com/awslabs/gluonts,https://github.com/awslabs/gluonts,Apache-2.0,2019-05-15 17:17:29.000,2025-04-22 15:32:35.609000,2025-04-08 12:18:39,1481.0,3.0,778.0,75.0,1829.0,336.0,637.0,4853.0,Probabilistic time series modeling in Python.,117.0,30,True,2025-04-08 14:13:18.000,0.16.1,113.0,gluonts,anaconda/gluonts,,,['mxnet'],36.0,,https://pypi.org/project/gluonts,2025-04-08 14:13:18.000,36.0,913220.0,913263.0,https://anaconda.org/anaconda/gluonts,2025-04-22 15:32:35.609,1837.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +304,nlpaug,makcedward/nlpaug,nlp,,https://github.com/makcedward/nlpaug,https://github.com/makcedward/nlpaug,MIT,2019-03-21 03:00:17.000,2025-04-22 14:57:56.135000,2022-07-07 05:16:43,738.0,,463.0,41.0,127.0,76.0,154.0,4550.0,Data augmentation for NLP.,33.0,30,False,2022-07-07 05:24:14.000,1.1.11,37.0,nlpaug,conda-forge/nlpaug,,,,1750.0,1685.0,https://pypi.org/project/nlpaug,2022-07-07 05:23:07.000,65.0,169033.0,169779.0,https://anaconda.org/conda-forge/nlpaug,2025-04-22 14:57:56.135,34346.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +305,sahi,obss/sahi,image,,https://github.com/obss/sahi,https://github.com/obss/sahi,MIT,2021-01-30 12:54:53.000,2025-04-22 14:58:02.152000,2025-04-16 17:09:53,538.0,14.0,630.0,47.0,571.0,12.0,,4499.0,Framework agnostic sliced/tiled inference + interactive ui + error analysis plots.,51.0,30,True,2025-03-09 00:09:02.000,0.11.22,107.0,sahi,conda-forge/sahi,,,,1824.0,1791.0,https://pypi.org/project/sahi,2025-03-09 00:09:02.000,33.0,147891.0,150895.0,https://anaconda.org/conda-forge/sahi,2025-04-22 14:58:02.152,96307.0,,,,,2.0,35576.0,,,,,,,,,,,,,,,,,,, +306,Dedupe,dedupeio/dedupe,nlp,,https://github.com/dedupeio/dedupe,https://github.com/dedupeio/dedupe,MIT,2012-04-20 14:57:36.000,2025-04-22 14:58:06.931000,2024-11-01 16:12:42,3332.0,,551.0,119.0,386.0,77.0,743.0,4269.0,"A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.",72.0,30,True,2024-08-15 14:31:34.000,3.0.3,179.0,dedupe,conda-forge/dedupe,,,,378.0,359.0,https://pypi.org/project/dedupe,2024-08-15 14:31:34.000,19.0,91546.0,94178.0,https://anaconda.org/conda-forge/dedupe,2025-04-22 14:58:06.931,105307.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +307,anomalib,openvinotoolkit/anomalib,others,,https://github.com/open-edge-platform/anomalib,https://github.com/open-edge-platform/anomalib,Apache-2.0,2021-11-02 09:11:38.000,2025-04-14 11:25:54.000000,2025-04-13 05:02:19,755.0,29.0,725.0,44.0,1100.0,157.0,858.0,4237.0,"An anomaly detection library comprising state-of-the-art algorithms and features such as experiment management, hyper-..",84.0,30,True,2025-03-19 16:23:08.000,2.0.0,38.0,anomalib,,,,,177.0,172.0,https://pypi.org/project/anomalib,2025-03-19 17:56:21.000,5.0,72040.0,72646.0,,,,,,,,2.0,24271.0,,,,,,open-edge-platform/anomalib,,,,,,,,,,,,, +308,missingno,ResidentMario/missingno,data-viz,,https://github.com/ResidentMario/missingno,https://github.com/ResidentMario/missingno,MIT,2016-03-27 15:18:50.000,2025-04-22 14:56:38.828000,2023-02-26 20:07:33,189.0,,519.0,76.0,40.0,15.0,121.0,4085.0,Missing data visualization module for Python.,18.0,30,False,2023-02-26 20:11:59.371,0.5.2,26.0,missingno,conda-forge/missingno,,,,22128.0,22006.0,https://pypi.org/project/missingno,2023-02-26 20:11:59.371,122.0,204597.0,235350.0,https://anaconda.org/conda-forge/missingno,2025-04-22 14:56:38.828,399790.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +309,implicit,benfred/implicit,recommender-systems,,https://github.com/benfred/implicit,https://github.com/benfred/implicit,MIT,2016-04-17 03:45:23.000,2025-04-22 14:56:45.959000,2023-11-21 21:15:59,435.0,,612.0,76.0,232.0,95.0,408.0,3662.0,Fast Python Collaborative Filtering for Implicit Feedback Datasets.,34.0,30,False,2023-09-29 21:07:11.000,0.7.2,47.0,implicit,conda-forge/implicit,,,,1832.0,1803.0,https://pypi.org/project/implicit,2023-09-29 21:07:11.000,29.0,284080.0,306427.0,https://anaconda.org/conda-forge/implicit,2025-04-22 14:56:45.959,1226590.0,,,,,2.0,1810.0,,,,,,,,,,,,,,,,,,, +310,bqplot,bqplot/bqplot,data-viz,,https://github.com/bqplot/bqplot,https://github.com/bqplot/bqplot,Apache-2.0,2015-09-26 04:02:18.000,2025-04-22 14:56:22.864000,2024-10-22 15:05:01,3667.0,,466.0,100.0,1069.0,271.0,368.0,3653.0,Plotting library for IPython/Jupyter notebooks.,65.0,30,True,2024-12-24 14:19:50.859,0.5.45,113.0,bqplot,conda-forge/bqplot,,,['jupyter'],188.0,61.0,https://pypi.org/project/bqplot,2024-12-24 14:19:25.000,106.0,178834.0,207399.0,https://anaconda.org/conda-forge/bqplot,2025-04-22 14:56:22.864,1567503.0,,,,,3.0,,bqplot,https://www.npmjs.com/package/bqplot,2024-12-24 14:19:50.859,21.0,1998.0,,,,,,,,,,,,,, +311,Sumy,miso-belica/sumy,nlp,,https://github.com/miso-belica/sumy,https://github.com/miso-belica/sumy,Apache-2.0,2013-02-20 12:56:48.000,2025-04-22 14:57:55.728000,2024-05-16 18:13:03,456.0,,526.0,114.0,93.0,23.0,101.0,3580.0,Module for automatic summarization of text documents and HTML pages.,32.0,30,True,2022-10-23 16:42:18.783,0.11.0,16.0,sumy,conda-forge/sumy,,,,3958.0,3927.0,https://pypi.org/project/sumy,2022-10-23 16:42:18.783,31.0,124214.0,124473.0,https://anaconda.org/conda-forge/sumy,2025-04-22 14:57:55.728,11914.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +312,hmmlearn,hmmlearn/hmmlearn,probabilistics,,https://github.com/hmmlearn/hmmlearn,https://github.com/hmmlearn/hmmlearn,BSD-3-Clause,2014-03-23 10:33:09.000,2025-04-22 14:56:57.043000,2024-10-31 09:14:19,481.0,,739.0,122.0,132.0,71.0,375.0,3174.0,"Hidden Markov Models in Python, with scikit-learn like API.",49.0,30,True,2024-10-31 09:03:22.000,0.3.3,14.0,hmmlearn,conda-forge/hmmlearn,,,['sklearn'],3475.0,3383.0,https://pypi.org/project/hmmlearn,2024-10-31 09:03:22.000,92.0,159884.0,166516.0,https://anaconda.org/conda-forge/hmmlearn,2025-04-22 14:56:57.043,364809.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +313,Determined,determined-ai/determined,ml-frameworks,,https://github.com/determined-ai/determined,https://github.com/determined-ai/determined,Apache-2.0,2020-04-07 16:12:29.000,2025-03-20 19:09:46.000000,2025-03-20 19:09:13,8394.0,11.0,365.0,82.0,9858.0,103.0,350.0,3135.0,"Determined is an open-source machine learning platform that simplifies distributed training, hyperparameter tuning,..",125.0,30,True,2025-03-19 23:12:44.000,0.38.1,607.0,determined,,,https://docs.determined.ai,"['pytorch', 'tensorflow']",4.0,,https://pypi.org/project/determined,2025-03-19 23:33:17.000,4.0,155293.0,155543.0,,,,,,,,3.0,13024.0,,,,,,,,,,,,,,,,,,, +314,ipyparallel,ipython/ipyparallel,distributed-ml,,https://github.com/ipython/ipyparallel,https://github.com/ipython/ipyparallel,,2015-04-09 07:43:55.000,2025-04-22 14:56:22.394000,2025-04-16 09:11:20,3041.0,44.0,1007.0,121.0,560.0,61.0,310.0,2610.0,IPython Parallel: Interactive Parallel Computing in Python.,114.0,30,False,2025-03-03 10:24:03.000,9.0.1,49.0,ipyparallel,conda-forge/ipyparallel,,,['jupyter'],125.0,,https://pypi.org/project/ipyparallel,2025-03-03 10:24:03.000,125.0,293439.0,316335.0,https://anaconda.org/conda-forge/ipyparallel,2025-04-22 14:56:22.394,1236399.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +315,fairlearn,fairlearn/fairlearn,interpretability,,https://github.com/fairlearn/fairlearn,https://github.com/fairlearn/fairlearn,MIT,2018-05-15 01:51:35.000,2025-04-22 14:57:20.746000,2025-04-13 18:41:32,960.0,35.0,450.0,38.0,1001.0,152.0,385.0,2053.0,A Python package to assess and improve fairness of machine learning models.,103.0,30,True,2024-12-11 12:38:14.000,0.12.0,22.0,fairlearn,conda-forge/fairlearn,,,['sklearn'],66.0,3.0,https://pypi.org/project/fairlearn,2024-12-11 11:29:34.000,63.0,143609.0,144447.0,https://anaconda.org/conda-forge/fairlearn,2025-04-22 14:57:20.746,44445.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +316,pyLDAvis,bmabey/pyLDAvis,interpretability,,https://github.com/bmabey/pyLDAvis,https://github.com/bmabey/pyLDAvis,BSD-3-Clause,2015-04-09 22:48:03.000,2025-04-22 14:56:51.622000,2024-04-29 20:57:51,290.0,,359.0,45.0,80.0,78.0,114.0,1828.0,Python library for interactive topic model visualization. Port of the R LDAvis package.,42.0,30,True,2023-04-23 23:55:02.142,3.4.1,26.0,pyldavis,conda-forge/pyldavis,,,['jupyter'],7293.0,7190.0,https://pypi.org/project/pyldavis,2023-04-23 23:55:02.142,103.0,143609.0,145534.0,https://anaconda.org/conda-forge/pyldavis,2025-04-22 14:56:51.622,94362.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +317,pingouin,raphaelvallat/pingouin,probabilistics,,https://github.com/raphaelvallat/pingouin,https://github.com/raphaelvallat/pingouin,GPL-3.0,2018-04-01 01:10:22.000,2025-04-22 14:56:58.479000,2025-03-14 15:07:30,1264.0,4.0,152.0,30.0,129.0,42.0,277.0,1739.0,Statistical package in Python based on Pandas.,49.0,30,False,2024-09-04 10:48:32.000,0.5.5,41.0,pingouin,conda-forge/pingouin,,,,3191.0,3035.0,https://pypi.org/project/pingouin,2024-09-04 10:42:50.000,156.0,166824.0,169616.0,https://anaconda.org/conda-forge/pingouin,2025-04-22 14:56:58.479,161988.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +318,torchsde,google-research/torchsde,pytorch-utils,,https://github.com/google-research/torchsde,https://github.com/google-research/torchsde,Apache-2.0,2020-07-06 23:13:11.000,2025-04-22 14:57:44.362000,2024-12-30 10:52:51,164.0,,205.0,33.0,75.0,29.0,53.0,1636.0,Differentiable SDE solvers with GPU support and efficient sensitivity analysis.,9.0,30,True,2023-09-26 22:07:23.000,0.2.6,5.0,torchsde,conda-forge/torchsde,,,['pytorch'],5007.0,4970.0,https://pypi.org/project/torchsde,2023-09-26 21:52:19.000,37.0,2614648.0,2615393.0,https://anaconda.org/conda-forge/torchsde,2025-04-22 14:57:44.362,38040.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +319,emcee,dfm/emcee,probabilistics,,https://github.com/dfm/emcee,https://github.com/dfm/emcee,MIT,2011-11-07 16:17:08.000,2025-04-22 14:56:23.732000,2025-03-16 16:58:56,958.0,4.0,431.0,84.0,242.0,57.0,242.0,1509.0,The Python ensemble sampling toolkit for affine-invariant MCMC.,75.0,30,True,2024-04-19 10:03:17.000,3.1.6,27.0,emcee,conda-forge/emcee,,,,3359.0,2921.0,https://pypi.org/project/emcee,2024-04-19 10:03:17.000,438.0,148018.0,156766.0,https://anaconda.org/conda-forge/emcee,2025-04-22 14:56:23.732,402438.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +320,hls4ml,fastmachinelearning/hls4ml,model-serialisation,,https://github.com/fastmachinelearning/hls4ml,https://github.com/fastmachinelearning/hls4ml,Apache-2.0,2017-10-25 21:43:56.000,2025-04-22 14:57:36.962000,2025-04-16 15:08:16,2519.0,79.0,437.0,53.0,645.0,201.0,273.0,1451.0,Machine learning on FPGAs using HLS.,68.0,30,True,2025-03-17 16:51:08.000,1.1.0,18.0,hls4ml,conda-forge/hls4ml,,,"['tensorflow', 'pytorch']",48.0,47.0,https://pypi.org/project/hls4ml,2025-03-17 16:51:58.000,1.0,2339.0,2526.0,https://anaconda.org/conda-forge/hls4ml,2025-04-22 14:57:36.962,10311.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +321,pyopencl,inducer/pyopencl,others,,https://github.com/inducer/pyopencl,https://github.com/inducer/pyopencl,MIT,2011-04-06 02:51:33.000,2025-04-22 14:56:28.600000,2025-04-06 19:04:17,3403.0,8.0,243.0,49.0,424.0,77.0,287.0,1095.0,"OpenCL integration for Python, plus shiny features.",98.0,30,True,2025-01-21 23:57:14.000,2025.1,104.0,pyopencl,conda-forge/pyopencl,,,,2418.0,2237.0,https://pypi.org/project/pyopencl,2025-01-22 00:15:58.000,181.0,88670.0,118474.0,https://anaconda.org/conda-forge/pyopencl,2025-04-22 14:56:28.600,1728669.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +322,TensorFlow I/O,tensorflow/io,tensorflow-utils,,https://github.com/tensorflow/io,https://github.com/tensorflow/io,Apache-2.0,2018-11-09 22:44:05.000,2025-04-21 19:34:50.000000,2025-04-10 21:34:27,1700.0,10.0,288.0,40.0,1480.0,293.0,372.0,724.0,"Dataset, streaming, and file system extensions maintained by TensorFlow SIG-IO.",115.0,30,True,2024-07-01 23:45:56.000,0.37.1,45.0,tensorflow-io,,,,['tensorflow'],61.0,,https://pypi.org/project/tensorflow-io,2024-07-01 23:43:17.000,61.0,766376.0,766376.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +323,Neptune.ai,neptune-ai/neptune-client,ml-experiments,,https://github.com/neptune-ai/neptune-client,https://github.com/neptune-ai/neptune-client,Apache-2.0,2019-02-11 11:25:57.000,2025-04-22 14:57:20.407000,2025-04-16 09:58:45,2109.0,3.0,65.0,20.0,1660.0,33.0,227.0,613.0,The experiment tracker for foundation model training.,55.0,30,True,2025-04-15 07:28:48.000,1.14.0,213.0,neptune-client,conda-forge/neptune-client,,,,913.0,836.0,https://pypi.org/project/neptune-client,2025-04-15 07:28:48.000,77.0,489566.0,495277.0,https://anaconda.org/conda-forge/neptune-client,2025-04-22 14:57:20.407,336981.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +324,datalad,datalad/datalad,others,,https://github.com/datalad/datalad,https://github.com/datalad/datalad,MIT,2013-11-01 19:40:08.000,2025-04-22 14:56:48.646000,2024-12-15 00:03:38,17327.0,,111.0,25.0,3632.0,535.0,3418.0,572.0,"Keep code, data, containers under control with git and git-annex.",57.0,30,True,2024-12-15 00:03:47.000,1.1.5,121.0,datalad,conda-forge/datalad,,,,614.0,515.0,https://pypi.org/project/datalad,2024-12-15 00:03:47.000,99.0,20778.0,35374.0,https://anaconda.org/conda-forge/datalad,2025-04-22 14:56:48.646,846625.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +325,audioread,beetbox/audioread,audio,,https://github.com/beetbox/audioread,https://github.com/beetbox/audioread,MIT,2011-11-08 19:53:18.000,2025-04-22 14:56:25.508000,2023-12-15 12:50:52,282.0,,107.0,25.0,55.0,37.0,57.0,508.0,cross-library (GStreamer + Core Audio + MAD + FFmpeg) audio decoding for Python.,25.0,30,False,2023-09-27 19:27:51.000,3.0.1,27.0,audioread,conda-forge/audioread,,,,31916.0,31781.0,https://pypi.org/project/audioread,2023-09-27 19:27:51.000,135.0,2956709.0,2974964.0,https://anaconda.org/conda-forge/audioread,2025-04-22 14:56:25.508,985799.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +326,CNTK,microsoft/CNTK,ml-frameworks,,https://github.com/microsoft/CNTK,https://github.com/microsoft/CNTK,MIT,2015-11-26 09:52:06.000,2023-03-11 07:31:35.000000,2022-09-23 14:06:50,16117.0,,4283.0,1246.0,558.0,840.0,2543.0,17571.0,"Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit.",275.0,29,False,2019-04-26 14:13:32.000,2.7,32.0,cntk,,,,,5.0,2.0,https://pypi.org/project/cntk,2020-12-09 22:21:57.000,3.0,849.0,982.0,,,,,,,,3.0,14873.0,,,,,,,,,,,,,,,,,,, +327,backtrader,mementum/backtrader,financial-data,,https://github.com/mementum/backtrader,https://github.com/mementum/backtrader,GPL-3.0,2015-01-10 07:14:52.000,2024-08-19 17:47:36.000000,2023-04-19 14:13:08,2404.0,,4085.0,638.0,234.0,53.0,,16915.0,Python Backtesting library for trading strategies.,56.0,29,False,,,157.0,backtrader,,,,,3066.0,2992.0,https://pypi.org/project/backtrader,2023-04-19 14:15:00.742,74.0,75734.0,75734.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +328,pysc2,deepmind/pysc2,others,,https://github.com/google-deepmind/pysc2,https://github.com/google-deepmind/pysc2,Apache-2.0,2017-07-25 18:16:57.000,2024-07-23 16:54:42.000000,2023-04-19 16:47:52,581.0,,1146.0,342.0,81.0,52.0,231.0,8113.0,StarCraft II Learning Environment.,39.0,29,False,2022-07-13 12:08:43.000,4.0,8.0,pysc2,,,,,956.0,930.0,https://pypi.org/project/pysc2,2022-07-13 12:02:04.256,26.0,4590.0,4945.0,,,,,,,,2.0,32678.0,,,,,,google-deepmind/pysc2,,,,,,,,,,,,, +329,GluonCV,dmlc/gluon-cv,image,,https://github.com/dmlc/gluon-cv,https://github.com/dmlc/gluon-cv,Apache-2.0,2018-02-26 01:33:21.000,2024-11-25 15:30:52.000000,2023-01-19 00:37:33,900.0,,1210.0,151.0,954.0,60.0,789.0,5877.0,Gluon CV Toolkit.,119.0,29,False,2022-03-07 23:40:19.000,0.10.5,1535.0,gluoncv,,,,['mxnet'],77.0,21.0,https://pypi.org/project/gluoncv,2023-02-03 18:46:00.371,56.0,71316.0,71316.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +330,causalml,uber/causalml,others,,https://github.com/uber/causalml,https://github.com/uber/causalml,Apache-2.0,2019-07-09 02:08:58.000,2025-03-23 21:36:57.000000,2025-03-23 21:36:57,639.0,9.0,806.0,84.0,366.0,44.0,367.0,5361.0,Uplift modeling and causal inference with machine learning algorithms.,65.0,29,True,2025-02-20 18:49:40.000,0.15.3,26.0,causalml,,,,,278.0,269.0,https://pypi.org/project/causalml,2025-02-20 18:49:40.000,9.0,42989.0,42989.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +331,lightfm,lyst/lightfm,recommender-systems,,https://github.com/lyst/lightfm,https://github.com/lyst/lightfm,Apache-2.0,2015-07-30 08:34:00.000,2025-04-22 14:56:45.003000,2023-04-30 18:36:20,483.0,,687.0,84.0,209.0,157.0,358.0,4904.0,"A Python implementation of LightFM, a hybrid recommendation algorithm.",47.0,29,False,2023-03-20 04:08:46.000,1.17,15.0,lightfm,conda-forge/lightfm,,,,1801.0,1769.0,https://pypi.org/project/lightfm,2023-03-20 04:15:00.582,32.0,139499.0,142627.0,https://anaconda.org/conda-forge/lightfm,2025-04-22 14:56:45.003,272208.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +332,doctr,mindee/doctr,image,,https://github.com/mindee/doctr,https://github.com/mindee/doctr,Apache-2.0,2021-01-08 16:05:12.000,2025-04-23 09:35:15.000000,2025-04-23 09:28:53,953.0,21.0,489.0,42.0,1055.0,26.0,378.0,4586.0,"docTR (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by..",63.0,29,True,2025-01-30 09:29:40.000,0.11.0,18.0,python-doctr,,,,"['tensorflow', 'pytorch']",14.0,,https://pypi.org/project/python-doctr,2025-01-30 09:29:40.000,14.0,103730.0,208743.0,,,,,,,,3.0,5250650.0,,,,,,,,,,,,,,,,,,, +333,gpustat,wookayin/gpustat,gpu-utilities,,https://github.com/wookayin/gpustat,https://github.com/wookayin/gpustat,MIT,2016-04-24 10:46:43.000,2025-04-22 14:57:03.401000,2025-04-13 00:57:05,250.0,1.0,283.0,43.0,51.0,28.0,98.0,4182.0,A simple command-line utility for querying and monitoring GPU status.,17.0,29,True,2023-08-22 19:40:33.000,1.1.1,15.0,gpustat,conda-forge/gpustat,,,,7367.0,7217.0,https://pypi.org/project/gpustat,2023-08-22 19:39:06.000,150.0,690712.0,696473.0,https://anaconda.org/conda-forge/gpustat,2025-04-22 14:57:03.401,305344.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +334,TextAttack,QData/TextAttack,adversarial,,https://github.com/QData/TextAttack,https://github.com/QData/TextAttack,MIT,2019-10-15 00:51:44.000,2025-04-22 14:57:36.874000,2024-07-25 18:53:58,2707.0,,402.0,35.0,526.0,68.0,220.0,3149.0,"TextAttack is a Python framework for adversarial attacks, data augmentation, and model training in NLP..",66.0,29,True,2024-03-11 02:20:29.000,0.3.10,47.0,textattack,conda-forge/textattack,,,,391.0,380.0,https://pypi.org/project/textattack,2024-03-11 02:20:29.000,11.0,8146.0,8327.0,https://anaconda.org/conda-forge/textattack,2025-04-22 14:57:36.874,9988.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +335,mljar-supervised,mljar/mljar-supervised,hyperopt,,https://github.com/mljar/mljar-supervised,https://github.com/mljar/mljar-supervised,MIT,2018-11-05 12:58:04.000,2025-04-22 14:57:54.473000,2025-04-14 09:03:52,1234.0,7.0,419.0,51.0,96.0,139.0,531.0,3146.0,"Python package for AutoML on Tabular Data with Feature Engineering, Hyper-Parameters Tuning, Explanations and..",30.0,29,True,2025-04-01 10:24:36.000,1.1.17,100.0,mljar-supervised,conda-forge/mljar-supervised,,,,148.0,142.0,https://pypi.org/project/mljar-supervised,2025-04-01 10:23:13.000,6.0,9523.0,10391.0,https://anaconda.org/conda-forge/mljar-supervised,2025-04-22 14:57:54.473,39957.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +336,lazypredict,shankarpandala/lazypredict,hyperopt,,https://github.com/shankarpandala/lazypredict,https://github.com/shankarpandala/lazypredict,MIT,2019-11-16 09:56:35.000,2025-04-22 14:57:59.313000,2025-04-05 19:45:35,332.0,21.0,355.0,26.0,359.0,96.0,41.0,3130.0,Lazy Predict help build a lot of basic models without much code and helps understand which models works better without..,18.0,29,True,2025-04-05 19:49:38.000,0.2.16,17.0,lazypredict,conda-forge/lazypredict,,,['sklearn'],1319.0,1311.0,https://pypi.org/project/lazypredict,2025-04-05 19:49:38.000,8.0,20588.0,20692.0,https://anaconda.org/conda-forge/lazypredict,2025-04-22 14:57:59.313,4580.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +337,Essentia,MTG/essentia,audio,,https://github.com/MTG/essentia,https://github.com/MTG/essentia,AGPL-3.0,2013-06-03 14:53:47.000,2025-04-22 17:45:39.000000,2025-04-22 17:44:51,3700.0,38.0,542.0,110.0,370.0,388.0,700.0,3044.0,"C++ library for audio and music analysis, description and synthesis, including Python bindings.",82.0,29,False,2015-03-31 16:33:30.000,2.0,21.0,essentia,,,,,930.0,910.0,https://pypi.org/project/essentia,2024-04-29 15:12:27.000,20.0,15130.0,15130.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +338,langid,saffsd/langid.py,nlp,,https://github.com/saffsd/langid.py,https://github.com/saffsd/langid.py,BSD-3-Clause,2011-04-29 00:16:56.000,2020-01-01 10:49:30.000000,2017-07-15 02:49:17,242.0,,315.0,64.0,15.0,28.0,47.0,2376.0,Stand-alone language identification system.,9.0,29,False,2016-04-05 22:34:15.000,1.1.6,8.0,langid,,,,,12665.0,12510.0,https://pypi.org/project/langid,2016-04-05 22:34:15.000,155.0,474614.0,474614.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +339,pygraphistry,graphistry/pygraphistry,graph,,https://github.com/graphistry/pygraphistry,https://github.com/graphistry/pygraphistry,BSD-3-Clause,2015-06-02 20:28:42.000,2025-04-22 13:15:06.000000,2025-04-22 12:40:43,1968.0,9.0,215.0,48.0,307.0,192.0,169.0,2241.0,"PyGraphistry is a Python library to quickly load, shape, embed, and explore big graphs with the GPU-accelerated..",46.0,29,True,2025-04-22 13:15:06.000,0.36.1,207.0,graphistry,,,,['jupyter'],154.0,148.0,https://pypi.org/project/graphistry,2025-04-22 13:15:06.000,6.0,25221.0,25221.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +340,ffn,pmorissette/ffn,financial-data,,https://github.com/pmorissette/ffn,https://github.com/pmorissette/ffn,MIT,2014-06-19 15:54:09.000,2025-04-22 14:57:50.670000,2025-04-01 15:23:00,509.0,14.0,314.0,67.0,133.0,22.0,110.0,2204.0,ffn - a financial function library for Python.,36.0,29,True,2025-02-11 21:34:04.000,1.1.2,39.0,ffn,conda-forge/ffn,,,,568.0,546.0,https://pypi.org/project/ffn,2025-02-11 21:08:01.000,22.0,22319.0,22697.0,https://anaconda.org/conda-forge/ffn,2025-04-22 14:57:50.670,18161.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +341,ogb,snap-stanford/ogb,graph,,https://github.com/snap-stanford/ogb,https://github.com/snap-stanford/ogb,MIT,2019-11-22 22:13:57.000,2025-04-22 14:57:35.121000,2024-12-09 19:08:18,677.0,,400.0,40.0,64.0,31.0,273.0,1996.0,"Benchmark datasets, data loaders, and evaluators for graph machine learning.",32.0,29,True,2023-04-07 06:00:55.135,1.3.6,19.0,ogb,conda-forge/ogb,,,,2474.0,2452.0,https://pypi.org/project/ogb,2022-11-02 22:00:56.960,22.0,36849.0,37786.0,https://anaconda.org/conda-forge/ogb,2025-04-22 14:57:35.121,51558.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +342,GPflow,GPflow/GPflow,probabilistics,,https://github.com/GPflow/GPflow,https://github.com/GPflow/GPflow,Apache-2.0,2016-01-14 11:29:24.000,2025-04-22 14:56:50.649000,2025-01-29 10:12:27,2452.0,1.0,435.0,74.0,1273.0,154.0,683.0,1867.0,Gaussian processes in TensorFlow.,84.0,29,True,2024-06-17 13:05:05.000,2.9.2,50.0,gpflow,conda-forge/gpflow,,,['tensorflow'],789.0,754.0,https://pypi.org/project/gpflow,2024-06-17 13:05:05.000,35.0,69600.0,70742.0,https://anaconda.org/conda-forge/gpflow,2025-04-22 14:56:50.649,43418.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +343,ViZDoom,mwydmuch/ViZDoom,reinforcement-learning,,https://github.com/Farama-Foundation/ViZDoom,https://github.com/Farama-Foundation/ViZDoom,MIT,2015-06-26 18:38:23.000,2025-03-12 00:53:48.000000,2025-03-12 00:49:02,1870.0,15.0,393.0,48.0,140.0,30.0,435.0,1817.0,Reinforcement Learning environments based on the 1993 game Doom.,55.0,29,True,2024-08-20 10:48:59.000,1.2.4,30.0,vizdoom,,,,,331.0,316.0,https://pypi.org/project/vizdoom,2024-08-20 10:48:59.000,15.0,6044.0,6156.0,,,,,,,,1.0,12211.0,,,,,,Farama-Foundation/ViZDoom,,,,,,,,,,,,, +344,lightning-flash,Lightning-AI/lightning-flash,pytorch-utils,,https://github.com/Lightning-Universe/lightning-flash,https://github.com/Lightning-Universe/lightning-flash,Apache-2.0,2021-01-28 18:47:16.000,2025-04-22 14:57:59.303000,2023-10-08 14:28:43,1157.0,,213.0,34.0,1081.0,25.0,496.0,1741.0,Your PyTorch AI Factory - Flash enables you to easily configure and run complex AI recipes for over 15 tasks across 7..,87.0,29,False,2023-06-30 13:37:19.283,0.8.2,40.0,lightning-flash,conda-forge/lightning-flash,,,['pytorch'],320.0,315.0,https://pypi.org/project/lightning-flash,2022-05-11 18:17:54.000,5.0,7966.0,8604.0,https://anaconda.org/conda-forge/lightning-flash,2025-04-22 14:57:59.303,28086.0,,,,,2.0,,,,,,,Lightning-Universe/lightning-flash,,,,,,,,,,,,, +345,minisom,JustGlowing/minisom,others,,https://github.com/JustGlowing/minisom,https://github.com/JustGlowing/minisom,CC-BY-3.0,2013-07-03 10:10:06.000,2025-04-07 06:09:24.000000,2025-04-07 06:09:23,623.0,10.0,432.0,30.0,53.0,18.0,135.0,1501.0,MiniSom is a minimalistic implementation of the Self Organizing Maps.,31.0,29,False,2025-02-26 10:09:27.000,2.3.5,29.0,minisom,,,,,865.0,825.0,https://pypi.org/project/minisom,2025-02-26 10:09:27.000,40.0,26877.0,26877.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +346,spacy-transformers,explosion/spacy-transformers,nlp,,https://github.com/explosion/spacy-transformers,https://github.com/explosion/spacy-transformers,MIT,2019-07-26 19:12:34.000,2025-04-22 14:58:05.596000,2025-02-06 11:15:39,1484.0,3.0,168.0,30.0,253.0,,,1383.0,"Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy.",23.0,29,True,2025-02-06 12:32:23.000,release-v1.3.8,79.0,spacy-transformers,conda-forge/spacy-transformers,,,['spacy'],2289.0,2191.0,https://pypi.org/project/spacy-transformers,2025-02-06 12:33:00.000,98.0,220359.0,223158.0,https://anaconda.org/conda-forge/spacy-transformers,2025-04-22 14:58:05.596,114702.0,,,,,2.0,167.0,,,,,,,,,,,,,,,,,,, +347,Geomstats,geomstats/geomstats,ml-frameworks,,https://github.com/geomstats/geomstats,https://github.com/geomstats/geomstats,MIT,2017-10-25 00:44:57.000,2025-04-22 14:58:18.165000,2025-02-28 18:58:45,10856.0,31.0,251.0,38.0,1521.0,209.0,361.0,1344.0,Computations and statistics on manifolds with geometric structures.,95.0,29,True,2024-09-09 17:46:06.000,2.8.0,33.0,geomstats,conda-forge/geomstats,,https://geomstats.github.io/,,151.0,139.0,https://pypi.org/project/geomstats,2024-09-09 17:41:39.000,12.0,5471.0,5652.0,https://anaconda.org/conda-forge/geomstats,2025-04-22 14:58:18.165,6178.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +348,kmodes,nicodv/kmodes,others,,https://github.com/nicodv/kmodes,https://github.com/nicodv/kmodes,MIT,2013-08-01 11:54:40.000,2025-04-22 14:57:23.933000,2024-01-17 21:03:09,532.0,,416.0,51.0,41.0,17.0,139.0,1259.0,"Python implementations of the k-modes and k-prototypes clustering algorithms, for clustering categorical data.",22.0,29,False,2022-09-06 19:52:23.000,0.12.2,17.0,kmodes,conda-forge/kmodes,,,,3118.0,3080.0,https://pypi.org/project/kmodes,2022-09-06 19:38:02.764,38.0,147384.0,148342.0,https://anaconda.org/conda-forge/kmodes,2025-04-22 14:57:23.933,57535.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +349,pyclustering,annoviko/pyclustering,others,,https://github.com/annoviko/pyclustering,https://github.com/annoviko/pyclustering,BSD-3-Clause,2014-02-25 18:59:03.000,2025-04-22 14:57:18.607000,2024-02-08 16:58:25,2080.0,,252.0,39.0,39.0,76.0,591.0,1184.0,"pyclustering is a Python, C++ data mining library.",26.0,29,False,2020-11-25 22:33:07.000,0.10.1.2,46.0,pyclustering,conda-forge/pyclustering,,,,871.0,839.0,https://pypi.org/project/pyclustering,2020-11-25 22:41:20.000,32.0,27194.0,29530.0,https://anaconda.org/conda-forge/pyclustering,2025-04-22 14:57:18.607,132810.0,,,,,2.0,673.0,,,,,,,,,,,,,,,,,,, +350,Keras-Preprocessing,keras-team/keras-preprocessing,tensorflow-utils,,https://github.com/keras-team/keras-preprocessing,https://github.com/keras-team/keras-preprocessing,MIT,2018-05-30 22:43:36.000,2025-04-22 14:56:51.745000,2022-02-17 22:38:15,288.0,,443.0,42.0,176.0,93.0,102.0,1026.0,"Utilities for working with image data, text data, and sequence data.",52.0,29,False,2020-05-14 03:55:22.223,1.1.2,12.0,keras-preprocessing,conda-forge/keras-preprocessing,,,['tensorflow'],311.0,,https://pypi.org/project/keras-preprocessing,2020-05-14 03:55:22.223,311.0,3460110.0,3507383.0,https://anaconda.org/conda-forge/keras-preprocessing,2025-04-22 14:56:51.745,2410928.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +351,Cornac,PreferredAI/cornac,recommender-systems,,https://github.com/PreferredAI/cornac,https://github.com/PreferredAI/cornac,Apache-2.0,2018-07-17 06:31:35.000,2025-04-22 14:57:04.907000,2025-04-21 18:12:44,1393.0,13.0,149.0,25.0,500.0,25.0,139.0,949.0,A Comparative Framework for Multimodal Recommender Systems.,24.0,29,True,2025-04-15 05:57:39.000,2.3.2,62.0,cornac,conda-forge/cornac,,,,295.0,277.0,https://pypi.org/project/cornac,2025-04-15 06:06:27.000,18.0,41671.0,55465.0,https://anaconda.org/conda-forge/cornac,2025-04-22 14:57:04.907,800087.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +352,dask-ml,dask/dask-ml,distributed-ml,,https://github.com/dask/dask-ml,https://github.com/dask/dask-ml,BSD-3-Clause,2017-06-15 15:56:06.000,2025-04-22 14:56:42.913000,2025-02-07 20:33:56,822.0,2.0,262.0,38.0,518.0,285.0,264.0,929.0,Scalable Machine Learning with Dask.,80.0,29,True,2025-02-08 03:16:42.000,2025.1.0,38.0,dask-ml,conda-forge/dask-ml,,,,1343.0,1243.0,https://pypi.org/project/dask-ml,2025-02-08 03:16:42.000,100.0,123598.0,140060.0,https://anaconda.org/conda-forge/dask-ml,2025-04-22 14:56:42.913,971288.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +353,python-soundfile,bastibe/python-soundfile,audio,,https://github.com/bastibe/python-soundfile,https://github.com/bastibe/python-soundfile,BSD-3-Clause,2013-08-27 13:36:52.000,2025-01-25 09:16:44.000000,2025-01-25 09:07:20,604.0,1.0,112.0,16.0,205.0,124.0,141.0,759.0,"SoundFile is an audio library based on libsndfile, CFFI, and NumPy.",37.0,29,True,2025-01-25 09:16:44.000,0.13.1,17.0,soundfile,anaconda/pysoundfile,,,,61875.0,60808.0,https://pypi.org/project/soundfile,2025-01-25 09:16:44.000,1067.0,5601373.0,5601531.0,https://anaconda.org/anaconda/pysoundfile,,,,,,,3.0,21192.0,,,,,,,,,,,,,,,,,,, +354,tinytag,devsnd/tinytag,audio,,https://github.com/tinytag/tinytag,https://github.com/tinytag/tinytag,MIT,2014-01-27 15:27:01.000,2025-04-23 14:25:51.000000,2025-04-23 14:20:32,651.0,14.0,102.0,23.0,124.0,4.0,115.0,747.0,Python library for reading audio file metadata.,27.0,29,True,2025-04-23 14:25:51.000,2.1.1,44.0,tinytag,,,,,1325.0,1203.0,https://pypi.org/project/tinytag,2025-04-23 14:25:51.000,122.0,61184.0,61184.0,,,,,,,,3.0,,,,,,,tinytag/tinytag,,,,,,,,,,,,, +355,Ciphey,Ciphey/Ciphey,nlp,,https://github.com/bee-san/Ciphey,https://github.com/bee-san/Ciphey,MIT,2019-07-16 20:20:39.000,2025-03-05 03:09:03.000000,2023-10-12 07:20:40,1894.0,,1209.0,234.0,462.0,1.0,330.0,19008.0,"Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes.",48.0,28,False,2021-06-06 17:15:00.281,5.14.0,50.0,ciphey,,remnux/ciphey,,,1.0,1.0,https://pypi.org/project/ciphey,2021-06-06 17:15:00.281,,27227.0,27643.0,,,,https://hub.docker.com/r/remnux/ciphey,2023-10-14 18:53:31.974373,17.0,28711.0,2.0,,,,,,,bee-san/Ciphey,,,,,,,,,,,,, +356,baselines,openai/baselines,reinforcement-learning,,https://github.com/openai/baselines,https://github.com/openai/baselines,MIT,2017-05-24 01:58:13.000,2024-08-01 21:31:33.000000,2020-01-31 13:06:18,347.0,,4881.0,645.0,376.0,504.0,436.0,16233.0,OpenAI Baselines: high-quality implementations of reinforcement learning algorithms.,116.0,28,False,2018-02-26 17:07:07.000,0.1.5,6.0,baselines,,,,,616.0,613.0,https://pypi.org/project/baselines,2018-02-26 17:07:07.000,3.0,813.0,813.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +357,Trax,google/trax,others,,https://github.com/google/trax,https://github.com/google/trax,Apache-2.0,2019-10-05 15:09:14.000,2025-04-10 21:24:04.000000,2025-04-10 21:23:59,1631.0,4.0,817.0,137.0,1579.0,122.0,125.0,8198.0,Trax Deep Learning with Clear Code and Speed.,81.0,28,True,2021-10-26 20:29:38.000,1.4.1,24.0,trax,,,,,222.0,221.0,https://pypi.org/project/trax,2021-10-26 20:29:00.538,1.0,4457.0,4457.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +358,DoWhy,py-why/dowhy,interpretability,,https://github.com/py-why/dowhy,https://github.com/py-why/dowhy,MIT,2018-05-31 13:07:04.000,2025-04-22 14:57:26.807000,2025-04-21 07:17:16,1074.0,7.0,945.0,140.0,771.0,136.0,357.0,7430.0,DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions...,101.0,28,True,2024-11-24 07:33:52.000,0.12,16.0,dowhy,conda-forge/dowhy,,,,601.0,583.0,https://pypi.org/project/dowhy,2024-11-24 07:36:17.000,18.0,47483.0,48280.0,https://anaconda.org/conda-forge/dowhy,2025-04-22 14:57:26.807,42258.0,,,,,2.0,43.0,,,,,,,,,,,,,,,,,,, +359,Face Alignment,1adrianb/face-alignment,image,,https://github.com/1adrianb/face-alignment,https://github.com/1adrianb/face-alignment,BSD-3-Clause,2017-09-15 20:32:44.000,2024-08-30 14:19:26.000000,2024-08-30 14:19:23,221.0,,1350.0,172.0,46.0,80.0,242.0,7279.0,2D and 3D Face alignment library build using pytorch.,26.0,28,True,2023-08-17 14:43:11.000,1.4.1,14.0,face-alignment,,,,['pytorch'],31.0,21.0,https://pypi.org/project/face-alignment,2023-08-17 14:43:11.000,10.0,66698.0,66698.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +360,scikit-surprise,NicolasHug/Surprise,recommender-systems,,https://github.com/NicolasHug/Surprise,https://github.com/NicolasHug/Surprise,BSD-3-Clause,2016-10-23 14:59:38.000,2025-04-22 14:56:45.083000,2024-06-14 19:31:58,659.0,,1016.0,142.0,102.0,87.0,310.0,6593.0,A Python scikit for building and analyzing recommender systems.,46.0,28,True,2024-05-19 14:25:59.000,1.1.4,12.0,scikit-surprise,conda-forge/scikit-surprise,,,,58.0,21.0,https://pypi.org/project/scikit-surprise,2024-05-19 14:25:59.000,37.0,158069.0,166434.0,https://anaconda.org/conda-forge/scikit-surprise,2025-04-22 14:56:45.083,476827.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +361,Backtesting.py,kernc/backtesting.py,financial-data,,https://github.com/kernc/backtesting.py,https://github.com/kernc/backtesting.py,AGPL-3.0,2019-01-02 03:11:32.000,2025-03-30 07:12:03.000000,2025-03-30 07:03:00,411.0,93.0,1151.0,123.0,122.0,42.0,501.0,6381.0,Backtest trading strategies in Python.,35.0,28,False,2025-03-30 07:12:03.000,0.6.4,5.0,backtesting,,,,,3.0,,https://pypi.org/project/backtesting,2025-03-30 07:12:03.000,3.0,41190.0,41190.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +362,NuPIC,numenta/nupic,ml-frameworks,,https://github.com/numenta/nupic-legacy,https://github.com/numenta/nupic-legacy,MIT,2013-04-05 23:14:27.000,2024-12-03 17:50:20.000000,2024-12-03 17:50:20,6627.0,,1586.0,625.0,2112.0,453.0,1338.0,6345.0,"Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of..",124.0,28,True,2018-06-01 15:39:25.550,1.0.5,53.0,nupic,,,,,21.0,21.0,https://pypi.org/project/nupic,2016-09-01 21:30:21.000,,2447.0,2447.0,,,,,,,,3.0,21.0,,,,,,numenta/nupic-legacy,,,,,,,,,,,,, +363,pyAudioAnalysis,tyiannak/pyAudioAnalysis,audio,,https://github.com/tyiannak/pyAudioAnalysis,https://github.com/tyiannak/pyAudioAnalysis,Apache-2.0,2014-08-27 12:43:13.000,2025-03-28 18:30:29.000000,2025-03-28 18:30:29,780.0,1.0,1196.0,206.0,93.0,201.0,123.0,6034.0,"Python Audio Analysis Library: Feature Extraction, Classification, Segmentation and Applications.",28.0,28,True,2022-02-07 22:36:53.000,0.3.14,23.0,pyAudioAnalysis,,,,,625.0,613.0,https://pypi.org/project/pyAudioAnalysis,2022-02-07 22:36:53.000,12.0,17271.0,17271.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +364,layout-parser,Layout-Parser/layout-parser,image,,https://github.com/Layout-Parser/layout-parser,https://github.com/Layout-Parser/layout-parser,Apache-2.0,2020-06-10 20:22:54.000,2024-08-15 06:26:34.000000,2022-08-06 21:47:18,182.0,,491.0,74.0,63.0,112.0,57.0,5200.0,A Unified Toolkit for Deep Learning Based Document Image Analysis.,8.0,28,False,2022-04-06 04:38:09.000,0.3.4,11.0,layoutparser,,,,,4184.0,4162.0,https://pypi.org/project/layoutparser,2022-04-06 04:38:09.000,22.0,241416.0,241416.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +365,Edward,blei-lab/edward,probabilistics,,https://github.com/blei-lab/edward,https://github.com/blei-lab/edward,Apache-2.0,2016-02-10 20:06:05.000,2024-03-18 16:23:03.000000,2018-07-25 01:28:08,1796.0,,780.0,269.0,438.0,221.0,329.0,4839.0,"A probabilistic programming language in TensorFlow. Deep generative models, variational inference.",87.0,28,False,2018-01-22 06:03:37.000,1.3.5,28.0,edward,,,,['tensorflow'],345.0,343.0,https://pypi.org/project/edward,2018-01-22 06:03:05.000,2.0,1745.0,1745.0,,,,,,,,3.0,25.0,,,,,,,,,,,,,,,,,,, +366,ArrayFire,arrayfire/arrayfire,gpu-utilities,,https://github.com/arrayfire/arrayfire,https://github.com/arrayfire/arrayfire,BSD-3-Clause,2014-10-28 20:58:33.000,2025-04-04 19:49:25.000000,2025-04-04 19:49:25,6224.0,30.0,535.0,147.0,1964.0,338.0,1413.0,4685.0,ArrayFire: a general purpose GPU library.,97.0,28,True,2023-08-29 19:49:26.000,3.9.0,34.0,arrayfire,,,,,10.0,,https://pypi.org/project/arrayfire,2022-02-22 21:42:15.000,10.0,3336.0,3406.0,,,,,,,,2.0,8272.0,,,,,,,,,,,,,,,,,,, +367,vaderSentiment,cjhutto/vaderSentiment,nlp,,https://github.com/cjhutto/vaderSentiment,https://github.com/cjhutto/vaderSentiment,MIT,2014-11-17 16:31:45.000,2025-04-22 14:57:49.044000,2022-04-01 13:57:36,131.0,,1005.0,147.0,33.0,52.0,77.0,4676.0,VADER Sentiment Analysis. VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based..,11.0,28,False,2020-05-22 15:07:00.000,3.3.2,15.0,vadersentiment,conda-forge/vadersentiment,,,,11768.0,11671.0,https://pypi.org/project/vadersentiment,2020-05-22 15:07:00.000,97.0,310062.0,310406.0,https://anaconda.org/conda-forge/vadersentiment,2025-04-22 14:57:49.044,16891.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +368,yellowbrick,DistrictDataLabs/yellowbrick,interpretability,,https://github.com/DistrictDataLabs/yellowbrick,https://github.com/DistrictDataLabs/yellowbrick,Apache-2.0,2016-05-18 14:12:17.000,2025-04-22 14:57:33.497000,2023-07-05 18:14:28,901.0,,560.0,103.0,622.0,99.0,608.0,4338.0,Visual analysis and diagnostic tools to facilitate machine learning model selection.,113.0,28,False,2022-08-21 12:49:43.000,1.5,24.0,yellowbrick,conda-forge/yellowbrick,,,['sklearn'],105.0,,https://pypi.org/project/yellowbrick,2022-08-21 16:11:55.287,105.0,457544.0,459186.0,https://anaconda.org/conda-forge/yellowbrick,2025-04-22 14:57:33.497,92007.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +369,Lasagne,Lasagne/Lasagne,ml-frameworks,,https://github.com/Lasagne/Lasagne,https://github.com/Lasagne/Lasagne,MIT,2014-09-11 15:31:41.000,2022-03-26 02:58:32.000000,2019-11-20 20:28:30,1161.0,,949.0,214.0,408.0,139.0,402.0,3855.0,Lightweight library to build and train neural networks in Theano.,72.0,28,False,2015-08-13 21:00:09.000,0.1,2.0,lasagne,,,,,1103.0,1091.0,https://pypi.org/project/lasagne,2015-08-13 21:10:53.000,12.0,1612.0,1612.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +370,Deep Checks,deepchecks/deepchecks,interpretability,,https://github.com/deepchecks/deepchecks,https://github.com/deepchecks/deepchecks,AGPL-3.0,2021-10-11 14:48:38.000,2025-03-05 10:40:45.000000,2025-03-05 10:40:45,1498.0,2.0,266.0,22.0,1761.0,254.0,733.0,3780.0,Deepchecks: Tests for Continuous Validation of ML Models & Data. Deepchecks is a holistic open-source solution for all..,54.0,28,False,2024-12-15 15:25:39.000,0.19.1,62.0,deepchecks,,,,,519.0,507.0,https://pypi.org/project/deepchecks,2024-12-15 15:25:31.000,12.0,35330.0,35364.0,,,,,,,,2.0,1430.0,,,,,,,,,,,,,,,,,,, +371,Alphalens,quantopian/alphalens,financial-data,,https://github.com/quantopian/alphalens,https://github.com/quantopian/alphalens,Apache-2.0,2016-06-03 21:49:15.000,2025-04-22 14:56:47.205000,2020-04-27 18:40:41,522.0,,1153.0,167.0,215.0,49.0,146.0,3658.0,Performance analysis of predictive (alpha) stock factors.,26.0,28,False,2020-04-30 15:42:52.000,0.4.0,10.0,alphalens,conda-forge/alphalens,,,,740.0,735.0,https://pypi.org/project/alphalens,2020-04-27 21:03:10.000,5.0,1183.0,1460.0,https://anaconda.org/conda-forge/alphalens,2025-04-22 14:56:47.205,23841.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +372,LIT,PAIR-code/lit,interpretability,,https://github.com/PAIR-code/lit,https://github.com/PAIR-code/lit,Apache-2.0,2020-07-28 13:07:26.000,2025-04-22 14:57:35.818000,2024-12-20 21:19:02,1587.0,,357.0,67.0,1468.0,118.0,88.0,3540.0,The Learning Interpretability Tool: Interactively analyze ML models to understand their behavior in an extensible and..,38.0,28,True,2024-12-20 21:57:28.000,1.3.1,20.0,lit-nlp,conda-forge/lit-nlp,,,,48.0,45.0,https://pypi.org/project/lit-nlp,2024-12-20 21:27:54.000,3.0,6919.0,8970.0,https://anaconda.org/conda-forge/lit-nlp,2025-04-22 14:57:35.818,112834.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +373,vidgear,abhiTronix/vidgear,image,,https://github.com/abhiTronix/vidgear,https://github.com/abhiTronix/vidgear,Apache-2.0,2019-03-17 02:42:42.000,2025-03-15 17:36:37.000000,2024-06-22 17:36:10,1146.0,,255.0,64.0,123.0,7.0,296.0,3506.0,A High-performance cross-platform Video Processing Python framework powerpacked with unique trailblazing features.,14.0,28,True,2024-06-22 19:12:02.000,0.3.3,23.0,vidgear,,,,,731.0,716.0,https://pypi.org/project/vidgear,2024-06-22 19:12:02.000,15.0,20020.0,20050.0,,,,,,,,3.0,2254.0,,,,,,,,,,,,,,,,,,, +374,TextDistance,life4/textdistance,nlp,,https://github.com/life4/textdistance,https://github.com/life4/textdistance,MIT,2017-05-05 08:46:10.000,2025-04-22 14:56:50.409000,2025-04-18 12:13:17,417.0,2.0,252.0,64.0,57.0,9.0,,3459.0,"Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external..",18.0,28,True,2024-07-16 09:36:19.000,4.6.3,29.0,textdistance,conda-forge/textdistance,,,,8457.0,8358.0,https://pypi.org/project/textdistance,2024-07-16 09:34:51.000,99.0,1043186.0,1058312.0,https://anaconda.org/conda-forge/textdistance,2025-04-22 14:56:50.409,801048.0,,,,,2.0,1052.0,,,,,,,,,,,,,,,,,,, +375,aubio,aubio/aubio,audio,,https://github.com/aubio/aubio,https://github.com/aubio/aubio,GPL-3.0,2009-12-04 21:07:44.000,2025-04-22 14:56:33.269000,2024-01-02 20:16:48,4161.0,,383.0,86.0,70.0,162.0,190.0,3426.0,a library for audio and music analysis.,25.0,28,False,2019-02-27 09:00:43.000,0.4.9,10.0,aubio,conda-forge/aubio,,,,551.0,534.0,https://pypi.org/project/aubio,2019-02-08 11:21:02.000,17.0,11261.0,19487.0,https://anaconda.org/conda-forge/aubio,2025-04-22 14:56:33.269,797981.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +376,Catalyst,catalyst-team/catalyst,ml-experiments,,https://github.com/catalyst-team/catalyst,https://github.com/catalyst-team/catalyst,Apache-2.0,2018-08-20 07:56:13.000,2024-03-20 16:17:12.000000,2022-04-29 04:19:24,1698.0,,390.0,44.0,1086.0,4.0,353.0,3347.0,Accelerated deep learning R&D.,104.0,28,False,2022-04-29 04:45:11.000,22.04,108.0,catalyst,,,,['pytorch'],1289.0,1259.0,https://pypi.org/project/catalyst,2022-04-29 04:46:04.000,30.0,23408.0,23408.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +377,fastNLP,fastnlp/fastNLP,nlp,,https://github.com/fastnlp/fastNLP,https://github.com/fastnlp/fastNLP,Apache-2.0,2018-03-07 13:30:20.000,2023-06-05 03:00:37.000000,2022-12-13 03:52:09,2484.0,,450.0,79.0,245.0,69.0,156.0,3130.0,fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.,61.0,28,False,2022-10-31 14:47:34.183,1.0.1,24.0,fastnlp,,,,,232.0,229.0,https://pypi.org/project/fastnlp,2022-10-31 14:47:34.183,3.0,28363.0,28364.0,,,,,,,,2.0,97.0,,,,,,,,,,,,,,,,,,, +378,Cufflinks,santosjorge/cufflinks,data-viz,,https://github.com/santosjorge/cufflinks,https://github.com/santosjorge/cufflinks,MIT,2014-11-19 20:59:33.000,2024-07-03 14:15:42.000000,2021-02-25 05:05:09,452.0,,676.0,107.0,74.0,102.0,123.0,3056.0,Productivity Tools for Plotly + Pandas.,39.0,28,False,2020-03-01 17:42:01.000,0.17.3,28.0,cufflinks,,,,['pandas'],14141.0,14032.0,https://pypi.org/project/cufflinks,2020-03-01 17:42:01.000,109.0,48908.0,48908.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +379,dtreeviz,parrt/dtreeviz,interpretability,,https://github.com/parrt/dtreeviz,https://github.com/parrt/dtreeviz,MIT,2018-08-13 21:45:15.000,2025-04-22 14:57:39.864000,2025-03-06 23:21:12,622.0,1.0,338.0,45.0,121.0,72.0,137.0,3049.0,A python library for decision tree visualization and model interpretation.,27.0,28,True,2023-07-13 17:23:01.507,2.2.2,41.0,dtreeviz,conda-forge/dtreeviz,,,,1576.0,1523.0,https://pypi.org/project/dtreeviz,2022-07-07 17:18:00.886,53.0,107840.0,109792.0,https://anaconda.org/conda-forge/dtreeviz,2025-04-22 14:57:39.864,103460.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +380,IB-insync,erdewit/ib_insync,financial-data,,https://github.com/erdewit/ib_insync,https://github.com/erdewit/ib_insync,BSD-2-Clause,2017-07-12 12:09:24.000,2025-04-22 14:57:08.534000,2024-03-14 19:50:06,769.0,,819.0,182.0,75.0,21.0,565.0,2990.0,Python sync/async framework for Interactive Brokers API.,36.0,28,False,2023-07-02 12:44:10.283,0.9.86,111.0,ib_insync,conda-forge/ib-insync,,,,44.0,,https://pypi.org/project/ib_insync,2022-11-21 09:32:01.715,44.0,54135.0,54952.0,https://anaconda.org/conda-forge/ib-insync,2025-04-22 14:57:08.534,56411.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +381,TF-Agents,tensorflow/agents,reinforcement-learning,,https://github.com/tensorflow/agents,https://github.com/tensorflow/agents,Apache-2.0,2018-11-17 00:29:12.000,2025-03-12 04:52:42.000000,2025-03-12 04:50:30,2314.0,3.0,722.0,77.0,206.0,205.0,473.0,2900.0,"TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning.",152.0,28,True,2023-12-14 04:07:38.000,0.19.0,51.0,tf-agents,,,,['tensorflow'],14.0,,https://pypi.org/project/tf-agents,2023-12-14 04:07:38.000,14.0,35135.0,35135.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +382,Foolbox,bethgelab/foolbox,adversarial,,https://github.com/bethgelab/foolbox,https://github.com/bethgelab/foolbox,MIT,2017-06-14 13:05:48.000,2025-04-22 14:57:29.383000,2024-03-04 15:46:26,1711.0,,425.0,46.0,367.0,27.0,350.0,2853.0,"A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX.",35.0,28,False,2024-03-04 20:59:17.000,3.3.4,71.0,foolbox,conda-forge/foolbox,,,,725.0,711.0,https://pypi.org/project/foolbox,2024-03-04 20:59:17.000,14.0,6889.0,7194.0,https://anaconda.org/conda-forge/foolbox,2025-04-22 14:57:29.383,17414.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +383,pytorch_geometric_temporal,benedekrozemberczki/pytorch_geometric_temporal,graph,,https://github.com/benedekrozemberczki/pytorch_geometric_temporal,https://github.com/benedekrozemberczki/pytorch_geometric_temporal,MIT,2020-06-27 01:11:33.000,2025-03-28 14:14:14.000000,2025-03-24 03:23:49,2015.0,64.0,386.0,37.0,101.0,40.0,158.0,2786.0,PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models (CIKM 2021).,37.0,28,True,2025-03-28 14:16:54.000,0.56.0,47.0,torch-geometric-temporal,,,,['pytorch'],7.0,,https://pypi.org/project/torch-geometric-temporal,2025-03-28 02:16:56.000,7.0,5604.0,5604.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +384,eli5,TeamHG-Memex/eli5,interpretability,,https://github.com/TeamHG-Memex/eli5,https://github.com/TeamHG-Memex/eli5,MIT,2016-09-15 01:04:57.000,2025-04-22 14:56:36.662000,2020-01-22 07:39:36,1198.0,,329.0,68.0,168.0,164.0,113.0,2769.0,A library for debugging/inspecting machine learning classifiers and explaining their predictions.,14.0,28,False,2025-04-20 16:37:59.000,0.16.0,33.0,eli5,conda-forge/eli5,,,,66.0,,https://pypi.org/project/eli5,2025-04-20 16:37:59.000,66.0,107649.0,109547.0,https://anaconda.org/conda-forge/eli5,2025-04-22 14:56:36.662,180374.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +385,adapter-transformers,Adapter-Hub/adapter-transformers,others,,https://github.com/adapter-hub/adapters,https://github.com/adapter-hub/adapters,Apache-2.0,2020-04-21 16:21:43.000,2025-04-19 18:38:38.000000,2025-04-19 18:36:00,172.0,14.0,358.0,28.0,361.0,42.0,362.0,2691.0,A Unified Library for Parameter-Efficient and Modular Transfer Learning.,16.0,28,True,2025-04-12 21:00:06.000,1.1.1,24.0,adapter-transformers,,,,['huggingface'],216.0,204.0,https://pypi.org/project/adapter-transformers,2024-07-07 11:49:43.000,12.0,5351.0,5351.0,,,,,,,,3.0,,,,,,,adapter-hub/adapters,,,,,,,,,,,,, +386,GluonNLP,dmlc/gluon-nlp,nlp,,https://github.com/dmlc/gluon-nlp,https://github.com/dmlc/gluon-nlp,Apache-2.0,2018-04-04 20:57:13.000,2023-10-06 04:01:21.000000,2022-12-25 20:52:27,843.0,,519.0,94.0,1045.0,260.0,297.0,2560.0,"Toolkit that enables easy text preprocessing, datasets loading and neural models building to help you speed up your..",86.0,28,False,2020-08-13 19:17:42.000,0.10.0,26.0,gluonnlp,,,,['mxnet'],1727.0,1705.0,https://pypi.org/project/gluonnlp,2020-08-13 19:17:42.000,22.0,55071.0,55071.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +387,scikit-plot,reiinakano/scikit-plot,interpretability,,https://github.com/reiinakano/scikit-plot,https://github.com/reiinakano/scikit-plot,MIT,2017-02-04 06:22:59.000,2025-04-22 14:56:38.875000,2018-08-19 12:37:47,130.0,,284.0,62.0,61.0,31.0,39.0,2434.0,An intuitive library to add plotting functionality to scikit-learn objects.,13.0,28,False,2018-08-19 12:25:39.290,0.3.7,27.0,scikit-plot,conda-forge/scikit-plot,,,['sklearn'],6347.0,6262.0,https://pypi.org/project/scikit-plot,2018-08-19 12:25:39.290,85.0,431418.0,433576.0,https://anaconda.org/conda-forge/scikit-plot,2025-04-22 14:56:38.875,200740.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +388,Spektral,danielegrattarola/spektral,graph,,https://github.com/danielegrattarola/spektral,https://github.com/danielegrattarola/spektral,MIT,2019-01-17 11:19:10.000,2024-01-21 16:47:04.000000,2024-01-21 16:46:47,1134.0,,336.0,42.0,57.0,71.0,210.0,2377.0,Graph Neural Networks with Keras and Tensorflow 2.,27.0,28,False,2024-01-21 16:17:36.000,1.3.1,35.0,spektral,,,,['tensorflow'],406.0,399.0,https://pypi.org/project/spektral,2024-01-21 16:17:36.000,7.0,13250.0,13250.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +389,alibi-detect,SeldonIO/alibi-detect,others,,https://github.com/SeldonIO/alibi-detect,https://github.com/SeldonIO/alibi-detect,Intel,2019-10-07 13:29:13.000,2025-04-21 09:17:31.000000,2025-03-05 13:25:02,742.0,3.0,229.0,39.0,571.0,140.0,235.0,2348.0,"Algorithms for outlier, adversarial and drift detection.",27.0,28,False,2024-04-17 16:12:46.000,0.12.0,38.0,alibi-detect,,,,,565.0,558.0,https://pypi.org/project/alibi-detect,2024-04-17 16:12:46.000,7.0,74211.0,74211.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +390,mtcnn,ipazc/mtcnn,image,,https://github.com/ipazc/mtcnn,https://github.com/ipazc/mtcnn,MIT,2018-01-05 04:08:32.000,2025-04-22 14:57:21.393000,2024-10-08 16:09:34,62.0,,526.0,42.0,29.0,49.0,81.0,2348.0,"MTCNN face detection implementation for TensorFlow, as a PIP package.",16.0,28,True,2024-10-08 01:42:18.000,1.0.0,12.0,mtcnn,conda-forge/mtcnn,,,['tensorflow'],8350.0,8277.0,https://pypi.org/project/mtcnn,2024-10-08 01:42:18.000,73.0,169111.0,169358.0,https://anaconda.org/conda-forge/mtcnn,2025-04-22 14:57:21.393,14848.0,,,,,3.0,50.0,,,,,,,,,,,,,,,,,,, +391,modAL,modAL-python/modAL,others,,https://github.com/modAL-python/modAL,https://github.com/modAL-python/modAL,MIT,2017-11-14 14:01:15.000,2025-04-23 19:45:49.000000,2023-06-01 12:18:23,739.0,,321.0,44.0,44.0,99.0,56.0,2278.0,A modular active learning framework for Python.,20.0,28,False,2025-04-23 19:45:49.000,0.74.20,1833.0,modAL,,,,['sklearn'],101.0,,https://pypi.org/project/modAL,2025-04-23 19:45:49.000,101.0,1136280.0,1136280.0,,,,,,,,3.0,54.0,,,,,,,,,,,,,,,,,,, +392,textacy,chartbeat-labs/textacy,nlp,,https://github.com/chartbeat-labs/textacy,https://github.com/chartbeat-labs/textacy,,2016-02-03 16:52:45.000,2025-04-22 14:56:36.813000,2023-04-03 00:19:55,1816.0,,250.0,86.0,124.0,35.0,230.0,2224.0,"NLP, before and after spaCy.",35.0,28,False,2023-04-02 23:06:15.139,0.13.0,32.0,textacy,conda-forge/textacy,,,,2053.0,1987.0,https://pypi.org/project/textacy,2023-04-02 23:06:15.139,66.0,28645.0,30644.0,https://anaconda.org/conda-forge/textacy,2025-04-22 14:56:36.813,189987.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +393,avalanche,ContinualAI/avalanche,others,,https://github.com/ContinualAI/avalanche,https://github.com/ContinualAI/avalanche,MIT,2020-03-05 11:32:13.000,2025-03-11 16:17:01.000000,2025-03-11 16:16:55,3948.0,16.0,304.0,30.0,584.0,106.0,726.0,1880.0,Avalanche: an End-to-End Library for Continual Learning based on PyTorch.,85.0,28,True,2024-10-29 08:53:47.000,0.6.0,9.0,avalanche-lib,,,,,137.0,134.0,https://pypi.org/project/avalanche-lib,2024-10-29 08:52:52.000,3.0,1962.0,1963.0,,,,,,,,3.0,53.0,,,,,,,,,,,,,,,,,,, +394,petastorm,uber/petastorm,distributed-ml,,https://github.com/uber/petastorm,https://github.com/uber/petastorm,Apache-2.0,2018-06-15 23:15:29.000,2023-12-02 05:11:31.000000,2023-12-02 05:11:31,691.0,,276.0,37.0,495.0,172.0,151.0,1832.0,Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets..,50.0,28,False,2022-12-16 20:54:02.878,0.12.1,86.0,petastorm,,,,,206.0,198.0,https://pypi.org/project/petastorm,2023-02-03 00:33:00.499,8.0,196476.0,196482.0,,,,,,,,3.0,560.0,,,,,,,,,,,,,,,,,,, +395,pyts,johannfaouzi/pyts,time-series-data,,https://github.com/johannfaouzi/pyts,https://github.com/johannfaouzi/pyts,BSD-3-Clause,2017-07-31 09:23:16.000,2025-04-22 14:57:10.207000,2023-06-20 13:16:50,391.0,,166.0,24.0,83.0,51.0,36.0,1808.0,A Python package for time series classification.,14.0,28,False,2023-06-18 12:36:11.801,0.13.0,19.0,pyts,conda-forge/pyts,,,,877.0,832.0,https://pypi.org/project/pyts,2023-06-18 12:36:11.801,45.0,119888.0,120647.0,https://anaconda.org/conda-forge/pyts,2025-04-22 14:57:10.207,31902.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +396,SciSpacy,allenai/scispacy,nlp,,https://github.com/allenai/scispacy,https://github.com/allenai/scispacy,Apache-2.0,2018-09-24 21:45:52.000,2024-11-23 21:58:13.000000,2024-11-23 21:58:13,1066.0,,230.0,50.0,213.0,33.0,291.0,1792.0,A full spaCy pipeline and models for scientific/biomedical documents.,37.0,28,True,2024-10-27 05:43:35.000,0.5.5,16.0,scispacy,,,,,1210.0,1176.0,https://pypi.org/project/scispacy,2024-10-27 05:43:35.000,34.0,39027.0,39027.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +397,TabPy,tableau/TabPy,others,,https://github.com/tableau/TabPy,https://github.com/tableau/TabPy,MIT,2016-09-27 21:26:03.000,2025-04-22 15:32:21.921000,2024-11-25 22:31:52,1041.0,,601.0,104.0,296.0,22.0,300.0,1599.0,Execute Python code on the fly and display results in Tableau visualizations:.,51.0,28,True,2024-11-25 22:37:09.000,2.13.0,36.0,tabpy,anaconda/tabpy-client,,,,208.0,206.0,https://pypi.org/project/tabpy,2024-11-25 22:37:09.000,2.0,7618.0,7671.0,https://anaconda.org/anaconda/tabpy-client,2025-04-22 15:32:21.921,5094.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +398,TF Model Optimization,tensorflow/model-optimization,tensorflow-utils,,https://github.com/tensorflow/model-optimization,https://github.com/tensorflow/model-optimization,Apache-2.0,2018-10-31 20:34:28.000,2025-02-10 11:24:47.000000,2025-02-10 11:24:42,837.0,3.0,323.0,117.0,794.0,229.0,169.0,1532.0,"A toolkit to optimize ML models for deployment for Keras and TensorFlow, including quantization and pruning.",87.0,28,True,2024-02-08 02:06:46.000,0.8.0,31.0,tensorflow-model-optimization,,,,['tensorflow'],45.0,,https://pypi.org/project/tensorflow-model-optimization,2024-02-08 01:57:17.000,45.0,246783.0,246783.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +399,Submit it,facebookincubator/submitit,distributed-ml,,https://github.com/facebookincubator/submitit,https://github.com/facebookincubator/submitit,MIT,2020-04-24 07:41:09.000,2025-04-24 14:39:55.000000,2025-04-24 13:04:07,148.0,1.0,132.0,23.0,113.0,51.0,79.0,1415.0,Python 3.8+ toolbox for submitting jobs to Slurm.,26.0,28,True,2024-09-18 16:05:09.000,1.5.2,24.0,submitit,conda-forge/submitit,,,,4354.0,4305.0,https://pypi.org/project/submitit,2024-09-18 16:05:09.000,49.0,466178.0,467170.0,https://anaconda.org/conda-forge/submitit,2025-04-22 14:57:34.697,55578.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +400,empyrical,quantopian/empyrical,financial-data,,https://github.com/quantopian/empyrical,https://github.com/quantopian/empyrical,Apache-2.0,2016-03-18 10:22:52.000,2025-04-22 14:56:47.167000,2020-10-14 13:22:39,167.0,,408.0,72.0,89.0,36.0,26.0,1365.0,Common financial risk and performance metrics. Used by zipline and pyfolio.,23.0,28,False,2020-10-13 21:29:19.000,0.5.5,21.0,empyrical,conda-forge/empyrical,,,,1695.0,1639.0,https://pypi.org/project/empyrical,2020-10-13 21:29:19.000,56.0,26127.0,26534.0,https://anaconda.org/conda-forge/empyrical,2025-04-22 14:56:47.167,35047.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +401,Prince,MaxHalford/prince,others,,https://github.com/MaxHalford/prince,https://github.com/MaxHalford/prince,MIT,2016-10-22 12:36:06.000,2025-04-22 14:57:16.914000,2025-03-09 22:06:41,443.0,7.0,184.0,25.0,44.0,,135.0,1344.0,"Multivariate exploratory data analysis in Python PCA, CA, MCA, MFA, FAMD, GPA.",16.0,28,True,2025-03-09 21:38:41.000,0.16.0,63.0,prince,conda-forge/prince-factor-analysis,,,['sklearn'],734.0,714.0,https://pypi.org/project/prince,2025-03-09 21:38:41.000,20.0,175390.0,175758.0,https://anaconda.org/conda-forge/prince-factor-analysis,2025-04-22 14:57:16.914,23981.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +402,Streamz,python-streamz/streamz,time-series-data,,https://github.com/python-streamz/streamz,https://github.com/python-streamz/streamz,BSD-3-Clause,2017-04-04 21:45:49.000,2025-04-22 14:56:41.347000,2024-11-22 14:04:30,811.0,,149.0,37.0,215.0,120.0,152.0,1258.0,Real-time stream processing for python.,49.0,28,True,2022-07-27 18:09:03.803,0.6.4,17.0,streamz,conda-forge/streamz,,,,601.0,544.0,https://pypi.org/project/streamz,2022-07-27 18:09:03.803,57.0,21349.0,56330.0,https://anaconda.org/conda-forge/streamz,2025-04-22 14:56:41.347,1993941.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +403,bambi,bambinos/bambi,probabilistics,,https://github.com/bambinos/bambi,https://github.com/bambinos/bambi,MIT,2016-05-16 03:21:00.000,2025-04-22 14:57:09.701000,2025-04-16 14:11:07,839.0,3.0,133.0,28.0,449.0,88.0,349.0,1148.0,BAyesian Model-Building Interface (Bambi) in Python.,47.0,28,True,2024-12-21 18:08:46.000,0.15.0,30.0,bambi,conda-forge/bambi,,,,209.0,195.0,https://pypi.org/project/bambi,2024-12-21 18:08:46.000,14.0,38469.0,39380.0,https://anaconda.org/conda-forge/bambi,2025-04-22 14:57:09.701,47411.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +404,pythreejs,jupyter-widgets/pythreejs,data-viz,,https://github.com/jupyter-widgets/pythreejs,https://github.com/jupyter-widgets/pythreejs,BSD-3-Clause,2013-12-23 17:02:11.000,2025-04-22 14:56:22.872000,2023-02-20 00:24:10,1723.0,,192.0,40.0,176.0,73.0,174.0,964.0,A Jupyter - Three.js bridge.,30.0,28,False,2023-02-20 00:24:01.104,2.4.2,46.0,pythreejs,conda-forge/pythreejs,,,['jupyter'],96.0,,https://pypi.org/project/pythreejs,2023-02-20 00:24:01.104,82.0,78783.0,92156.0,https://anaconda.org/conda-forge/pythreejs,2025-04-22 14:56:22.872,656632.0,,,,,3.0,,jupyter-threejs,https://www.npmjs.com/package/jupyter-threejs,2023-02-20 00:16:17.277,14.0,1214.0,,,,,,,,,,,,,, +405,PyNNDescent,lmcinnes/pynndescent,nn-search,,https://github.com/lmcinnes/pynndescent,https://github.com/lmcinnes/pynndescent,BSD-2-Clause,2018-02-07 23:23:54.000,2025-04-22 14:57:06.248000,2024-11-10 14:49:37,681.0,,107.0,13.0,100.0,73.0,67.0,919.0,A Python nearest neighbor descent for approximate nearest neighbors.,30.0,28,True,2024-06-17 15:48:31.000,0.5.13,32.0,pynndescent,conda-forge/pynndescent,,,,11232.0,11076.0,https://pypi.org/project/pynndescent,2024-06-17 15:48:31.000,156.0,1625778.0,1665783.0,https://anaconda.org/conda-forge/pynndescent,2025-04-22 14:57:06.248,2280338.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +406,SALib,SALib/SALib,probabilistics,,https://github.com/SALib/SALib,https://github.com/SALib/SALib,MIT,2013-05-30 13:38:10.000,2025-04-22 14:56:29.359000,2025-04-18 20:50:45,1969.0,1.0,243.0,20.0,306.0,54.0,288.0,919.0,"Sensitivity Analysis Library in Python. Contains Sobol, Morris, FAST, and other methods.",51.0,28,True,2024-08-19 16:35:23.000,1.5.1,49.0,salib,conda-forge/salib,,,,1638.0,1511.0,https://pypi.org/project/salib,2024-08-19 16:35:23.000,127.0,260814.0,264784.0,https://anaconda.org/conda-forge/salib,2025-04-22 14:56:29.359,214411.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +407,ml-metadata,google/ml-metadata,ml-experiments,,https://github.com/google/ml-metadata,https://github.com/google/ml-metadata,Apache-2.0,2019-01-15 21:02:09.000,2025-04-07 19:01:47.000000,2025-04-03 17:38:00,909.0,8.0,158.0,27.0,102.0,49.0,76.0,644.0,For recording and retrieving metadata associated with ML developer and data scientist workflows.,23.0,28,True,2025-04-07 19:01:47.000,1.17.0,45.0,ml-metadata,,,,,718.0,686.0,https://pypi.org/project/ml-metadata,2025-04-07 19:01:47.000,32.0,94209.0,94249.0,,,,,,,,2.0,2991.0,,,,,,,,,,,,,,,,,,, +408,GeoViews,holoviz/geoviews,geospatial-data,,https://github.com/holoviz/geoviews,https://github.com/holoviz/geoviews,BSD-3-Clause,2016-04-19 16:27:01.000,2025-04-22 14:56:48.733000,2025-04-08 09:59:16,875.0,6.0,77.0,25.0,428.0,111.0,242.0,613.0,"Simple, concise geographical visualization in Python.",33.0,28,True,2024-12-18 08:38:32.000,1.14.0,71.0,geoviews,conda-forge/geoviews,,,,1330.0,1267.0,https://pypi.org/project/geoviews,2024-12-17 11:40:57.000,63.0,17768.0,23109.0,https://anaconda.org/conda-forge/geoviews,2025-04-22 14:56:48.733,293788.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +409,PyStan,stan-dev/pystan,probabilistics,,https://github.com/stan-dev/pystan,https://github.com/stan-dev/pystan,ISC,2017-09-17 14:13:04.000,2025-04-22 14:56:33.006000,2024-07-03 17:02:18,237.0,,60.0,14.0,207.0,13.0,187.0,351.0,"PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io.",14.0,28,True,2024-07-03 17:04:15.000,3.10.0,73.0,pystan,conda-forge/pystan,,,,10557.0,10396.0,https://pypi.org/project/pystan,2024-07-03 17:04:15.000,161.0,864636.0,918270.0,https://anaconda.org/conda-forge/pystan,2025-04-22 14:56:33.006,3003505.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +410,lkpy,lenskit/lkpy,recommender-systems,,https://github.com/lenskit/lkpy,https://github.com/lenskit/lkpy,MIT,2018-06-08 21:05:10.000,2025-04-23 23:43:39.000000,2025-04-23 23:43:34,5451.0,818.0,67.0,6.0,510.0,56.0,156.0,289.0,Python recommendation toolkit.,38.0,28,False,2025-03-12 17:48:24.000,2025.2.0,52.0,lenskit,conda-forge/lenskit,,,,143.0,132.0,https://pypi.org/project/lenskit,2025-04-16 23:36:42.000,11.0,4417.0,5226.0,https://anaconda.org/conda-forge/lenskit,2025-04-22 14:57:40.279,42912.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +411,english-words,dwyl/english-words,nlp,,https://github.com/dwyl/english-words,https://github.com/dwyl/english-words,Unlicense,2014-07-13 22:20:45.000,2025-01-06 17:34:06.000000,2025-01-06 17:34:05,104.0,,1898.0,208.0,77.0,119.0,41.0,11154.0,A text file containing 479k English words for all your dictionary/word-based projects e.g: auto-completion /..,34.0,27,True,2023-05-24 15:11:00.531,2.0.1,9.0,english-words,,,,,16.0,2.0,https://pypi.org/project/english-words,2023-05-24 15:11:00.531,14.0,62699.0,62699.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +412,CuPy,cupy/cupy,gpu-utilities,,https://github.com/cupy/cupy,https://github.com/cupy/cupy,MIT,2016-11-01 09:54:45.000,2025-04-22 14:57:15.532000,,,,903.0,,,573.0,,10151.0,NumPy & SciPy for GPU.,339.0,27,True,2025-03-21 07:26:13.000,13.4.1,144.0,cupy,conda-forge/cupy,cupy/cupy,,,347.0,,https://pypi.org/project/cupy,2025-04-04 08:36:48.000,347.0,36152.0,141827.0,https://anaconda.org/conda-forge/cupy,2025-04-22 14:57:15.532,6187579.0,https://hub.docker.com/r/cupy/cupy,2025-04-04 08:46:10.953731,13.0,80933.0,2.0,,,,,,,,,,,,,,,,,,,, +413,EfficientNet-PyTorch,lukemelas/EfficientNet-PyTorch,pytorch-utils,,https://github.com/lukemelas/EfficientNet-PyTorch,https://github.com/lukemelas/EfficientNet-PyTorch,Apache-2.0,2019-05-30 05:24:11.000,2022-04-08 12:30:25.000000,2021-04-15 15:16:36,162.0,,1529.0,132.0,51.0,163.0,141.0,8088.0,A PyTorch implementation of EfficientNet.,24.0,27,False,2021-04-15 15:17:23.000,0.7.1,13.0,efficientnet-pytorch,,,,['pytorch'],73.0,1.0,https://pypi.org/project/efficientnet-pytorch,2021-04-15 15:17:23.000,72.0,187091.0,265378.0,,,,,,,,2.0,4775564.0,,,,,,,,,,,,,,,,,,, +414,Facets Overview,pair-code/facets,data-viz,,https://github.com/PAIR-code/facets,https://github.com/PAIR-code/facets,Apache-2.0,2017-07-07 14:03:03.000,2023-05-24 15:58:01.158000,2023-05-24 15:56:22,277.0,,886.0,266.0,98.0,82.0,81.0,7369.0,Visualizations for machine learning datasets.,31.0,27,False,2023-05-24 15:58:01.158,1.1.1,9.0,facets-overview,,,,['jupyter'],311.0,303.0,https://pypi.org/project/facets-overview,2023-05-24 15:58:01.158,8.0,45649.0,45649.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +415,TensorLayer,tensorlayer/tensorlayer,reinforcement-learning,,https://github.com/tensorlayer/TensorLayer,https://github.com/tensorlayer/TensorLayer,Apache-2.0,2016-06-07 15:55:16.000,2023-12-02 01:27:38.759000,2023-02-18 07:58:21,3353.0,,1610.0,454.0,699.0,36.0,441.0,7359.0,Deep Learning and Reinforcement Learning Library for Scientists and Engineers.,134.0,27,False,2022-02-15 02:05:47.000,2.2.5,84.0,tensorlayer,,,,['tensorflow'],11.0,,https://pypi.org/project/tensorlayer,2022-02-15 02:05:47.000,11.0,2924.0,2950.0,,,,,,,,2.0,2763.0,,,,,,,,,,,,,,,,,,, +416,snownlp,isnowfy/snownlp,chinese-nlp,,https://github.com/isnowfy/snownlp,https://github.com/isnowfy/snownlp,MIT,2013-11-26 11:46:56.000,2020-01-19 02:39:05.000000,2020-01-19 02:39:03,57.0,,1359.0,349.0,14.0,42.0,66.0,6539.0,Python library for processing Chinese text.,8.0,27,False,2015-09-27 16:35:23.000,0.12.3,17.0,snownlp,,,,,1659.0,1651.0,https://pypi.org/project/snownlp,2015-09-27 16:35:23.000,8.0,41616.0,41616.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +417,flashtext,vi3k6i5/flashtext,nlp,,https://github.com/vi3k6i5/flashtext,https://github.com/vi3k6i5/flashtext,MIT,2017-08-15 18:03:01.000,2025-04-22 14:57:29.789000,2022-05-03 07:13:22,108.0,,603.0,141.0,31.0,69.0,55.0,5648.0,Extract Keywords from sentence or Replace keywords in sentences.,7.0,27,False,,,18.0,flashtext,conda-forge/flashtext,,,,2024.0,1968.0,https://pypi.org/project/flashtext,2018-02-16 05:24:17.000,56.0,1637883.0,1638251.0,https://anaconda.org/conda-forge/flashtext,2025-04-22 14:57:29.789,20989.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +418,keras-rl,keras-rl/keras-rl,reinforcement-learning,,https://github.com/keras-rl/keras-rl,https://github.com/keras-rl/keras-rl,MIT,2016-07-02 15:53:12.000,2023-09-17 12:33:41.000000,2019-11-11 22:14:54,308.0,,1364.0,198.0,158.0,49.0,227.0,5549.0,Deep Reinforcement Learning for Keras.,41.0,27,False,2018-06-01 07:52:24.000,0.4.2,8.0,keras-rl,,,,['tensorflow'],827.0,821.0,https://pypi.org/project/keras-rl,2018-06-01 07:52:24.000,6.0,792.0,792.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +419,Augmentor,mdbloice/Augmentor,image,,https://github.com/mdbloice/Augmentor,https://github.com/mdbloice/Augmentor,MIT,2016-03-01 18:29:55.000,2024-03-21 14:27:34.000000,2023-03-29 07:02:37,553.0,,867.0,122.0,64.0,136.0,74.0,5103.0,Image augmentation library in Python for machine learning.,23.0,27,False,2023-03-29 07:06:01.465,0.2.12,24.0,Augmentor,,,,,918.0,906.0,https://pypi.org/project/Augmentor,2022-04-27 09:29:23.000,12.0,9102.0,9102.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +420,TensorTrade,tensortrade-org/tensortrade,financial-data,,https://github.com/tensortrade-org/tensortrade,https://github.com/tensortrade-org/tensortrade,Apache-2.0,2019-07-30 21:28:32.000,2025-04-22 14:57:50.621000,2024-06-09 21:29:43,1062.0,,1021.0,249.0,218.0,52.0,204.0,4964.0,"An open source reinforcement learning framework for training, evaluating, and deploying robust trading agents.",61.0,27,True,2021-05-10 18:04:30.000,1.0.3,27.0,tensortrade,conda-forge/tensortrade,,,,70.0,69.0,https://pypi.org/project/tensortrade,2021-05-10 18:00:35.000,1.0,1864.0,1963.0,https://anaconda.org/conda-forge/tensortrade,2025-04-22 14:57:50.621,4757.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +421,VisualDL,PaddlePaddle/VisualDL,ml-experiments,,https://github.com/PaddlePaddle/VisualDL,https://github.com/PaddlePaddle/VisualDL,Apache-2.0,2017-12-20 12:34:31.000,2025-01-22 06:02:52.000000,2025-01-22 06:02:52,927.0,,629.0,146.0,801.0,157.0,356.0,4831.0,Deep Learning Visualization Toolkit.,36.0,27,True,2024-10-30 02:46:42.000,3.0.0-beta,44.0,visualdl,,,,['paddle'],84.0,2.0,https://pypi.org/project/visualdl,2024-10-30 02:50:36.000,82.0,163039.0,163047.0,,,,,,,,3.0,507.0,,,,,,,,,,,,,,,,,,, +422,facenet-pytorch,timesler/facenet-pytorch,image,,https://github.com/timesler/facenet-pytorch,https://github.com/timesler/facenet-pytorch,MIT,2019-05-25 01:29:24.000,2024-08-02 08:16:49.000000,2024-08-02 08:16:49,252.0,,945.0,52.0,57.0,77.0,109.0,4821.0,Pretrained Pytorch face detection (MTCNN) and facial recognition (InceptionResnet) models.,18.0,27,True,2024-04-29 17:50:14.000,2.6.0,33.0,facenet-pytorch,,,,['pytorch'],3359.0,3308.0,https://pypi.org/project/facenet-pytorch,2024-04-29 17:50:14.000,51.0,127236.0,153646.0,,,,,,,,3.0,1716707.0,,,,,,,,,,,,,,,,,,, +423,MMOCR,open-mmlab/mmocr,ocr,,https://github.com/open-mmlab/mmocr,https://github.com/open-mmlab/mmocr,Apache-2.0,2021-04-07 13:40:21.000,2024-11-27 09:38:10.000000,2024-11-27 09:38:09,1139.0,,751.0,58.0,1015.0,187.0,743.0,4509.0,"OpenMMLab Text Detection, Recognition and Understanding Toolbox.",90.0,27,True,2023-07-04 07:12:41.567,1.0.1,20.0,mmocr,,,,['pytorch'],223.0,219.0,https://pypi.org/project/mmocr,2022-05-05 14:21:18.000,4.0,4822.0,4822.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +424,Alpha Vantage,RomelTorres/alpha_vantage,financial-data,,https://github.com/RomelTorres/alpha_vantage,https://github.com/RomelTorres/alpha_vantage,MIT,2017-04-29 17:23:00.000,2025-04-22 14:57:44.470000,2024-07-18 16:46:48,557.0,,746.0,176.0,90.0,1.0,288.0,4471.0,A python wrapper for Alpha Vantage API for financial data.,44.0,27,True,2024-07-18 14:29:16.000,3.0.0,35.0,alpha_vantage,conda-forge/alpha_vantage,,,,35.0,,https://pypi.org/project/alpha_vantage,2024-07-18 14:29:16.000,35.0,59428.0,59603.0,https://anaconda.org/conda-forge/alpha_vantage,2025-04-22 14:57:44.470,8929.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +425,TensorFlowOnSpark,yahoo/TensorFlowOnSpark,distributed-ml,,https://github.com/yahoo/TensorFlowOnSpark,https://github.com/yahoo/TensorFlowOnSpark,Apache-2.0,2017-01-20 18:15:57.000,2025-04-22 14:57:18.376000,2023-04-27 20:08:56,632.0,,964.0,277.0,226.0,13.0,356.0,3873.0,TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.,34.0,27,False,2022-04-21 20:41:22.000,2.2.5,32.0,tensorflowonspark,conda-forge/tensorflowonspark,,,"['tensorflow', 'spark']",5.0,,https://pypi.org/project/tensorflowonspark,2022-04-21 20:05:56.000,5.0,77949.0,78386.0,https://anaconda.org/conda-forge/tensorflowonspark,2025-04-22 14:57:18.376,27988.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +426,RecBole,RUCAIBox/RecBole,recommender-systems,,https://github.com/RUCAIBox/RecBole,https://github.com/RUCAIBox/RecBole,MIT,2020-06-11 15:18:11.000,2025-03-25 16:28:44.170000,2025-02-24 07:16:40,4388.0,26.0,656.0,42.0,1028.0,307.0,718.0,3717.0,"A unified, comprehensive and efficient recommendation library.",79.0,27,True,2025-02-24 03:08:28.000,1.2.1,11.0,recbole,aibox/recbole,,,['pytorch'],2.0,,https://pypi.org/project/recbole,2025-02-24 03:08:28.000,2.0,57506.0,57657.0,https://anaconda.org/aibox/recbole,2025-03-25 16:28:44.170,8025.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +427,Acme,deepmind/acme,reinforcement-learning,,https://github.com/google-deepmind/acme,https://github.com/google-deepmind/acme,Apache-2.0,2020-05-01 09:18:12.000,2025-04-22 14:57:40.447000,2025-04-18 16:36:55,1208.0,1.0,463.0,82.0,56.0,64.0,205.0,3656.0,A library of reinforcement learning components and agents.,87.0,27,True,2022-02-10 06:52:27.000,0.4.0,15.0,dm-acme,conda-forge/dm-acme,,,['tensorflow'],238.0,235.0,https://pypi.org/project/dm-acme,2022-02-10 06:52:27.000,3.0,3417.0,3646.0,https://anaconda.org/conda-forge/dm-acme,2025-04-22 14:57:40.447,12180.0,,,,,2.0,,,,,,,google-deepmind/acme,,,,,,,,,,,,, +428,pomegranate,jmschrei/pomegranate,probabilistics,,https://github.com/jmschrei/pomegranate,https://github.com/jmschrei/pomegranate,MIT,2014-11-24 18:36:58.000,2025-04-22 14:57:07.761000,2025-02-07 18:03:57,996.0,1.0,590.0,93.0,343.0,31.0,763.0,3435.0,"Fast, flexible and easy to use probabilistic modelling in Python.",75.0,27,True,2025-02-07 18:05:56.000,1.1.2,78.0,pomegranate,conda-forge/pomegranate,,,,67.0,,https://pypi.org/project/pomegranate,2025-02-07 18:05:56.000,67.0,28561.0,32034.0,https://anaconda.org/conda-forge/pomegranate,2025-04-22 14:57:07.761,204957.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +429,pytorch-optimizer,jettify/pytorch-optimizer,pytorch-utils,,https://github.com/jettify/pytorch-optimizer,https://github.com/jettify/pytorch-optimizer,Apache-2.0,2020-01-03 03:16:39.000,2025-04-22 14:57:50.627000,2023-06-20 03:14:12,435.0,,300.0,31.0,477.0,54.0,30.0,3103.0,torch-optimizer -- collection of optimizers for Pytorch.,26.0,27,False,2021-10-31 03:00:19.000,0.3.0,21.0,torch_optimizer,conda-forge/torch-optimizer,,,['pytorch'],86.0,,https://pypi.org/project/torch_optimizer,2021-10-31 03:00:19.000,86.0,166910.0,167200.0,https://anaconda.org/conda-forge/torch-optimizer,2025-04-22 14:57:50.627,13924.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +430,SHOGUN,shogun-toolbox/shogun,ml-frameworks,,https://github.com/shogun-toolbox/shogun,https://github.com/shogun-toolbox/shogun,BSD-3-Clause,2011-04-01 10:44:32.000,2025-04-22 14:56:38.712000,2023-12-19 18:37:18,17589.0,,1050.0,213.0,3649.0,429.0,1111.0,3042.0,Unified and efficient Machine Learning.,248.0,27,False,2019-07-05 10:23:31.000,shogun_6.1.4,10.0,,conda-forge/shogun,shogun/shogun,,,,,,,,,1762.0,https://anaconda.org/conda-forge/shogun,2025-04-22 14:56:38.712,163054.0,https://hub.docker.com/r/shogun/shogun,2019-01-31 13:45:10.435327,1.0,1534.0,3.0,,,,,,,,,,shogun,,,,,,,,,, +431,Sweetviz,fbdesignpro/sweetviz,data-viz,,https://github.com/fbdesignpro/sweetviz,https://github.com/fbdesignpro/sweetviz,MIT,2020-05-09 15:25:47.000,2025-04-22 14:57:46.014000,2023-11-29 13:26:08,135.0,,280.0,53.0,23.0,45.0,97.0,3008.0,"Visualize and compare datasets, target values and associations, with one line of code.",11.0,27,False,2023-11-29 13:30:45.000,2.3.1,35.0,sweetviz,conda-forge/sweetviz,,,,3047.0,3017.0,https://pypi.org/project/sweetviz,2023-11-29 13:27:52.000,30.0,76604.0,77435.0,https://anaconda.org/conda-forge/sweetviz,2025-04-22 14:57:46.014,41576.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +432,StellarGraph,stellargraph/stellargraph,graph,,https://github.com/stellargraph/stellargraph,https://github.com/stellargraph/stellargraph,Apache-2.0,2018-04-13 07:35:51.000,2024-04-10 12:25:23.000000,2021-10-29 06:15:49,2535.0,,431.0,61.0,933.0,325.0,747.0,2999.0,StellarGraph - Machine Learning on Graphs.,40.0,27,False,2021-02-22 06:35:38.731,1.2.1,25.0,stellargraph,,,,['tensorflow'],313.0,302.0,https://pypi.org/project/stellargraph,2021-02-22 06:35:38.731,11.0,4648.0,4648.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +433,pygal,Kozea/pygal,graph,,https://github.com/Kozea/pygal,https://github.com/Kozea/pygal,LGPL-3.0,2011-09-23 10:17:50.000,2025-04-22 14:57:06.322000,2024-08-12 14:54:41,1058.0,,411.0,122.0,146.0,198.0,247.0,2705.0,PYthon svg GrAph plotting Library.,77.0,27,False,2024-08-12 14:55:21.000,3.0.5,81.0,pygal,conda-forge/pygal,,,,101.0,,https://pypi.org/project/pygal,2024-08-12 14:55:21.000,101.0,220240.0,224496.0,https://anaconda.org/conda-forge/pygal,2025-04-22 14:57:06.322,114924.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +434,EvaDB,georgia-tech-db/eva,ml-frameworks,,https://github.com/georgia-tech-db/evadb,https://github.com/georgia-tech-db/evadb,Apache-2.0,2018-09-10 02:26:03.000,2024-05-17 16:33:06.000000,2023-12-03 09:09:14,2415.0,,261.0,27.0,1132.0,78.0,224.0,2666.0,Database system for AI-powered apps.,72.0,27,False,2023-11-19 16:35:30.000,0.3.9,45.0,evadb,,,,['pytorch'],153.0,153.0,https://pypi.org/project/evadb,2023-11-19 16:35:24.000,,2121.0,14874.0,,,,,,,,3.0,420856.0,,,,,,georgia-tech-db/evadb,,,,,,,,,,,,, +435,Fairness 360,Trusted-AI/AIF360,interpretability,,https://github.com/Trusted-AI/AIF360,https://github.com/Trusted-AI/AIF360,Apache-2.0,2018-08-22 20:47:15.000,2025-04-22 14:57:36.856000,2024-12-10 03:08:33,438.0,,845.0,90.0,293.0,200.0,104.0,2567.0,"A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and..",73.0,27,True,2024-04-08 20:03:12.000,0.6.1,12.0,aif360,conda-forge/aif360,,,,681.0,649.0,https://pypi.org/project/aif360,2024-04-08 20:03:12.000,32.0,33750.0,34151.0,https://anaconda.org/conda-forge/aif360,2025-04-22 14:57:36.856,22099.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +436,Hyperas,maxpumperla/hyperas,hyperopt,,https://github.com/maxpumperla/hyperas,https://github.com/maxpumperla/hyperas,MIT,2016-02-19 14:45:10.000,2023-01-05 06:02:49.000000,2023-01-05 06:02:49,213.0,,318.0,61.0,38.0,97.0,160.0,2179.0,Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization.,22.0,27,False,2019-02-28 09:16:54.000,0.4.1,9.0,hyperas,,,,['tensorflow'],399.0,393.0,https://pypi.org/project/hyperas,2019-02-28 09:16:54.000,6.0,12296.0,12296.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +437,PyTextRank,DerwenAI/pytextrank,nlp,,https://github.com/DerwenAI/pytextrank,https://github.com/DerwenAI/pytextrank,MIT,2016-10-02 18:39:12.000,2024-07-16 08:39:07.000000,2024-05-21 15:42:46,481.0,,336.0,64.0,161.0,13.0,92.0,2175.0,Python implementation of TextRank algorithms (textgraphs) for phrase extraction.,19.0,27,True,2024-02-21 23:17:37.000,3.3.0,22.0,pytextrank,,,,,855.0,836.0,https://pypi.org/project/pytextrank,2024-02-21 23:17:37.000,19.0,73260.0,73260.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +438,Hivemind,learning-at-home/hivemind,distributed-ml,,https://github.com/learning-at-home/hivemind,https://github.com/learning-at-home/hivemind,MIT,2020-02-27 13:50:19.000,2025-04-20 12:57:19.000000,2025-04-19 14:44:41,594.0,11.0,183.0,55.0,482.0,82.0,106.0,2167.0,Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.,34.0,27,True,2025-04-20 10:27:23.000,1.11.11,28.0,hivemind,,,,,138.0,126.0,https://pypi.org/project/hivemind,2025-04-20 10:21:51.000,12.0,4322.0,4322.0,,,,,,,,3.0,,,,,,,,,2.0,,,,,,,,,,, +439,efficientnet,qubvel/efficientnet,tensorflow-utils,,https://github.com/qubvel/efficientnet,https://github.com/qubvel/efficientnet,Apache-2.0,2019-05-30 20:21:09.000,2025-04-22 15:32:32.084000,2021-07-16 09:03:20,66.0,,463.0,38.0,43.0,64.0,58.0,2085.0,Implementation of EfficientNet model. Keras and TensorFlow Keras.,10.0,27,False,2020-09-15 16:26:00.000,1.1.1,9.0,efficientnet,anaconda/efficientnet,,,['tensorflow'],2664.0,2650.0,https://pypi.org/project/efficientnet,2020-09-15 16:26:00.000,14.0,80796.0,84511.0,https://anaconda.org/anaconda/efficientnet,2025-04-22 15:32:32.084,631.0,,,,,3.0,262992.0,,,,,,,,,,,,,,,,,,, +440,cuGraph,rapidsai/cugraph,gpu-utilities,,https://github.com/rapidsai/cugraph,https://github.com/rapidsai/cugraph,Apache-2.0,2018-11-15 18:07:11.000,2025-04-24 14:45:37.000000,2025-04-23 19:57:33,6835.0,105.0,325.0,45.0,3195.0,183.0,1655.0,1955.0,cuGraph - RAPIDS Graph Analytics Library.,123.0,27,True,2025-04-15 13:55:11.000,25.04.01,44.0,cugraph,conda-forge/libcugraph,,,,4.0,,https://pypi.org/project/cugraph,2020-06-01 20:09:06.000,4.0,383.0,991.0,https://anaconda.org/conda-forge/libcugraph,2025-04-22 14:57:50.593,29225.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +441,AutoViz,AutoViML/AutoViz,data-viz,,https://github.com/AutoViML/AutoViz,https://github.com/AutoViML/AutoViz,Apache-2.0,2019-07-17 17:14:06.000,2025-04-22 14:57:59.344000,2024-06-10 12:07:33,223.0,,204.0,33.0,20.0,2.0,96.0,1798.0,"Automatically Visualize any dataset, any size with a single line of code. Created by Ram Seshadri. Collaborators..",17.0,27,True,2024-06-10 12:09:16.000,0.1.905,90.0,autoviz,conda-forge/autoviz,,,,870.0,859.0,https://pypi.org/project/autoviz,2024-06-10 12:09:16.000,11.0,16980.0,18862.0,https://anaconda.org/conda-forge/autoviz,2025-04-22 14:57:59.344,82824.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +442,gplearn,trevorstephens/gplearn,others,,https://github.com/trevorstephens/gplearn,https://github.com/trevorstephens/gplearn,BSD-3-Clause,2015-03-26 01:01:14.000,2025-04-22 14:57:28.627000,2023-08-12 06:34:27,161.0,,291.0,51.0,89.0,24.0,191.0,1675.0,"Genetic Programming in Python, with a scikit-learn inspired API.",11.0,27,False,2022-05-03 10:56:08.000,0.4.2,7.0,gplearn,conda-forge/gplearn,,,['sklearn'],723.0,704.0,https://pypi.org/project/gplearn,2022-05-03 10:47:30.000,19.0,16257.0,16420.0,https://anaconda.org/conda-forge/gplearn,2025-04-22 14:57:28.627,9493.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +443,torch-scatter,rusty1s/pytorch_scatter,pytorch-utils,,https://github.com/rusty1s/pytorch_scatter,https://github.com/rusty1s/pytorch_scatter,MIT,2017-12-16 16:34:23.000,2025-04-22 14:57:27.368000,2025-04-20 07:21:04,1043.0,4.0,185.0,16.0,82.0,27.0,384.0,1633.0,PyTorch Extension Library of Optimized Scatter Operations.,33.0,27,True,2023-10-06 08:49:07.000,2.1.2,32.0,torch-scatter,conda-forge/pytorch_scatter,,,['pytorch'],152.0,,https://pypi.org/project/torch-scatter,2023-10-06 08:49:07.000,152.0,53699.0,67758.0,https://anaconda.org/conda-forge/pytorch_scatter,2025-04-22 14:57:27.368,815467.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +444,openTSNE,pavlin-policar/openTSNE,data-viz,,https://github.com/pavlin-policar/openTSNE,https://github.com/pavlin-policar/openTSNE,BSD-3-Clause,2018-06-08 18:42:09.000,2025-04-22 14:56:58.501000,2024-10-24 16:30:49,696.0,,166.0,21.0,129.0,11.0,131.0,1520.0,"Extensible, parallel implementations of t-SNE.",13.0,27,True,2024-08-13 11:02:28.000,1.0.2,28.0,opentsne,conda-forge/opentsne,,,,1086.0,1039.0,https://pypi.org/project/opentsne,2024-08-13 11:02:01.000,47.0,43350.0,50932.0,https://anaconda.org/conda-forge/opentsne,2025-04-22 14:56:58.501,424603.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +445,chainercv,chainer/chainercv,image,,https://github.com/chainer/chainercv,https://github.com/chainer/chainercv,MIT,2017-02-13 04:15:10.000,2021-07-01 16:54:50.000000,2020-01-07 11:48:31,4930.0,,302.0,72.0,742.0,58.0,168.0,1482.0,ChainerCV: a Library for Deep Learning in Computer Vision.,39.0,27,False,2019-06-12 11:55:40.000,0.13.1,25.0,chainercv,,,,,424.0,422.0,https://pypi.org/project/chainercv,2019-06-12 11:55:40.000,2.0,1621.0,1621.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +446,pycm,sepandhaghighi/pycm,others,,https://github.com/sepandhaghighi/pycm,https://github.com/sepandhaghighi/pycm,MIT,2018-01-22 19:46:54.000,2025-04-22 16:34:14.000000,2025-04-04 12:26:14,3091.0,7.0,126.0,35.0,395.0,17.0,192.0,1475.0,Multi-class confusion matrix library in Python.,18.0,27,True,2025-04-04 14:07:34.000,4.3,47.0,pycm,,,,,414.0,390.0,https://pypi.org/project/pycm,2025-04-04 14:07:54.000,24.0,37666.0,37666.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +447,DALEX,ModelOriented/DALEX,interpretability,,https://github.com/ModelOriented/DALEX,https://github.com/ModelOriented/DALEX,GPL-3.0,2018-02-18 03:24:12.000,2025-04-22 14:57:44.228000,2025-02-12 20:53:06,689.0,2.0,169.0,49.0,165.0,25.0,385.0,1420.0,moDel Agnostic Language for Exploration and eXplanation.,27.0,27,False,2025-02-12 20:48:06.000,1.7.2,29.0,dalex,conda-forge/dalex,,,,223.0,216.0,https://pypi.org/project/dalex,2025-02-12 20:48:06.000,7.0,24448.0,24896.0,https://anaconda.org/conda-forge/dalex,2025-04-22 14:57:44.228,22891.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +448,Madmom,CPJKU/madmom,audio,,https://github.com/CPJKU/madmom,https://github.com/CPJKU/madmom,BSD-3-Clause,2015-09-08 08:19:06.000,2024-08-25 11:43:40.000000,2024-08-25 11:43:40,1753.0,,218.0,42.0,259.0,68.0,214.0,1417.0,Python audio and music signal processing library.,24.0,27,True,2018-11-14 14:57:41.000,0.16.1,11.0,madmom,,,,,516.0,489.0,https://pypi.org/project/madmom,2018-11-14 14:56:22.000,27.0,3357.0,3357.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +449,PySwarms,ljvmiranda921/pyswarms,others,,https://github.com/ljvmiranda921/pyswarms,https://github.com/ljvmiranda921/pyswarms,MIT,2017-07-12 12:04:45.000,2024-08-06 17:18:34.000000,2023-06-06 09:46:40,415.0,,334.0,40.0,302.0,32.0,200.0,1328.0,A research toolkit for particle swarm optimization in Python.,45.0,27,False,2021-01-03 21:34:15.000,1.3.0,20.0,pyswarms,,,,,549.0,527.0,https://pypi.org/project/pyswarms,2021-01-03 21:34:15.000,22.0,48892.0,48892.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +450,scikit-lego,koaning/scikit-lego,sklearn-utils,,https://github.com/koaning/scikit-lego,https://github.com/koaning/scikit-lego,MIT,2019-01-21 15:30:15.000,2025-04-22 14:57:15.493000,2025-04-19 20:43:52,555.0,3.0,121.0,20.0,409.0,40.0,297.0,1321.0,Extra blocks for scikit-learn pipelines.,68.0,27,True,2024-12-17 12:12:51.000,0.9.4,55.0,scikit-lego,conda-forge/scikit-lego,,,['sklearn'],191.0,178.0,https://pypi.org/project/scikit-lego,2024-12-17 12:10:04.000,13.0,29086.0,30209.0,https://anaconda.org/conda-forge/scikit-lego,2025-04-22 14:57:15.493,66299.0,,,,,2.0,,,,,,,,,2.0,,,,,,,,,,, +451,livelossplot,stared/livelossplot,ml-experiments,,https://github.com/stared/livelossplot,https://github.com/stared/livelossplot,MIT,2018-03-10 17:51:43.000,2025-03-31 13:51:06.000000,2025-01-03 19:07:34,348.0,,141.0,27.0,67.0,6.0,73.0,1311.0,"Live training loss plot in Jupyter Notebook for Keras, PyTorch and others.",17.0,27,True,2025-01-03 15:28:53.000,0.5.6,26.0,livelossplot,,,,['jupyter'],1834.0,1818.0,https://pypi.org/project/livelossplot,2025-01-03 15:28:53.000,16.0,20329.0,20329.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +452,iNNvestigate,albermax/innvestigate,interpretability,,https://github.com/albermax/innvestigate,https://github.com/albermax/innvestigate,BSD-2-Clause,2017-12-13 18:11:20.000,2025-04-11 14:13:23.000000,2023-10-12 14:56:47,1107.0,,235.0,33.0,69.0,57.0,206.0,1295.0,A toolbox to iNNvestigate neural networks predictions!.,22.0,27,False,2023-10-12 14:58:48.000,2.1.2,8.0,innvestigate,,,,['tensorflow'],149.0,147.0,https://pypi.org/project/innvestigate,2023-10-12 14:55:59.000,2.0,1229.0,1234.0,,,,,,,,2.0,180.0,,,,,,,,,,,,,,,,,,, +453,fancyimpute,iskandr/fancyimpute,sklearn-utils,,https://github.com/iskandr/fancyimpute,https://github.com/iskandr/fancyimpute,Apache-2.0,2015-11-05 23:39:34.000,2023-10-25 17:26:07.000000,2021-10-21 17:45:17,202.0,,177.0,25.0,36.0,1.0,116.0,1268.0,Multivariate imputation and matrix completion algorithms implemented in Python.,11.0,27,False,2021-10-21 17:50:40.000,0.7.0,29.0,fancyimpute,,,,['sklearn'],1861.0,1840.0,https://pypi.org/project/fancyimpute,2021-10-21 17:50:40.000,21.0,82652.0,82652.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +454,Model Analysis,tensorflow/model-analysis,interpretability,,https://github.com/tensorflow/model-analysis,https://github.com/tensorflow/model-analysis,Apache-2.0,2018-03-23 19:08:49.000,2025-03-31 19:02:19.000000,2025-03-31 19:02:18,1531.0,2.0,280.0,64.0,110.0,38.0,59.0,1261.0,Model analysis tools for TensorFlow.,59.0,27,True,2024-11-27 19:31:49.000,0.47.1,59.0,tensorflow-model-analysis,,,,"['tensorflow', 'jupyter']",19.0,,https://pypi.org/project/tensorflow-model-analysis,2024-12-05 02:06:57.000,19.0,89589.0,89589.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +455,ktrain,amaiya/ktrain,ml-frameworks,,https://github.com/amaiya/ktrain,https://github.com/amaiya/ktrain,Apache-2.0,2019-02-06 17:01:39.000,2025-02-06 20:19:28.000000,2024-07-09 16:09:26,3066.0,,268.0,32.0,38.0,1.0,500.0,1256.0,ktrain is a Python library that makes deep learning and AI more accessible and easier to apply.,17.0,27,True,2024-06-19 01:15:40.000,0.41.4,211.0,ktrain,,,,['tensorflow'],576.0,572.0,https://pypi.org/project/ktrain,2024-06-19 01:15:40.000,4.0,7957.0,7957.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +456,metricflow,transform-data/metricflow,others,,https://github.com/dbt-labs/metricflow,https://github.com/dbt-labs/metricflow,,2022-04-04 18:33:06.000,2025-04-23 17:16:07.000000,2025-04-23 17:16:06,2715.0,57.0,100.0,21.0,1350.0,87.0,265.0,1202.0,"MetricFlow allows you to define, build, and maintain metrics in code.",47.0,27,False,2025-04-01 21:44:13.000,0.207.3,92.0,metricflow,,,,,36.0,32.0,https://pypi.org/project/metricflow,2025-04-01 21:31:37.000,4.0,36831.0,36831.0,,,,,,,,3.0,,,,,,,dbt-labs/metricflow,,,,,,,,,,,,, +457,SMAC3,automl/SMAC3,hyperopt,,https://github.com/automl/SMAC3,https://github.com/automl/SMAC3,BSD-1-Clause,2016-08-17 10:58:05.000,2025-04-22 14:57:48.900000,2025-02-19 14:28:48,2077.0,1.0,233.0,40.0,640.0,109.0,486.0,1150.0,SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization.,43.0,27,False,2025-03-20 15:27:01.000,2.3.1,51.0,smac,conda-forge/smac,,,,53.0,,https://pypi.org/project/smac,2025-03-20 15:27:01.000,53.0,20719.0,21354.0,https://anaconda.org/conda-forge/smac,2025-04-22 14:57:48.900,31162.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +458,Plotly-Resampler,predict-idlab/plotly-resampler,data-viz,,https://github.com/predict-idlab/plotly-resampler,https://github.com/predict-idlab/plotly-resampler,MIT,2021-11-20 10:51:56.000,2025-04-22 14:58:08.733000,2025-04-07 11:52:39,803.0,7.0,72.0,16.0,139.0,60.0,125.0,1105.0,Visualize large time series data with plotly.py.,14.0,27,True,2024-03-27 07:58:10.000,0.10.0,64.0,plotly-resampler,conda-forge/plotly-resampler,,,,1918.0,1887.0,https://pypi.org/project/plotly-resampler,2025-04-07 11:52:56.000,31.0,478044.0,480741.0,https://anaconda.org/conda-forge/plotly-resampler,2025-04-22 14:58:08.733,105201.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +459,Sentinelsat,sentinelsat/sentinelsat,geospatial-data,,https://github.com/sentinelsat/sentinelsat,https://github.com/sentinelsat/sentinelsat,GPL-3.0,2015-05-22 20:32:26.000,2025-04-22 14:57:37.199000,2024-02-29 13:41:11,1144.0,,244.0,61.0,249.0,5.0,367.0,997.0,Search and download Copernicus Sentinel satellite images.,44.0,27,False,2023-03-10 17:53:00.587,1.2.1,41.0,sentinelsat,conda-forge/sentinelsat,,,,687.0,653.0,https://pypi.org/project/sentinelsat,2017-03-06 02:33:09.000,34.0,20566.0,21259.0,https://anaconda.org/conda-forge/sentinelsat,2025-04-22 14:57:37.199,37260.0,,,,,3.0,331.0,,,,,,,,,,,,,,,,,,, +460,CellProfiler,CellProfiler/CellProfiler,image,,https://github.com/CellProfiler/CellProfiler,https://github.com/CellProfiler/CellProfiler,BSD-3-Clause,2011-04-05 12:10:12.000,2025-04-24 13:48:16.000000,2025-04-22 13:01:22,16709.0,5.0,391.0,45.0,1666.0,317.0,3006.0,973.0,An open-source application for biological image analysis.,147.0,27,True,2024-09-27 21:18:50.000,4.2.8,35.0,cellprofiler,,,,,30.0,28.0,https://pypi.org/project/cellprofiler,2024-09-16 19:44:11.000,2.0,1152.0,1215.0,,,,,,,,3.0,8635.0,,,,,,,,,,,,,,,,,,, +461,scikit-multilearn,scikit-multilearn/scikit-multilearn,sklearn-utils,,https://github.com/scikit-multilearn/scikit-multilearn,https://github.com/scikit-multilearn/scikit-multilearn,BSD-2-Clause,2014-04-30 13:05:44.000,2024-02-01 04:40:03.000000,2023-04-19 21:43:19,547.0,,176.0,31.0,87.0,88.0,123.0,932.0,A scikit-learn based module for multi-label et. al. classification.,28.0,27,False,2018-12-10 16:24:47.000,0.2.0,7.0,scikit-multilearn,,,,['sklearn'],2084.0,2059.0,https://pypi.org/project/scikit-multilearn,2018-12-10 16:24:47.000,25.0,80908.0,80908.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +462,mahotas,luispedro/mahotas,image,,https://github.com/luispedro/mahotas,https://github.com/luispedro/mahotas,MIT,2010-01-31 00:13:06.000,2025-04-22 14:56:20.679000,2025-02-25 03:39:37,1327.0,1.0,149.0,48.0,59.0,21.0,71.0,865.0,Computer Vision in Python.,35.0,27,True,2024-07-17 21:10:14.000,1.4.18,63.0,mahotas,conda-forge/mahotas,,,,1574.0,1511.0,https://pypi.org/project/mahotas,2024-07-17 21:10:14.000,63.0,23030.0,33695.0,https://anaconda.org/conda-forge/mahotas,2025-04-22 14:56:20.679,618605.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +463,CLTK,cltk/cltk,nlp,,https://github.com/cltk/cltk,https://github.com/cltk/cltk,MIT,2014-01-11 23:59:47.000,2025-01-18 18:58:45.000000,2024-12-01 02:03:32,3719.0,,333.0,63.0,691.0,39.0,537.0,848.0,The Classical Language Toolkit.,121.0,27,True,2024-12-01 02:04:06.000,1.4.0,218.0,cltk,,,,,313.0,296.0,https://pypi.org/project/cltk,2024-12-01 02:04:06.000,17.0,7040.0,7041.0,,,,,,,,3.0,128.0,,,,,,,,,,,,,,,,,,, +464,pySBD,nipunsadvilkar/pySBD,nlp,,https://github.com/nipunsadvilkar/pySBD,https://github.com/nipunsadvilkar/pySBD,MIT,2017-06-11 06:15:20.000,2025-04-22 14:58:02.377000,2021-02-11 16:40:18,279.0,,84.0,12.0,51.0,24.0,53.0,846.0,pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.,6.0,27,False,2021-02-11 16:42:37.000,0.3.4,15.0,pysbd,conda-forge/pysbd,,,,6946.0,6869.0,https://pypi.org/project/pysbd,2021-02-11 16:36:33.000,77.0,887646.0,887874.0,https://anaconda.org/conda-forge/pysbd,2025-04-22 14:58:02.377,9602.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +465,pyRiemann,pyRiemann/pyRiemann,ml-frameworks,,https://github.com/pyRiemann/pyRiemann,https://github.com/pyRiemann/pyRiemann,BSD-3-Clause,2015-04-19 16:01:44.000,2025-04-22 14:58:19.121000,2025-04-17 11:29:01,657.0,16.0,167.0,29.0,251.0,3.0,106.0,676.0,Machine learning for multivariate data through the Riemannian geometry of positive definite matrices in Python.,37.0,27,True,2025-02-12 12:43:47.000,0.8,14.0,pyriemann,conda-forge/pyriemann,,https://pyriemann.readthedocs.io/en/latest/,['sklearn'],480.0,452.0,https://pypi.org/project/pyriemann,2025-02-12 12:44:20.000,28.0,52975.0,53327.0,https://anaconda.org/conda-forge/pyriemann,2025-04-22 14:58:19.121,11996.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +466,EarthPy,earthlab/earthpy,geospatial-data,,https://github.com/earthlab/earthpy,https://github.com/earthlab/earthpy,BSD-3-Clause,2018-02-20 03:02:42.000,2025-04-22 14:57:03.644000,2023-08-23 17:20:54,1241.0,,160.0,17.0,717.0,42.0,208.0,515.0,A package built to support working with spatial data using open source python.,44.0,27,False,2021-10-01 22:51:04.000,0.9.4,23.0,earthpy,conda-forge/earthpy,,,,439.0,422.0,https://pypi.org/project/earthpy,2021-10-01 22:51:04.000,17.0,14264.0,15526.0,https://anaconda.org/conda-forge/earthpy,2025-04-22 14:57:03.644,90873.0,,,,,3.0,12.0,,,,,,,,,,,,,,,,,,, +467,sklearn-crfsuite,TeamHG-Memex/sklearn-crfsuite,sklearn-utils,,https://github.com/TeamHG-Memex/sklearn-crfsuite,https://github.com/TeamHG-Memex/sklearn-crfsuite,MIT,2015-11-26 21:15:41.000,2025-04-22 14:57:23.846000,2019-12-05 08:17:22,46.0,,215.0,21.0,17.0,46.0,23.0,429.0,scikit-learn inspired API for CRFsuite.,6.0,27,False,2024-06-18 11:08:22.000,0.5.0,11.0,sklearn-crfsuite,conda-forge/sklearn-crfsuite,,,['sklearn'],8536.0,8397.0,https://pypi.org/project/sklearn-crfsuite,2024-06-18 11:08:22.000,139.0,337614.0,338310.0,https://anaconda.org/conda-forge/sklearn-crfsuite,2025-04-22 14:57:23.846,41765.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +468,scikit-posthocs,maximtrp/scikit-posthocs,probabilistics,,https://github.com/maximtrp/scikit-posthocs,https://github.com/maximtrp/scikit-posthocs,MIT,2017-06-22 19:41:37.000,2025-04-22 14:57:37.742000,2025-04-16 10:38:56,558.0,13.0,40.0,4.0,18.0,5.0,67.0,365.0,Multiple Pairwise Comparisons (Post Hoc) Tests in Python.,16.0,27,True,2025-03-29 10:07:06.000,0.11.4,32.0,scikit-posthocs,conda-forge/scikit-posthocs,,,['sklearn'],1150.0,1077.0,https://pypi.org/project/scikit-posthocs,2025-03-29 10:07:06.000,73.0,88290.0,107246.0,https://anaconda.org/conda-forge/scikit-posthocs,2025-04-22 14:57:37.742,1023642.0,,,,,3.0,66.0,,,,,,,,,,,,,,,,,,, +469,prettymaps,marceloprates/prettymaps,geospatial-data,,https://github.com/marceloprates/prettymaps,https://github.com/marceloprates/prettymaps,AGPL-3.0,2021-03-05 12:22:05.000,2025-04-22 14:58:08.339000,2025-03-04 14:59:10,239.0,34.0,546.0,78.0,40.0,63.0,34.0,11618.0,Draw pretty maps from OpenStreetMap data! Built with osmnx +matplotlib + shapely.,19.0,26,False,2025-03-03 21:33:02.000,1.4.2,17.0,prettymaps,conda-forge/prettymaps,,,,70.0,70.0,https://pypi.org/project/prettymaps,2025-03-03 21:33:02.000,,1404.0,1537.0,https://anaconda.org/conda-forge/prettymaps,2025-04-22 14:58:08.339,5192.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +470,Dopamine,google/dopamine,reinforcement-learning,,https://github.com/google/dopamine,https://github.com/google/dopamine,Apache-2.0,2018-07-26 09:58:36.000,2024-11-04 14:34:30.000000,2024-11-04 14:34:28,348.0,,1377.0,420.0,51.0,105.0,89.0,10716.0,Dopamine is a research framework for fast prototyping of reinforcement learning algorithms.,15.0,26,True,2024-10-31 13:26:46.000,4.1.2,50.0,dopamine-rl,,,,['tensorflow'],31.0,21.0,https://pypi.org/project/dopamine-rl,2024-10-31 13:26:46.000,10.0,30420.0,30420.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +471,TTS,mozilla/TTS,audio,,https://github.com/mozilla/TTS,https://github.com/mozilla/TTS,MPL-2.0,2018-01-23 14:22:06.000,2023-11-09 15:37:59.000000,2021-02-12 10:36:31,2184.0,,1250.0,186.0,213.0,32.0,534.0,9792.0,Deep learning for Text to Speech (Discussion forum: https://discourse.mozilla.org/c/tts).,56.0,26,False,2021-01-29 00:03:56.000,0.0.9,1.0,,,,,,21.0,21.0,,,,,338.0,,,,,,,,3.0,17279.0,,,,,,,,,,,,,,,,,,, +472,NeuralProphet,ourownstory/neural_prophet,time-series-data,,https://github.com/ourownstory/neural_prophet,https://github.com/ourownstory/neural_prophet,MIT,2020-05-04 05:12:43.000,2025-01-08 20:48:50.000000,2024-09-13 01:42:25,1464.0,,492.0,58.0,830.0,66.0,498.0,4062.0,NeuralProphet: A simple forecasting package.,56.0,26,True,2024-06-21 07:42:22.000,0.9.0,36.0,neuralprophet,,,,['pytorch'],8.0,,https://pypi.org/project/neuralprophet,2024-06-26 23:51:51.000,8.0,82146.0,82146.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +473,DeepKE,zjunlp/deepke,nlp,,https://github.com/zjunlp/DeepKE,https://github.com/zjunlp/DeepKE,MIT,2018-08-01 01:54:52.000,2025-04-22 07:35:10.000000,2025-04-22 07:35:04,1700.0,7.0,706.0,45.0,36.0,7.0,601.0,3872.0,[EMNLP 2022] An Open Toolkit for Knowledge Graph Extraction and Construction.,33.0,26,True,2023-09-21 04:12:03.000,2.2.7,111.0,deepke,,,,['pytorch'],24.0,24.0,https://pypi.org/project/deepke,2023-09-21 04:12:03.000,,1986.0,1986.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +474,TensorForce,tensorforce/tensorforce,reinforcement-learning,,https://github.com/tensorforce/tensorforce,https://github.com/tensorforce/tensorforce,Apache-2.0,2017-03-19 16:24:22.000,2024-07-31 20:26:54.000000,2024-07-31 20:26:47,2116.0,,530.0,140.0,240.0,43.0,635.0,3310.0,Tensorforce: a TensorFlow library for applied reinforcement learning.,85.0,26,True,2021-08-30 20:20:58.000,0.6.5,24.0,tensorforce,,,,['tensorflow'],461.0,457.0,https://pypi.org/project/tensorforce,2021-08-30 20:13:45.000,4.0,719.0,719.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +475,neuralcoref,huggingface/neuralcoref,nlp,,https://github.com/huggingface/neuralcoref,https://github.com/huggingface/neuralcoref,MIT,2017-07-03 13:04:16.000,2025-04-22 14:57:21.142000,2021-06-22 10:51:48,116.0,,478.0,95.0,49.0,65.0,255.0,2873.0,Fast Coreference Resolution in spaCy with Neural Networks.,21.0,26,False,2019-04-08 11:28:27.000,4.0.0,5.0,neuralcoref,conda-forge/neuralcoref,,,,769.0,748.0,https://pypi.org/project/neuralcoref,2019-04-08 09:56:00.000,21.0,2186.0,2552.0,https://anaconda.org/conda-forge/neuralcoref,2025-04-22 14:57:21.142,21952.0,,,,,3.0,1183.0,,,,,,,,,,,,,,,,,,, +476,knockknock,huggingface/knockknock,ml-experiments,,https://github.com/huggingface/knockknock,https://github.com/huggingface/knockknock,MIT,2019-03-20 13:08:55.000,2025-04-22 14:57:16.064000,2020-03-16 04:26:47,75.0,,236.0,62.0,42.0,37.0,24.0,2805.0,Knock Knock: Get notified when your training ends with only two additional lines of code.,20.0,26,False,2020-03-04 04:15:47.000,0.1.8,10.0,knockknock,conda-forge/knockknock,,,,1368.0,1363.0,https://pypi.org/project/knockknock,2020-03-16 14:30:23.000,5.0,53202.0,59315.0,https://anaconda.org/conda-forge/knockknock,2025-04-22 14:57:16.064,18341.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +477,HiPlot,facebookresearch/hiplot,data-viz,,https://github.com/facebookresearch/hiplot,https://github.com/facebookresearch/hiplot,MIT,2019-11-08 13:06:41.000,2025-04-22 14:57:21.906000,2023-07-19 07:40:10,212.0,,146.0,27.0,200.0,20.0,73.0,2792.0,HiPlot makes understanding high dimensional data easy.,9.0,26,False,2022-05-31 09:00:35.000,0.1.33,113.0,hiplot,conda-forge/hiplot,,,,524.0,498.0,https://pypi.org/project/hiplot,2022-07-05 08:51:12.000,26.0,58279.0,62039.0,https://anaconda.org/conda-forge/hiplot,2025-04-22 14:57:21.906,233149.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +478,TF Ranking,tensorflow/ranking,recommender-systems,,https://github.com/tensorflow/ranking,https://github.com/tensorflow/ranking,Apache-2.0,2018-12-03 20:48:57.000,2024-03-18 21:00:38.000000,2024-03-18 20:31:55,556.0,,477.0,94.0,44.0,91.0,240.0,2773.0,Learning to Rank in TensorFlow.,36.0,26,False,2024-03-18 21:00:38.000,0.5.5,23.0,tensorflow_ranking,,,,['tensorflow'],15.0,,https://pypi.org/project/tensorflow_ranking,2024-03-18 21:00:38.000,15.0,82689.0,82689.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +479,TabNet,dreamquark-ai/tabnet,pytorch-utils,,https://github.com/dreamquark-ai/tabnet,https://github.com/dreamquark-ai/tabnet,MIT,2019-10-17 11:17:32.000,2025-04-22 14:58:07.520000,2023-07-23 14:42:27,191.0,,497.0,37.0,252.0,52.0,305.0,2755.0,PyTorch implementation of TabNet paper : https://arxiv.org/pdf/1908.07442.pdf.,21.0,26,False,2023-07-23 13:34:05.000,4.1.0,19.0,pytorch-tabnet,conda-forge/pytorch-tabnet,,,['pytorch'],11.0,,https://pypi.org/project/pytorch-tabnet,2023-07-23 13:26:57.000,11.0,42939.0,43197.0,https://anaconda.org/conda-forge/pytorch-tabnet,2025-04-22 14:58:07.520,10345.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +480,Neural Network Libraries,sony/nnabla,ml-frameworks,,https://github.com/sony/nnabla,https://github.com/sony/nnabla,Apache-2.0,2017-06-26 01:07:10.000,2024-11-15 23:43:58.000000,2024-11-15 23:43:54,3557.0,,334.0,152.0,1184.0,35.0,60.0,2745.0,Neural Network Libraries.,76.0,26,True,2024-05-29 05:14:17.000,1.39.0,79.0,nnabla,,,,,44.0,,https://pypi.org/project/nnabla,2024-05-29 02:51:02.000,44.0,7886.0,7897.0,,,,,,,,3.0,1041.0,,,,,,,,,,,,,,,,,,, +481,Enigma Catalyst,scrtlabs/catalyst,financial-data,,https://github.com/scrtlabs/catalyst,https://github.com/scrtlabs/catalyst,Apache-2.0,2017-06-13 22:31:34.000,2022-11-26 14:07:55.000000,2021-09-22 15:31:55,6364.0,,719.0,167.0,94.0,136.0,358.0,2523.0,An Algorithmic Trading Library for Crypto-Assets in Python.,152.0,26,False,2018-11-11 16:46:28.000,0.5.21,52.0,enigma-catalyst,,,,,30.0,28.0,https://pypi.org/project/enigma-catalyst,2018-11-11 16:46:28.000,2.0,1017.0,1017.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +482,Alibi,SeldonIO/alibi,interpretability,,https://github.com/SeldonIO/alibi,https://github.com/SeldonIO/alibi,Intel,2019-02-26 10:10:56.000,2025-04-04 00:44:46.000000,2025-03-05 13:26:44,670.0,2.0,252.0,53.0,680.0,151.0,225.0,2488.0,Algorithms for explaining machine learning models.,24.0,26,False,2024-04-18 15:30:25.000,0.9.6,34.0,alibi,,,,,786.0,761.0,https://pypi.org/project/alibi,2024-04-18 15:29:10.000,25.0,17412.0,17412.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +483,Norfair,tryolabs/norfair,image,,https://github.com/tryolabs/norfair,https://github.com/tryolabs/norfair,BSD-3-Clause,2020-07-01 20:15:44.000,2024-07-27 16:14:52.000000,2024-07-27 16:14:15,696.0,,260.0,33.0,150.0,24.0,146.0,2472.0,Lightweight Python library for adding real-time multi-object tracking to any detector.,31.0,26,True,2023-01-04 21:42:02.301,2.2.0,19.0,norfair,,,,,311.0,302.0,https://pypi.org/project/norfair,2022-05-30 21:14:58.000,9.0,28153.0,28159.0,,,,,,,,3.0,345.0,,,,,,,,,,,,,,,,,,, +484,polyglot,aboSamoor/polyglot,nlp,,https://github.com/aboSamoor/polyglot,https://github.com/aboSamoor/polyglot,GPL-3.0,2014-06-30 02:07:45.000,2023-11-10 03:06:08.000000,2020-09-22 22:35:28,271.0,,338.0,75.0,55.0,170.0,70.0,2332.0,Multilingual text (NLP) processing toolkit.,26.0,26,False,2021-12-15 16:11:38.716,15.5.1,9.0,polyglot,,,,,1503.0,1454.0,https://pypi.org/project/polyglot,2021-12-15 16:11:38.716,49.0,48381.0,48381.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +485,scattertext,JasonKessler/scattertext,nlp,,https://github.com/JasonKessler/scattertext,https://github.com/JasonKessler/scattertext,Apache-2.0,2016-07-21 01:47:12.000,2025-04-22 14:56:39.793000,2024-09-23 05:24:01,389.0,,291.0,53.0,14.0,23.0,80.0,2294.0,Beautiful visualizations of how language differs among document types.,14.0,26,True,2024-09-23 05:35:47.000,0.2.2,151.0,scattertext,conda-forge/scattertext,,,,669.0,664.0,https://pypi.org/project/scattertext,2024-09-23 05:35:47.000,5.0,11442.0,12647.0,https://anaconda.org/conda-forge/scattertext,2025-04-22 14:56:39.793,110948.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +486,AmpliGraph,Accenture/AmpliGraph,graph,,https://github.com/Accenture/AmpliGraph,https://github.com/Accenture/AmpliGraph,Apache-2.0,2019-01-09 14:52:05.000,2024-11-22 16:48:16.000000,2024-02-28 15:45:58,1631.0,,250.0,65.0,63.0,32.0,199.0,2207.0,Python library for Representation Learning on Knowledge Graphs https://docs.ampligraph.org.,21.0,26,False,2024-02-28 15:44:03.000,2.1.0,15.0,ampligraph,,,,['tensorflow'],68.0,66.0,https://pypi.org/project/ampligraph,2024-02-26 17:12:26.000,2.0,1254.0,1254.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +487,Labml,labmlai/labml,ml-experiments,,https://github.com/labmlai/labml,https://github.com/labmlai/labml,MIT,2018-11-16 09:34:48.000,2025-04-10 09:30:35.000000,2025-04-10 09:30:30,2362.0,22.0,138.0,27.0,279.0,6.0,44.0,2151.0,Monitor deep learning model training and hardware usage from your mobile phone.,9.0,26,True,2024-09-15 02:15:00.000,0.5.3,147.0,labml,,,,,237.0,223.0,https://pypi.org/project/labml,2024-09-15 02:15:00.000,14.0,5057.0,5057.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +488,Paddle Graph Learning,PaddlePaddle/PGL,graph,,https://github.com/PaddlePaddle/PGL,https://github.com/PaddlePaddle/PGL,Apache-2.0,2019-06-11 03:23:28.000,2023-12-11 05:15:14.000000,2023-09-26 07:34:28,1378.0,,309.0,27.0,381.0,56.0,155.0,1580.0,Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle.,31.0,26,False,2023-09-26 07:49:38.000,2.2.6,21.0,pgl,,,,['paddle'],66.0,65.0,https://pypi.org/project/pgl,2023-09-26 07:49:38.000,1.0,4296.0,4296.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +489,Pytorch Toolbelt,BloodAxe/pytorch-toolbelt,pytorch-utils,,https://github.com/BloodAxe/pytorch-toolbelt,https://github.com/BloodAxe/pytorch-toolbelt,MIT,2019-03-15 16:02:49.000,2025-03-01 18:12:48.000000,2025-03-01 18:13:36,1238.0,12.0,122.0,27.0,74.0,4.0,29.0,1539.0,PyTorch extensions for fast R&D prototyping and Kaggle farming.,8.0,26,True,2024-11-21 20:06:59.000,0.8.0,30.0,pytorch_toolbelt,,,,['pytorch'],12.0,,https://pypi.org/project/pytorch_toolbelt,2024-11-21 20:06:59.000,12.0,9908.0,9909.0,,,,,,,,2.0,141.0,,,,,,,,,,,,,,,,,,, +490,underthesea,undertheseanlp/underthesea,nlp,,https://github.com/undertheseanlp/underthesea,https://github.com/undertheseanlp/underthesea,GPL-3.0,2017-03-01 10:24:26.000,2025-03-14 00:38:57.000000,2025-03-14 00:38:57,864.0,1.0,277.0,80.0,493.0,61.0,209.0,1516.0,Underthesea - Vietnamese NLP Toolkit.,20.0,26,False,2024-06-22 10:18:00.000,6.8.4,127.0,underthesea,,,,,1548.0,1533.0,https://pypi.org/project/underthesea,2024-06-22 10:18:00.000,15.0,31433.0,31516.0,,,,,,,,3.0,7965.0,,,,,,,,,,,,,,,,,,, +491,keras-ocr,faustomorales/keras-ocr,ocr,,https://github.com/faustomorales/keras-ocr,https://github.com/faustomorales/keras-ocr,MIT,2019-09-20 23:08:50.000,2025-04-22 15:32:32.089000,2023-11-06 15:20:05,206.0,,334.0,47.0,44.0,100.0,117.0,1448.0,A packaged and flexible version of the CRAFT text detector and Keras CRNN recognition model.,18.0,26,False,2023-11-06 16:35:44.000,0.9.3,33.0,keras-ocr,anaconda/keras-ocr,,,['tensorflow'],703.0,695.0,https://pypi.org/project/keras-ocr,2023-11-06 16:35:44.000,8.0,21409.0,57034.0,https://anaconda.org/anaconda/keras-ocr,2025-04-22 15:32:32.089,395.0,,,,,3.0,1959019.0,,,,,,,,,,,,,,,,,,, +492,metric-learn,scikit-learn-contrib/metric-learn,others,,https://github.com/scikit-learn-contrib/metric-learn,https://github.com/scikit-learn-contrib/metric-learn,MIT,2013-11-02 08:29:47.000,2025-04-22 14:57:23.763000,2024-08-03 19:34:12,297.0,,231.0,44.0,186.0,53.0,122.0,1416.0,Metric learning algorithms in Python.,23.0,26,True,2023-10-09 04:53:59.000,0.7.0,11.0,metric-learn,conda-forge/metric-learn,,,['sklearn'],479.0,472.0,https://pypi.org/project/metric-learn,2023-10-09 04:53:59.000,7.0,6370.0,6644.0,https://anaconda.org/conda-forge/metric-learn,2025-04-22 14:57:23.763,15633.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +493,stockstats,jealous/stockstats,financial-data,,https://github.com/jealous/stockstats,https://github.com/jealous/stockstats,BSD-3-Clause,2016-06-05 15:21:22.000,2025-02-02 02:52:17.000000,2025-02-02 02:51:24,72.0,2.0,300.0,55.0,67.0,15.0,113.0,1362.0,Supply a wrapper ``StockDataFrame`` based on the ``pandas.DataFrame`` with inline stock statistics/indicators support.,10.0,26,True,2025-02-02 02:52:17.000,0.6.4,26.0,stockstats,,,,,1242.0,1230.0,https://pypi.org/project/stockstats,2025-02-02 02:52:17.000,12.0,13412.0,13412.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +494,pyvips,libvips/pyvips,image,,https://github.com/libvips/pyvips,https://github.com/libvips/pyvips,MIT,2017-07-28 16:39:43.000,2025-04-23 08:13:30.000000,2025-04-19 17:13:27,492.0,5.0,50.0,8.0,71.0,193.0,266.0,692.0,python binding for libvips using cffi.,16.0,26,True,2024-04-28 11:19:58.000,2.2.3,26.0,pyvips,conda-forge/pyvips,,,,1103.0,1026.0,https://pypi.org/project/pyvips,2024-04-28 11:19:58.000,77.0,85552.0,89483.0,https://anaconda.org/conda-forge/pyvips,2025-04-22 14:57:10.839,212319.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +495,quinn,MrPowers/quinn,ml-experiments,,https://github.com/mrpowers-io/quinn,https://github.com/mrpowers-io/quinn,Apache-2.0,2017-09-15 13:02:42.000,2025-03-06 03:34:31.000000,2024-12-06 11:28:50,368.0,,97.0,20.0,149.0,36.0,94.0,670.0,pyspark methods to enhance developer productivity.,31.0,26,True,2025-02-26 10:00:00.000,0.10.3,16.0,quinn,,,,['spark'],98.0,91.0,https://pypi.org/project/quinn,2024-02-13 12:31:37.000,7.0,665516.0,665516.0,,,,,,,,3.0,57.0,,,,,,mrpowers-io/quinn,,,,,,,,,,,,, +496,pandas-ai,gventuri/pandas-ai,others,,https://github.com/sinaptik-ai/pandas-ai,https://github.com/sinaptik-ai/pandas-ai,,2023-04-22 12:58:01.000,2025-04-14 08:07:44.000000,2025-04-14 08:01:54,1318.0,116.0,1851.0,156.0,679.0,18.0,818.0,19694.0,"Chat with your database or your datalake (SQL, CSV, parquet). PandasAI makes data analysis conversational using LLMs..",106.0,25,False,2025-01-02 18:10:58.000,2.4.2,100.0,pandas-ai,,,,,,,https://pypi.org/project/pandas-ai,,,,,,,,,,,,3.0,,,,,,,sinaptik-ai/pandas-ai,,,,,,,,,,,,, +497,PyText,facebookresearch/pytext,nlp,,https://github.com/facebookresearch/pytext,https://github.com/facebookresearch/pytext,BSD-3-Clause,2018-07-31 23:40:46.000,2022-10-17 19:55:31.000000,2022-10-17 19:51:05,1735.0,,802.0,167.0,1588.0,145.0,74.0,6338.0,A natural language modeling framework based on PyTorch.,234.0,25,False,2020-06-08 23:30:58.000,0.3.3,13.0,pytext-nlp,,,,['pytorch'],21.0,21.0,https://pypi.org/project/pytext-nlp,2020-06-08 22:49:33.000,,513.0,518.0,,,,,,,,3.0,442.0,,,,,,,,,,,,,,,,,,, +498,mmdnn,Microsoft/MMdnn,model-serialisation,,https://github.com/microsoft/MMdnn,https://github.com/microsoft/MMdnn,MIT,2017-08-16 08:03:52.000,2024-05-29 15:42:28.000000,2022-09-22 23:59:07,1084.0,,965.0,180.0,328.0,337.0,294.0,5810.0,MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion..,86.0,25,False,2020-07-24 06:34:39.000,0.3.1,12.0,mmdnn,,,,,152.0,152.0,https://pypi.org/project/mmdnn,2020-07-24 06:34:39.000,,790.0,833.0,,,,,,,,2.0,3884.0,,,,,,,,,,,,,,,,,,, +499,MMF,facebookresearch/mmf,image,,https://github.com/facebookresearch/mmf,https://github.com/facebookresearch/mmf,BSD-3-Clause,2018-06-27 04:52:40.000,2025-04-24 02:53:53.000000,2025-04-24 02:51:21,1108.0,9.0,924.0,110.0,676.0,146.0,543.0,5559.0,A modular framework for vision & language multimodal research from Facebook AI Research (FAIR).,123.0,25,True,2019-08-26 19:04:21.000,0.3.1,12.0,mmf,,,,['pytorch'],22.0,21.0,https://pypi.org/project/mmf,2020-06-12 22:15:02.000,1.0,853.0,853.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +500,scikit-opt,guofei9987/scikit-opt,sklearn-utils,,https://github.com/guofei9987/scikit-opt,https://github.com/guofei9987/scikit-opt,MIT,2017-12-05 10:20:41.000,2024-06-23 12:28:48.000000,2024-06-23 12:28:48,343.0,,991.0,49.0,34.0,68.0,113.0,5497.0,"Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune..",24.0,25,True,2022-01-14 08:49:08.000,0.6.6,23.0,scikit-opt,,,,['sklearn'],279.0,264.0,https://pypi.org/project/scikit-opt,2022-01-14 08:49:08.000,15.0,5726.0,5726.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +501,DALI,NVIDIA/DALI,gpu-utilities,,https://github.com/NVIDIA/DALI,https://github.com/NVIDIA/DALI,Apache-2.0,2018-06-01 22:18:01.000,2025-04-24 13:35:13.000000,2025-04-24 13:35:13,3865.0,86.0,634.0,91.0,4240.0,251.0,1432.0,5364.0,A GPU-accelerated library containing highly optimized building blocks and an execution engine for data processing to..,96.0,25,True,2025-03-25 17:57:30.000,1.48.0,89.0,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +502,AugLy,facebookresearch/AugLy,others,,https://github.com/facebookresearch/AugLy,https://github.com/facebookresearch/AugLy,MIT,2021-06-09 17:57:28.000,2025-02-28 17:18:18.000000,2025-02-28 17:14:30,229.0,4.0,302.0,78.0,184.0,24.0,56.0,5003.0,"A data augmentations library for audio, image, text, and video.",38.0,25,True,2023-12-05 20:52:12.000,1.0.1,18.0,augly,,,,,178.0,174.0,https://pypi.org/project/augly,2023-12-05 20:52:12.000,4.0,2878.0,2878.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +503,Lucid,tensorflow/lucid,interpretability,,https://github.com/tensorflow/lucid,https://github.com/tensorflow/lucid,Apache-2.0,2018-01-25 17:41:44.000,2023-02-06 16:41:16.000000,2021-03-19 15:48:33,667.0,,656.0,156.0,130.0,85.0,101.0,4691.0,A collection of infrastructure and tools for research in neural network interpretability.,40.0,25,False,2021-03-19 16:01:00.000,0.3.10,17.0,lucid,,,,['tensorflow'],815.0,809.0,https://pypi.org/project/lucid,2021-03-19 16:01:00.000,6.0,967.0,967.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +504,Snips NLU,snipsco/snips-nlu,nlp,,https://github.com/snipsco/snips-nlu,https://github.com/snipsco/snips-nlu,Apache-2.0,2017-02-08 16:16:36.000,2023-05-22 16:10:15.000000,2021-05-03 12:18:31,2154.0,,511.0,132.0,649.0,65.0,198.0,3923.0,Snips Python library to extract meaning from text.,22.0,25,False,2020-01-15 10:13:17.000,0.20.2,58.0,snips-nlu,,,,,13.0,,https://pypi.org/project/snips-nlu,2020-01-15 10:13:17.000,13.0,1344.0,1344.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +505,Chartify,spotify/chartify,data-viz,,https://github.com/spotify/chartify,https://github.com/spotify/chartify,Apache-2.0,2018-09-17 14:12:05.000,2025-04-22 14:56:57.373000,2024-10-16 14:45:12,235.0,,324.0,88.0,103.0,51.0,32.0,3579.0,Python library that makes it easy for data scientists to create charts.,27.0,25,True,2024-10-16 14:48:03.000,5.0.1,27.0,chartify,conda-forge/chartify,,,,91.0,82.0,https://pypi.org/project/chartify,2024-10-16 14:48:03.000,9.0,2046.0,2524.0,https://anaconda.org/conda-forge/chartify,2025-04-22 14:56:57.373,36871.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +506,finmarketpy,cuemacro/finmarketpy,financial-data,,https://github.com/cuemacro/finmarketpy,https://github.com/cuemacro/finmarketpy,Apache-2.0,2015-02-19 23:32:03.000,2025-03-10 17:58:00.000000,2025-03-10 17:52:42,755.0,47.0,510.0,212.0,24.0,31.0,4.0,3565.0,Python library for backtesting trading strategies & analyzing financial markets (formerly pythalesians).,19.0,25,True,2025-03-10 17:58:01.000,0.11.19,20.0,finmarketpy,,,,,16.0,16.0,https://pypi.org/project/finmarketpy,2025-03-10 17:57:07.000,,507.0,507.0,,,,,,,,3.0,57.0,,,,,,,,,,,,,,,,,,, +507,Hummingbird,microsoft/hummingbird,model-serialisation,,https://github.com/microsoft/hummingbird,https://github.com/microsoft/hummingbird,MIT,2020-03-12 20:27:03.000,2025-04-22 14:57:48.691000,2024-10-24 16:27:28,480.0,,279.0,50.0,477.0,69.0,261.0,3434.0,Hummingbird compiles trained ML models into tensor computation for faster inference.,40.0,25,True,2024-10-25 17:04:56.000,0.4.12,25.0,hummingbird-ml,conda-forge/hummingbird-ml,,,,7.0,,https://pypi.org/project/hummingbird-ml,2024-10-25 17:04:56.000,7.0,8608.0,9795.0,https://anaconda.org/conda-forge/hummingbird-ml,2025-04-22 14:57:48.691,57538.0,,,,,2.0,807.0,,,,,,,,,,,,,,,,,,, +508,Apache Singa,apache/singa,distributed-ml,,https://github.com/apache/singa,https://github.com/apache/singa,Apache-2.0,2015-04-02 07:00:05.000,2025-03-31 05:40:06.000000,2025-03-26 13:39:31,2997.0,82.0,1253.0,127.0,1190.0,50.0,89.0,3417.0,a distributed deep learning platform.,97.0,25,True,2020-04-21 08:01:08.000,3.0.0,16.0,,nusdbsystem/singa,apache/singa,,,5.0,5.0,,,,,83.0,https://anaconda.org/nusdbsystem/singa,2025-03-25 16:26:36.714,976.0,https://hub.docker.com/r/apache/singa,2022-05-31 15:24:19.649658,4.0,8987.0,3.0,,,,,,,,,,,,,,,,,,,, +509,PARL,PaddlePaddle/PARL,reinforcement-learning,,https://github.com/PaddlePaddle/PARL,https://github.com/PaddlePaddle/PARL,Apache-2.0,2018-04-25 17:54:22.000,2025-01-24 08:14:17.000000,2025-01-24 08:14:04,517.0,,816.0,61.0,645.0,133.0,415.0,3357.0,A high-performance distributed training framework for Reinforcement Learning.,46.0,25,True,2023-03-14 02:03:08.557,2.2.1,29.0,parl,,,,['paddle'],133.0,132.0,https://pypi.org/project/parl,2022-05-13 04:46:41.000,1.0,1322.0,1322.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +510,xLearn,aksnzhy/xlearn,ml-frameworks,,https://github.com/aksnzhy/xlearn,https://github.com/aksnzhy/xlearn,Apache-2.0,2017-06-10 08:09:31.000,2023-08-28 05:14:10.000000,2022-06-05 10:44:18,1342.0,,528.0,109.0,73.0,193.0,119.0,3093.0,"High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization..",30.0,25,False,2019-04-25 02:10:05.000,0.4.4,15.0,xlearn,,,,,172.0,160.0,https://pypi.org/project/xlearn,2018-12-04 11:05:06.000,12.0,1333.0,1389.0,,,,,,,,3.0,4834.0,,,,,,,,,,,,,,,,,,, +511,DDSP,magenta/ddsp,audio,,https://github.com/magenta/ddsp,https://github.com/magenta/ddsp,Apache-2.0,2020-01-14 18:38:27.000,2025-04-22 14:57:27.526000,2024-09-23 16:30:23,472.0,,343.0,65.0,319.0,50.0,124.0,3010.0,DDSP: Differentiable Digital Signal Processing.,32.0,25,True,2023-05-25 02:30:41.654,3.7.0,55.0,ddsp,conda-forge/ddsp,,,['tensorflow'],65.0,64.0,https://pypi.org/project/ddsp,2022-05-25 17:42:19.000,1.0,5338.0,5709.0,https://anaconda.org/conda-forge/ddsp,2025-04-22 14:57:27.526,21575.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +512,m2cgen,BayesWitnesses/m2cgen,model-serialisation,,https://github.com/BayesWitnesses/m2cgen,https://github.com/BayesWitnesses/m2cgen,MIT,2019-01-13 02:32:55.000,2024-08-03 17:30:36.000000,2022-10-05 16:26:03,376.0,,241.0,48.0,483.0,57.0,70.0,2874.0,"Transform ML models into a native code (Java, C, Python, Go, JavaScript, Visual Basic, C#, R, PowerShell, PHP, Dart,..",14.0,25,False,2022-04-26 01:24:34.000,0.10.0,13.0,m2cgen,,,,,330.0,327.0,https://pypi.org/project/m2cgen,2022-04-26 01:24:34.000,3.0,22482.0,22483.0,,,,,,,,2.0,100.0,,,,,,,,,,,,,,,,,,, +513,python_speech_features,jameslyons/python_speech_features,audio,,https://github.com/jameslyons/python_speech_features,https://github.com/jameslyons/python_speech_features,MIT,2013-10-31 02:42:08.000,2021-10-20 10:08:48.000000,2020-12-31 13:27:01,120.0,,617.0,86.0,29.0,25.0,52.0,2398.0,This library provides common speech features for ASR including MFCCs and filterbank energies.,19.0,25,False,2020-01-14 14:12:10.000,0.6.1,6.0,python_speech_features,,,,,993.0,939.0,https://pypi.org/project/python_speech_features,2017-08-16 01:46:13.000,54.0,29286.0,29286.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +514,pytorch-nlp,PetrochukM/PyTorch-NLP,nlp,,https://github.com/PetrochukM/PyTorch-NLP,https://github.com/PetrochukM/PyTorch-NLP,BSD-3-Clause,2018-02-25 05:00:36.000,2023-07-04 21:11:26.000000,2023-07-04 21:11:26,451.0,,250.0,54.0,56.0,19.0,50.0,2222.0,Basic Utilities for PyTorch Natural Language Processing (NLP).,18.0,25,False,2019-11-04 05:16:00.000,0.5.0,19.0,pytorch-nlp,,,,['pytorch'],797.0,778.0,https://pypi.org/project/pytorch-nlp,2019-11-04 04:35:18.000,19.0,13415.0,13415.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +515,Pillow-SIMD,uploadcare/pillow-simd,image,,https://github.com/uploadcare/pillow-simd,https://github.com/uploadcare/pillow-simd,PIL,2014-11-12 15:33:02.000,2024-10-07 11:50:22.000000,2024-09-23 17:14:22,14660.0,,93.0,38.0,59.0,13.0,79.0,2222.0,The friendly PIL fork.,433.0,25,False,,,72.0,pillow-simd,,,,,65.0,,https://pypi.org/project/pillow-simd,2024-09-23 18:27:59.000,65.0,23058.0,23058.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +516,PyFlux,RJT1990/pyflux,time-series-data,,https://github.com/RJT1990/pyflux,https://github.com/RJT1990/pyflux,BSD-3-Clause,2016-02-16 20:12:02.000,2023-10-24 16:13:23.000000,2018-12-16 15:30:13,118.0,,240.0,69.0,21.0,93.0,66.0,2124.0,Open source time series library for Python.,6.0,25,False,2017-11-21 16:27:06.000,0.4.16,36.0,pyflux,,,,,287.0,283.0,https://pypi.org/project/pyflux,2017-11-21 16:27:06.000,4.0,98333.0,98333.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +517,checklist,marcotcr/checklist,interpretability,,https://github.com/marcotcr/checklist,https://github.com/marcotcr/checklist,MIT,2020-03-09 17:18:49.000,2025-04-22 14:57:44.390000,2023-09-26 17:27:56,255.0,,205.0,26.0,65.0,11.0,83.0,2032.0,Beyond Accuracy: Behavioral Testing of NLP models with CheckList.,15.0,25,False,2021-05-24 16:45:59.000,0.0.11,10.0,checklist,conda-forge/checklist,,,['jupyter'],386.0,378.0,https://pypi.org/project/checklist,2021-05-24 16:45:59.000,8.0,1090.0,1270.0,https://anaconda.org/conda-forge/checklist,2025-04-22 14:57:44.390,9227.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +518,Torchmeta,tristandeleu/pytorch-meta,pytorch-utils,,https://github.com/tristandeleu/pytorch-meta,https://github.com/tristandeleu/pytorch-meta,MIT,2018-12-04 23:36:45.000,2023-07-17 16:05:00.000000,2021-09-20 16:03:46,382.0,,249.0,41.0,33.0,51.0,90.0,2026.0,A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch.,12.0,25,False,2021-09-20 16:06:33.000,1.8.0,28.0,torchmeta,,,,['pytorch'],200.0,200.0,https://pypi.org/project/torchmeta,2021-09-20 16:06:33.000,,8725.0,8725.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +519,Feature Engine,solegalli/feature_engine,others,,https://github.com/solegalli/feature_engine,https://github.com/solegalli/feature_engine,BSD-3-Clause,2020-08-06 19:43:35.639,2025-04-22 14:57:33.475000,2024-08-31 13:01:11,360.0,,318.0,1.0,1.0,1.0,,1975.0,Feature engineering package with sklearn like functionality.,49.0,25,True,2025-01-22 15:27:15.000,1.8.3,43.0,feature_engine,conda-forge/feature_engine,,,,176.0,,https://pypi.org/project/feature_engine,2025-01-22 15:27:15.000,176.0,257230.0,258489.0,https://anaconda.org/conda-forge/feature_engine,2025-04-22 14:57:33.475,70552.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +520,garage,rlworkgroup/garage,reinforcement-learning,,https://github.com/rlworkgroup/garage,https://github.com/rlworkgroup/garage,MIT,2018-06-10 21:31:23.000,2023-05-04 14:44:22.000000,2023-01-04 06:06:27,1221.0,,310.0,55.0,1313.0,235.0,810.0,1964.0,A toolkit for reproducible reinforcement learning research.,79.0,25,False,2021-03-23 22:18:36.000,2021.3.0,21.0,garage,,,,['tensorflow'],125.0,121.0,https://pypi.org/project/garage,2021-03-23 22:18:36.000,4.0,1041.0,1041.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +521,TensorFlow Privacy,tensorflow/privacy,privacy-ml,,https://github.com/tensorflow/privacy,https://github.com/tensorflow/privacy,Apache-2.0,2018-12-21 18:46:46.000,2025-04-23 20:16:27.000000,2025-04-23 20:16:22,897.0,5.0,446.0,58.0,371.0,117.0,93.0,1960.0,Library for training machine learning models with privacy for training data.,60.0,25,True,2024-02-14 19:18:00.000,0.9.0,31.0,tensorflow-privacy,,,,['tensorflow'],21.0,,https://pypi.org/project/tensorflow-privacy,2024-02-14 19:08:50.000,21.0,21839.0,21841.0,,,,,,,,2.0,187.0,,,,,,,,,,,,,,,,,,, +522,HyperTools,ContextLab/hypertools,data-viz,,https://github.com/ContextLab/hypertools,https://github.com/ContextLab/hypertools,MIT,2016-09-27 21:31:25.000,2024-03-19 21:59:57.000000,2024-03-19 21:59:57,1652.0,,161.0,59.0,69.0,67.0,130.0,1843.0,A Python toolbox for gaining geometric insights into high-dimensional data.,22.0,25,False,2022-02-12 03:29:55.000,0.8.0,21.0,hypertools,,,,,506.0,504.0,https://pypi.org/project/hypertools,2022-02-12 02:43:24.000,2.0,704.0,704.0,,,,,,,,3.0,71.0,,,,,,,,,,,,,,,,,,, +523,TNT,pytorch/tnt,ml-experiments,,https://github.com/pytorch/tnt,https://github.com/pytorch/tnt,BSD-3-Clause,2016-12-10 11:49:58.000,2025-04-11 00:39:05.000000,2025-04-11 00:33:46,1071.0,24.0,281.0,42.0,918.0,85.0,66.0,1689.0,A lightweight library for PyTorch training tools and utilities.,146.0,25,True,2018-07-29 23:16:03.000,0.0.4,3.0,torchnet,,,,['pytorch'],24.0,,https://pypi.org/project/torchnet,2018-07-29 23:16:03.000,24.0,5770.0,5770.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +524,Talos,autonomio/talos,hyperopt,,https://github.com/autonomio/talos,https://github.com/autonomio/talos,MIT,2018-05-04 20:36:41.000,2024-04-22 10:30:49.000000,2024-04-22 10:30:48,671.0,,269.0,26.0,187.0,12.0,390.0,1634.0,Hyperparameter Experiments with TensorFlow and Keras.,23.0,25,True,2024-04-21 09:02:06.000,1.4,18.0,talos,,,,['tensorflow'],213.0,205.0,https://pypi.org/project/talos,2024-04-21 09:02:29.000,8.0,1950.0,1950.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +525,Elephas,maxpumperla/elephas,distributed-ml,,https://github.com/maxpumperla/elephas,https://github.com/maxpumperla/elephas,MIT,2015-08-13 12:09:19.000,2025-04-22 14:57:10.644000,2022-08-31 01:52:51,509.0,,308.0,99.0,49.0,8.0,151.0,1574.0,Distributed Deep learning with Keras & Spark.,27.0,25,False,2024-12-04 03:48:36.000,6.2.1,46.0,elephas,conda-forge/elephas,,,"['keras', 'spark']",,,https://pypi.org/project/elephas,2024-12-04 03:48:36.000,,34370.0,34621.0,https://anaconda.org/conda-forge/elephas,2025-04-22 14:57:10.644,17101.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +526,EfficientNets,rwightman/gen-efficientnet-pytorch,pytorch-utils,,https://github.com/rwightman/gen-efficientnet-pytorch,https://github.com/rwightman/gen-efficientnet-pytorch,Apache-2.0,2019-05-11 19:35:56.000,2024-06-13 23:15:42.000000,2024-06-13 23:15:42,109.0,,214.0,42.0,12.0,4.0,51.0,1569.0,"Pretrained EfficientNet, EfficientNet-Lite, MixNet, MobileNetV3 / V2, MNASNet A1 and B1, FBNet, Single-Path NAS.",5.0,25,True,2021-07-08 19:05:05.000,1.0.2,10.0,geffnet,,,,['pytorch'],296.0,292.0,https://pypi.org/project/geffnet,2021-07-08 19:05:05.000,4.0,186694.0,186694.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +527,responsible-ai-widgets,microsoft/responsible-ai-toolbox,interpretability,,https://github.com/microsoft/responsible-ai-toolbox,https://github.com/microsoft/responsible-ai-toolbox,MIT,2020-07-06 20:46:53.000,2025-02-07 15:09:04.000000,2025-02-07 15:09:02,1975.0,2.0,392.0,35.0,2288.0,86.0,235.0,1521.0,Responsible AI Toolbox is a suite of tools providing model and data exploration and assessment user interfaces and..,43.0,25,True,2024-07-08 18:03:34.000,0.36.0,57.0,raiwidgets,,,,"['pytorch', 'tensorflow', 'jupyter']",6.0,,https://pypi.org/project/raiwidgets,2024-07-08 16:42:42.000,6.0,9040.0,9040.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +528,imodels,csinva/imodels,interpretability,,https://github.com/csinva/imodels,https://github.com/csinva/imodels,MIT,2019-07-04 15:38:48.000,2025-03-05 14:46:53.000000,2025-03-05 14:46:53,1083.0,3.0,122.0,22.0,117.0,37.0,58.0,1448.0,"Interpretable ML package for concise, transparent, and accurate predictive modeling (sklearn-compatible).",25.0,25,True,2024-10-15 14:24:34.000,2.0.0,50.0,imodels,,,,,123.0,114.0,https://pypi.org/project/imodels,2024-10-15 14:23:49.000,9.0,32630.0,32630.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +529,NiftyNet,NifTK/NiftyNet,medical-data,,https://github.com/NifTK/NiftyNet,https://github.com/NifTK/NiftyNet,Apache-2.0,2017-08-30 07:55:43.000,2020-04-21 19:54:52.000000,2020-04-21 19:54:51,3284.0,,402.0,89.0,165.0,103.0,224.0,1378.0,[unmaintained] An open-source convolutional neural networks platform for research in medical image analysis and image-..,61.0,25,False,2019-10-10 10:59:33.000,0.6.0,11.0,niftynet,,,,['tensorflow'],47.0,47.0,https://pypi.org/project/niftynet,2019-10-10 10:59:33.000,,328.0,328.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +530,Node2Vec,eliorc/node2vec,graph,,https://github.com/eliorc/node2vec,https://github.com/eliorc/node2vec,MIT,2017-12-08 13:30:06.000,2025-04-22 14:56:50.341000,2024-08-02 11:14:21,90.0,,247.0,20.0,23.0,5.0,92.0,1268.0,Implementation of the node2vec algorithm.,16.0,25,True,2024-08-02 11:13:59.000,0.5.0,19.0,node2vec,conda-forge/node2vec,,,,911.0,880.0,https://pypi.org/project/node2vec,2024-08-02 11:12:23.000,31.0,26321.0,26738.0,https://anaconda.org/conda-forge/node2vec,2025-04-22 14:56:50.341,34625.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +531,TFEncrypted,tf-encrypted/tf-encrypted,privacy-ml,,https://github.com/tf-encrypted/tf-encrypted,https://github.com/tf-encrypted/tf-encrypted,Apache-2.0,2018-03-21 18:22:13.000,2024-09-25 05:32:38.000000,2024-09-25 05:32:38,605.0,,214.0,51.0,461.0,145.0,296.0,1224.0,A Framework for Encrypted Machine Learning in TensorFlow.,29.0,25,True,2023-02-08 02:53:00.720,0.9.1,41.0,tf-encrypted,,,,['tensorflow'],77.0,68.0,https://pypi.org/project/tf-encrypted,2022-11-16 09:12:55.841,9.0,2046.0,2046.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +532,GPUtil,anderskm/gputil,gpu-utilities,,https://github.com/anderskm/gputil,https://github.com/anderskm/gputil,MIT,2017-01-16 11:57:43.000,2024-04-13 14:07:28.000000,2019-08-16 09:00:15,140.0,,121.0,11.0,25.0,29.0,16.0,1177.0,A Python module for getting the GPU status from NVIDA GPUs using nvidia-smi programmically in Python.,14.0,25,False,2018-12-18 09:12:13.000,1.4.0,8.0,gputil,,,,,8419.0,7947.0,https://pypi.org/project/gputil,2018-12-18 09:12:13.000,472.0,494457.0,494457.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +533,PyTorch Sparse,rusty1s/pytorch_sparse,pytorch-utils,,https://github.com/rusty1s/pytorch_sparse,https://github.com/rusty1s/pytorch_sparse,MIT,2018-07-28 18:46:53.000,2025-04-22 14:57:27.344000,2025-04-10 19:34:53,738.0,3.0,154.0,14.0,113.0,30.0,263.0,1056.0,PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations.,47.0,25,True,2023-10-06 08:51:55.000,0.6.18,31.0,torch-sparse,conda-forge/pytorch_sparse,,,['pytorch'],122.0,,https://pypi.org/project/torch-sparse,2023-10-06 08:51:55.000,122.0,37890.0,51171.0,https://anaconda.org/conda-forge/pytorch_sparse,2025-04-22 14:57:27.344,770327.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +534,TensorFlow Transform,tensorflow/transform,tensorflow-utils,,https://github.com/tensorflow/transform,https://github.com/tensorflow/transform,Apache-2.0,2017-02-10 00:36:53.000,2025-03-17 19:16:36.000000,2025-03-17 19:16:35,947.0,2.0,215.0,56.0,104.0,39.0,180.0,987.0,Input pipeline framework.,29.0,25,True,2024-10-28 22:13:18.000,1.16.0,58.0,tensorflow-transform,,,,['tensorflow'],18.0,,https://pypi.org/project/tensorflow-transform,2024-10-28 22:32:45.000,18.0,236585.0,236585.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +535,GPyOpt,SheffieldML/GPyOpt,hyperopt,,https://github.com/SheffieldML/GPyOpt,https://github.com/SheffieldML/GPyOpt,BSD-3-Clause,2014-08-13 09:58:25.000,2023-01-17 18:04:41.000000,2023-01-17 18:04:41,515.0,,261.0,43.0,72.0,104.0,188.0,942.0,Gaussian Process Optimization using GPy.,51.0,25,False,2020-03-19 21:21:18.000,1.2.6,11.0,gpyopt,,,,,616.0,579.0,https://pypi.org/project/gpyopt,2020-03-19 11:37:45.000,37.0,5710.0,5710.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +536,torch-cluster,rusty1s/pytorch_cluster,graph,,https://github.com/rusty1s/pytorch_cluster,https://github.com/rusty1s/pytorch_cluster,MIT,2018-01-12 20:56:06.000,2025-04-22 14:57:27.288000,2025-04-20 07:22:22,610.0,3.0,151.0,13.0,71.0,32.0,149.0,864.0,PyTorch Extension Library of Optimized Graph Cluster Algorithms.,39.0,25,True,2023-10-12 06:54:28.000,1.6.3,43.0,torch-cluster,conda-forge/pytorch_cluster,,,['pytorch'],62.0,,https://pypi.org/project/torch-cluster,2023-10-12 06:52:43.000,62.0,22509.0,28420.0,https://anaconda.org/conda-forge/pytorch_cluster,2025-04-22 14:57:27.288,348767.0,,,,,2.0,,,,,,,,,,,,,,,,,,,, +537,data-validation,tensorflow/data-validation,data-viz,,https://github.com/tensorflow/data-validation,https://github.com/tensorflow/data-validation,Apache-2.0,2018-07-02 15:47:02.000,2025-03-12 22:37:45.000000,2025-03-12 22:37:44,986.0,5.0,174.0,47.0,89.0,39.0,146.0,769.0,Library for exploring and validating machine learning data.,27.0,25,True,2024-10-15 19:51:40.000,1.16.1,48.0,tensorflow-data-validation,,,,"['tensorflow', 'jupyter']",31.0,,https://pypi.org/project/tensorflow-data-validation,2024-10-15 20:20:03.000,31.0,137982.0,137994.0,,,,,,,,3.0,983.0,,,,,,,,,,,,,,,,,,, +538,python-ternary,marcharper/python-ternary,data-viz,,https://github.com/marcharper/python-ternary,https://github.com/marcharper/python-ternary,MIT,2012-08-07 23:48:55.000,2025-04-22 14:56:22.353000,2024-06-12 05:36:27,401.0,,157.0,16.0,74.0,35.0,110.0,759.0,Ternary plotting library for python with matplotlib.,28.0,25,True,2021-02-17 18:38:15.000,1.0.8,11.0,python-ternary,conda-forge/python-ternary,,,,248.0,216.0,https://pypi.org/project/python-ternary,2021-02-17 18:38:15.000,32.0,18879.0,20901.0,https://anaconda.org/conda-forge/python-ternary,2025-04-22 14:56:22.353,101108.0,,,,,3.0,36.0,,,,,,,,,,,,,,,,,,, +539,FEDOT,nccr-itmo/FEDOT,hyperopt,,https://github.com/aimclub/FEDOT,https://github.com/aimclub/FEDOT,BSD-3-Clause,2020-01-13 12:48:37.000,2025-04-24 14:49:44.000000,2025-03-31 13:29:03,924.0,13.0,88.0,11.0,794.0,65.0,501.0,666.0,Automated modeling and machine learning framework FEDOT.,38.0,25,True,2025-03-10 12:44:37.000,0.7.5,24.0,fedot,,,,,67.0,60.0,https://pypi.org/project/fedot,2025-03-10 12:22:57.000,7.0,1950.0,1950.0,,,,,,,,2.0,,,,,,,aimclub/FEDOT,,,,,,,,,,,,, +540,findspark,minrk/findspark,others,,https://github.com/minrk/findspark,https://github.com/minrk/findspark,BSD-3-Clause,2015-06-12 21:34:06.000,2025-04-22 14:56:24.321000,2022-02-11 07:59:35,77.0,,72.0,7.0,17.0,11.0,12.0,522.0,Find pyspark to make it importable.,15.0,25,False,2022-02-11 08:02:06.000,2.0.1,14.0,findspark,conda-forge/findspark,,,['spark'],5512.0,5409.0,https://pypi.org/project/findspark,2022-02-11 08:02:06.000,103.0,2210047.0,2234300.0,https://anaconda.org/conda-forge/findspark,2025-04-22 14:56:24.321,945880.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +541,lightwood,mindsdb/lightwood,hyperopt,,https://github.com/mindsdb/lightwood,https://github.com/mindsdb/lightwood,GPL-3.0,2019-05-20 21:31:14.000,2025-03-25 10:15:39.000000,2025-03-25 10:02:18,5698.0,11.0,94.0,17.0,793.0,10.0,446.0,465.0,Lightwood is Legos for Machine Learning.,50.0,25,False,2025-03-25 10:04:00.000,25.3.3.3,211.0,lightwood,,,,['pytorch'],85.0,83.0,https://pypi.org/project/lightwood,2025-03-25 10:15:39.000,2.0,9391.0,9391.0,,,,,,,,2.0,,,,,,,,,,,,,,,,,,,, +542,gokart,m3dev/gokart,ml-experiments,,https://github.com/m3dev/gokart,https://github.com/m3dev/gokart,MIT,2018-12-23 07:40:27.000,2025-04-24 12:57:57.000000,2025-04-24 12:57:54,608.0,20.0,62.0,38.0,373.0,32.0,67.0,320.0,"Gokart solves reproducibility, task dependencies, constraints of good code, and ease of use for Machine Learning..",47.0,25,True,2025-02-27 13:03:12.000,1.9.0,88.0,gokart,,,,,92.0,84.0,https://pypi.org/project/gokart,2025-02-27 13:03:12.000,8.0,6045.0,6045.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +543,Image Deduplicator,idealo/imagededup,image,,https://github.com/idealo/imagededup,https://github.com/idealo/imagededup,Apache-2.0,2019-04-05 12:10:54.000,2025-03-19 09:45:45.000000,2025-03-19 09:45:45,526.0,2.0,459.0,63.0,99.0,43.0,88.0,5329.0,Finding duplicate images made easy!.,17.0,24,True,2023-04-28 17:29:01.612,0.3.2,12.0,imagededup,,,,['tensorflow'],188.0,183.0,https://pypi.org/project/imagededup,2023-04-28 17:29:01.612,5.0,23397.0,23397.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +544,textgenrnn,minimaxir/textgenrnn,nlp,,https://github.com/minimaxir/textgenrnn,https://github.com/minimaxir/textgenrnn,MIT,2017-08-07 02:13:37.000,2022-07-17 19:07:49.000000,2020-07-14 02:41:10,174.0,,749.0,134.0,43.0,141.0,98.0,4937.0,Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines..,19.0,24,False,2020-02-03 01:07:00.000,2.0.0,14.0,textgenrnn,,,,['tensorflow'],1179.0,1163.0,https://pypi.org/project/textgenrnn,2020-02-02 21:16:15.000,16.0,976.0,987.0,,,,,,,,3.0,988.0,,,,,,,,,,,,,,,,,,, +545,segmentation_models,qubvel/segmentation_models,image,,https://github.com/qubvel/segmentation_models,https://github.com/qubvel/segmentation_models,MIT,2018-06-05 13:27:56.000,2024-08-21 11:16:16.000000,2024-08-21 11:16:16,206.0,,1032.0,89.0,65.0,271.0,270.0,4832.0,Segmentation models with pretrained backbones. Keras and TensorFlow Keras.,15.0,24,True,2020-01-10 11:36:02.000,1.0.1,8.0,segmentation_models,,,,['tensorflow'],28.0,,https://pypi.org/project/segmentation_models,2020-01-10 11:36:02.000,28.0,26607.0,26607.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +546,OpenPrompt,thunlp/OpenPrompt,nlp,,https://github.com/thunlp/OpenPrompt,https://github.com/thunlp/OpenPrompt,Apache-2.0,2021-09-30 09:38:45.000,2024-07-16 03:48:08.000000,2023-05-06 14:09:10,264.0,,457.0,44.0,57.0,95.0,175.0,4565.0,An Open-Source Framework for Prompt-Learning.,24.0,24,False,2022-07-06 14:27:42.000,1.0.1,5.0,openprompt,,,,,176.0,173.0,https://pypi.org/project/openprompt,2022-07-06 14:27:42.000,3.0,832.0,832.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +547,Stable Baselines,hill-a/stable-baselines,reinforcement-learning,,https://github.com/hill-a/stable-baselines,https://github.com/hill-a/stable-baselines,MIT,2018-07-02 14:28:59.000,2022-09-04 14:04:44.000000,2022-09-04 14:04:44,839.0,,727.0,62.0,247.0,130.0,825.0,4254.0,"A fork of OpenAI Baselines, implementations of reinforcement learning algorithms.",115.0,24,False,2021-04-06 12:38:10.521,2.10.2,31.0,stable-baselines,,,,,21.0,,https://pypi.org/project/stable-baselines,2021-04-06 12:38:10.521,21.0,4650.0,4650.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +548,pytorch-summary,sksq96/pytorch-summary,pytorch-utils,,https://github.com/sksq96/pytorch-summary,https://github.com/sksq96/pytorch-summary,MIT,2018-04-23 13:58:04.000,2024-03-02 15:10:25.000000,2021-05-10 18:34:53,57.0,,413.0,35.0,57.0,138.0,46.0,4038.0,Model summary in PyTorch similar to `model.summary()` in Keras.,11.0,24,False,2018-09-26 05:07:28.000,1.5.1,12.0,torchsummary,,,,['pytorch'],135.0,,https://pypi.org/project/torchsummary,2018-09-26 05:07:28.000,135.0,199306.0,199306.0,,,,,,,,3.0,,,,,,,,,-4.0,,,,,,,,,,, +549,neon,NervanaSystems/neon,ml-frameworks,,https://github.com/NervanaSystems/neon,https://github.com/NervanaSystems/neon,Apache-2.0,2014-10-16 01:00:17.000,2025-04-22 15:32:21.452000,2019-05-22 18:27:54,1118.0,,811.0,322.0,89.0,91.0,306.0,3876.0,Intel Nervana reference deep learning framework committed to best performance on all hardware.,108.0,24,False,2018-01-05 23:25:04.000,2.6.0,32.0,nervananeon,anaconda/neon,,,,,,https://pypi.org/project/nervananeon,2018-01-05 23:25:04.000,,312.0,335.0,https://anaconda.org/anaconda/neon,2025-04-22 15:32:21.452,2117.0,,,,,3.0,422.0,,,,,,,,,,,,,,,,,,, +550,MatchZoo,NTMC-Community/MatchZoo,nlp,,https://github.com/NTMC-Community/MatchZoo,https://github.com/NTMC-Community/MatchZoo,Apache-2.0,2017-06-08 08:55:22.000,2024-08-02 16:23:45.000000,2021-06-02 17:38:16,1810.0,,897.0,175.0,386.0,34.0,430.0,3856.0,"Facilitating the design, comparison and sharing of deep text matching models.",37.0,24,False,2019-10-24 13:09:11.000,2.2.0,5.0,matchzoo,,,,['tensorflow'],18.0,18.0,https://pypi.org/project/matchzoo,2019-10-24 13:09:11.000,,143.0,143.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +551,AdaNet,tensorflow/adanet,hyperopt,,https://github.com/tensorflow/adanet,https://github.com/tensorflow/adanet,Apache-2.0,2018-06-28 20:20:24.000,2023-11-30 16:30:21.000000,2021-08-30 19:33:24,440.0,,527.0,171.0,50.0,67.0,49.0,3469.0,Fast and flexible AutoML with learning guarantees.,27.0,24,False,2020-07-09 21:03:28.000,0.9.0,13.0,adanet,,,,['tensorflow'],64.0,62.0,https://pypi.org/project/adanet,2020-07-09 21:03:28.000,2.0,460.0,460.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +552,pytorchvideo,facebookresearch/pytorchvideo,image,,https://github.com/facebookresearch/pytorchvideo,https://github.com/facebookresearch/pytorchvideo,Apache-2.0,2021-03-09 20:39:13.000,2025-01-25 03:17:32.000000,2025-01-25 03:08:48,183.0,1.0,412.0,153.0,86.0,105.0,101.0,3425.0,A deep learning library for video understanding research.,58.0,24,True,2022-01-20 00:16:35.000,0.1.5,9.0,pytorchvideo,,,,['pytorch'],24.0,,https://pypi.org/project/pytorchvideo,2022-01-20 00:16:35.000,24.0,58198.0,58198.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +553,DeepVariant,google/deepvariant,medical-data,,https://github.com/google/deepvariant,https://github.com/google/deepvariant,BSD-3-Clause,2017-11-23 01:56:22.000,2025-04-22 15:28:54.254000,2025-03-10 19:23:56,2915.0,1.0,734.0,150.0,65.0,8.0,889.0,3377.0,DeepVariant is an analysis pipeline that uses a deep neural network to call genetic variants from next-generation DNA..,36.0,24,True,2024-12-04 19:30:00.000,1.8.0,22.0,,bioconda/deepvariant,,,['tensorflow'],,,,,,,926.0,https://anaconda.org/bioconda/deepvariant,2025-04-22 15:28:54.254,75843.0,,,,,3.0,4847.0,,,,,,,,,,,,,,,,,,, +554,Towhee,towhee-io/towhee,ml-frameworks,,https://github.com/towhee-io/towhee,https://github.com/towhee-io/towhee,Apache-2.0,2021-07-13 08:28:50.000,2024-10-18 00:01:12.000000,2024-10-18 00:01:11,1586.0,,256.0,29.0,2020.0,3.0,674.0,3359.0,Towhee is a framework that is dedicated to making neural data processing pipelines simple and fast.,38.0,24,True,2023-12-05 02:33:36.000,1.1.3,26.0,towhee,,,,,,,https://pypi.org/project/towhee,2023-12-04 07:25:10.000,,13855.0,13923.0,,,,,,,,3.0,2734.0,,,,,,,,,,,,,,,,,,, +555,PandasGUI,adamerose/pandasgui,data-viz,,https://github.com/adamerose/PandasGUI,https://github.com/adamerose/PandasGUI,MIT-0,2019-06-12 02:19:42.000,2025-04-22 14:57:45.598000,2023-12-07 20:40:17,720.0,,233.0,52.0,36.0,75.0,126.0,3228.0,A GUI for Pandas DataFrames.,14.0,24,False,2023-02-11 20:04:00.783,0.2.14,44.0,pandasgui,conda-forge/pandasgui,,,['pandas'],505.0,491.0,https://pypi.org/project/pandasgui,2021-08-14 09:14:51.000,14.0,5830.0,6489.0,https://anaconda.org/conda-forge/pandasgui,2025-04-22 14:57:45.598,33619.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +556,keras-vis,raghakot/keras-vis,interpretability,,https://github.com/raghakot/keras-vis,https://github.com/raghakot/keras-vis,MIT,2016-11-11 23:27:34.000,2022-02-07 16:06:07.000000,2020-04-20 01:03:12,195.0,,661.0,68.0,25.0,117.0,101.0,2990.0,Neural network visualization toolkit for keras.,10.0,24,False,2017-07-06 05:11:22.255,0.4.1,11.0,keras-vis,,,,['tensorflow'],3046.0,3045.0,https://pypi.org/project/keras-vis,2017-07-06 05:11:22.255,1.0,1080.0,1080.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +557,promptsource,bigscience-workshop/promptsource,nlp,,https://github.com/bigscience-workshop/promptsource,https://github.com/bigscience-workshop/promptsource,Apache-2.0,2021-05-19 15:26:25.000,2023-10-23 17:59:41.000000,2023-10-23 17:59:40,755.0,,352.0,36.0,695.0,43.0,151.0,2829.0,"Toolkit for creating, sharing and using natural language prompts.",65.0,24,False,2022-07-02 17:57:17.000,0.2.3,5.0,promptsource,,,,,125.0,121.0,https://pypi.org/project/promptsource,2022-04-18 22:31:03.000,4.0,333.0,333.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +558,tensorflow-graphics,tensorflow/graphics,image,,https://github.com/tensorflow/graphics,https://github.com/tensorflow/graphics,Apache-2.0,2019-01-08 10:39:44.000,2025-04-19 19:42:30.000000,2025-02-03 12:43:27,770.0,1.0,366.0,77.0,578.0,144.0,95.0,2767.0,TensorFlow Graphics: Differentiable Graphics Layers for TensorFlow.,39.0,24,True,2021-12-03 22:33:39.000,2021.12.3,25.0,tensorflow-graphics,,,,['tensorflow'],11.0,,https://pypi.org/project/tensorflow-graphics,2021-12-03 22:33:39.000,11.0,23848.0,23848.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +559,Mars,mars-project/mars,others,,https://github.com/mars-project/mars,https://github.com/mars-project/mars,Apache-2.0,2018-12-05 16:04:03.000,2024-01-02 10:00:14.000000,2023-11-02 03:13:52,1297.0,,326.0,91.0,2158.0,215.0,982.0,2722.0,"Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and..",53.0,24,False,2023-02-03 19:04:11.785,0.8.1,118.0,pymars,,,,,2.0,,https://pypi.org/project/pymars,2022-06-12 11:43:21.000,2.0,32973.0,32973.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +560,Kashgari,BrikerMan/Kashgari,nlp,,https://github.com/BrikerMan/Kashgari,https://github.com/BrikerMan/Kashgari,Apache-2.0,2019-01-19 01:53:28.000,2024-09-03 21:05:29.000000,2021-07-09 03:57:16,955.0,,434.0,64.0,123.0,32.0,350.0,2391.0,Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-..,21.0,24,False,2021-07-04 10:44:36.000,2.0.2,24.0,kashgari-tf,,,,['tensorflow'],74.0,72.0,https://pypi.org/project/kashgari-tf,2019-10-18 07:57:55.000,2.0,353.0,353.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +561,Neural Tangents,google/neural-tangents,ml-frameworks,,https://github.com/google/neural-tangents,https://github.com/google/neural-tangents,Apache-2.0,2019-04-08 16:48:48.000,2024-03-01 17:17:03.000000,2024-03-01 17:16:56,650.0,,236.0,60.0,33.0,62.0,96.0,2332.0,Fast and Easy Infinite Neural Networks in Python.,30.0,24,False,2023-12-11 14:10:12.000,0.6.5,31.0,neural-tangents,,,,,127.0,126.0,https://pypi.org/project/neural-tangents,2023-12-11 14:00:20.000,1.0,3497.0,3506.0,,,,,,,,3.0,544.0,,,,,,,,,,,,,,,,,,, +562,CausalNex,quantumblacklabs/causalnex,interpretability,,https://github.com/mckinsey/causalnex,https://github.com/mckinsey/causalnex,Apache-2.0,2019-12-12 15:26:09.000,2024-06-26 08:22:56.000000,2024-02-10 10:17:50,226.0,,258.0,50.0,98.0,25.0,116.0,2303.0,A Python library that helps data scientists to infer causation rather than observing correlation.,40.0,24,False,2023-06-22 13:11:59.629,0.12.1,20.0,causalnex,,,,"['pytorch', 'sklearn']",153.0,149.0,https://pypi.org/project/causalnex,2023-06-22 13:11:59.629,4.0,3251.0,3251.0,,,,,,,,3.0,,,,,,,mckinsey/causalnex,,,,,,,,,,,,, +563,Karate Club,benedekrozemberczki/karateclub,graph,,https://github.com/benedekrozemberczki/karateclub,https://github.com/benedekrozemberczki/karateclub,GPL-3.0,2019-12-05 17:35:56.000,2025-04-22 14:57:32.844000,2024-07-17 19:00:21,2319.0,,247.0,38.0,40.0,10.0,115.0,2220.0,Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020).,20.0,24,False,2022-12-04 19:04:05.000,_10304,107.0,karateclub,conda-forge/karateclub,,,,322.0,309.0,https://pypi.org/project/karateclub,2022-10-22 13:31:38.000,13.0,6249.0,6800.0,https://anaconda.org/conda-forge/karateclub,2025-04-22 14:57:32.844,31414.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +564,FinTA,peerchemist/finta,financial-data,,https://github.com/peerchemist/finta,https://github.com/peerchemist/finta,LGPL-3.0,2016-09-01 21:02:46.000,2022-07-24 08:40:51.000000,2022-07-24 08:40:51,394.0,,685.0,87.0,48.0,24.0,64.0,2181.0,Common financial technical indicators implemented in Pandas.,28.0,24,False,2021-04-03 08:51:49.000,1.3,19.0,finta,,,,,620.0,608.0,https://pypi.org/project/finta,2020-10-21 11:39:44.000,12.0,10628.0,10628.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +565,Orbit,uber/orbit,probabilistics,,https://github.com/uber/orbit,https://github.com/uber/orbit,Apache-2.0,2020-01-07 18:20:37.000,2025-03-06 03:49:47.000000,2024-07-10 23:00:11,927.0,,136.0,34.0,448.0,50.0,354.0,1960.0,A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.,20.0,24,True,2024-04-01 00:44:51.000,1.1.4.9,36.0,orbit-ml,,,,,69.0,68.0,https://pypi.org/project/orbit-ml,2024-04-01 00:45:19.000,1.0,15120.0,15120.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +566,TF Recommenders,tensorflow/recommenders,recommender-systems,,https://github.com/tensorflow/recommenders,https://github.com/tensorflow/recommenders,Apache-2.0,2020-06-26 21:38:01.000,2025-01-16 19:27:43.000000,2025-01-16 19:27:37,373.0,,287.0,49.0,329.0,269.0,184.0,1932.0,TensorFlow Recommenders is a library for building recommender system models using TensorFlow.,43.0,24,True,2023-02-03 02:17:00.422,0.7.3,16.0,tensorflow-recommenders,,,,['tensorflow'],2.0,,https://pypi.org/project/tensorflow-recommenders,2023-02-03 02:17:00.422,2.0,256135.0,256135.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +567,Multicore-TSNE,DmitryUlyanov/Multicore-TSNE,data-viz,,https://github.com/DmitryUlyanov/Multicore-TSNE,https://github.com/DmitryUlyanov/Multicore-TSNE,BSD-3-Clause,2016-10-19 05:46:52.000,2025-04-22 14:56:57.136000,2024-02-06 10:59:47,125.0,,228.0,42.0,36.0,45.0,24.0,1900.0,Parallel t-SNE implementation with Python and Torch wrappers.,18.0,24,False,2017-11-08 13:32:20.000,0.0.1,3.0,MulticoreTSNE,conda-forge/multicore-tsne,,,['pytorch'],517.0,495.0,https://pypi.org/project/MulticoreTSNE,2019-01-09 07:23:04.000,22.0,1360.0,2865.0,https://anaconda.org/conda-forge/multicore-tsne,2025-04-22 14:56:57.136,72273.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +568,FARM,deepset-ai/FARM,nlp,,https://github.com/deepset-ai/FARM,https://github.com/deepset-ai/FARM,Apache-2.0,2019-07-17 14:51:12.000,2025-04-22 14:57:51.423000,2022-08-31 09:45:24,594.0,,245.0,53.0,446.0,6.0,402.0,1750.0,Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.,37.0,24,False,2023-03-07 23:47:39.075,0.7.1,25.0,farm,conda-forge/farm,,,['pytorch'],3.0,,https://pypi.org/project/farm,2020-09-14 15:23:01.000,3.0,2495.0,2592.0,https://anaconda.org/conda-forge/farm,2025-04-22 14:57:51.423,4662.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +569,sklearn-contrib-lightning,scikit-learn-contrib/lightning,sklearn-utils,,https://github.com/scikit-learn-contrib/lightning,https://github.com/scikit-learn-contrib/lightning,BSD-3-Clause,2012-01-11 13:53:52.000,2025-04-22 14:56:24.858000,2022-01-30 01:22:30,743.0,,214.0,38.0,111.0,56.0,42.0,1746.0,"Large-scale linear classification, regression and ranking in Python.",17.0,24,False,2022-01-30 01:10:13.000,0.6.2.post0,12.0,sklearn-contrib-lightning,conda-forge/sklearn-contrib-lightning,,,['sklearn'],176.0,170.0,https://pypi.org/project/sklearn-contrib-lightning,2022-01-30 00:43:43.000,6.0,7575.0,10094.0,https://anaconda.org/conda-forge/sklearn-contrib-lightning,2025-04-22 14:56:24.858,262996.0,,,,,3.0,734.0,,,,,,,,,,,,,,,,,,, +570,Explainability 360,Trusted-AI/AIX360,interpretability,,https://github.com/Trusted-AI/AIX360,https://github.com/Trusted-AI/AIX360,Apache-2.0,2019-07-11 07:17:48.000,2025-02-26 03:13:04.000000,2025-02-26 03:13:04,633.0,2.0,303.0,56.0,120.0,54.0,32.0,1681.0,Interpretability and explainability of data and machine learning models.,42.0,24,True,2023-07-31 18:54:38.000,0.3.0,5.0,aix360,,,,,116.0,115.0,https://pypi.org/project/aix360,2023-07-31 18:54:38.000,1.0,1134.0,1134.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +571,sense2vec,explosion/sense2vec,nlp,,https://github.com/explosion/sense2vec,https://github.com/explosion/sense2vec,MIT,2016-01-23 22:15:49.000,2025-04-23 13:04:26.000000,2025-04-23 13:04:26,461.0,1.0,239.0,49.0,51.0,24.0,92.0,1649.0,Contextually-keyed word vectors.,20.0,24,True,2023-04-17 14:14:02.218,2.0.2,24.0,sense2vec,conda-forge/sense2vec,,,,472.0,459.0,https://pypi.org/project/sense2vec,2021-04-19 07:05:28.000,13.0,2713.0,4883.0,https://anaconda.org/conda-forge/sense2vec,2025-04-22 14:57:12.924,59303.0,,,,,3.0,71700.0,,,,,,,,,,,,,,,,,,, +572,auto_ml,ClimbsRocks/auto_ml,hyperopt,,https://github.com/ClimbsRocks/auto_ml,https://github.com/ClimbsRocks/auto_ml,MIT,2016-08-07 21:35:08.000,2021-02-10 07:52:35.000000,2018-03-25 19:46:25,1149.0,,310.0,98.0,45.0,188.0,217.0,1645.0,[UNMAINTAINED] Automated machine learning for analytics & production.,14.0,24,False,2018-02-22 01:13:03.000,2.9.10,78.0,auto_ml,,,,,14.0,5.0,https://pypi.org/project/auto_ml,2018-02-22 01:13:03.000,9.0,3482.0,3482.0,,,,,,,,3.0,73.0,,,,,,,,,,,,,,,,,,, +573,Higher,facebookresearch/higher,pytorch-utils,,https://github.com/facebookresearch/higher,https://github.com/facebookresearch/higher,Apache-2.0,2019-09-06 18:58:36.000,2022-03-25 15:56:51.000000,2021-10-26 07:08:33,31.0,,126.0,27.0,31.0,63.0,50.0,1613.0,higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather..,8.0,24,False,2020-07-14 12:20:32.000,0.2.1,2.0,higher,,,,['pytorch'],661.0,654.0,https://pypi.org/project/higher,2020-07-14 12:20:32.000,7.0,61949.0,61949.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +574,CrypTen,facebookresearch/CrypTen,privacy-ml,,https://github.com/facebookresearch/CrypTen,https://github.com/facebookresearch/CrypTen,MIT,2019-08-15 00:00:31.000,2024-11-23 22:25:52.000000,2024-11-23 22:09:12,359.0,,283.0,42.0,260.0,77.0,198.0,1601.0,A framework for Privacy Preserving Machine Learning.,39.0,24,True,2022-12-08 22:11:59.883,0.4.1,3.0,crypten,,,,['pytorch'],58.0,57.0,https://pypi.org/project/crypten,2022-12-08 22:11:59.883,1.0,767.0,767.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +575,fklearn,nubank/fklearn,ml-frameworks,,https://github.com/nubank/fklearn,https://github.com/nubank/fklearn,Apache-2.0,2019-02-27 14:32:57.000,2025-04-23 21:07:57.000000,2025-04-23 21:07:55,161.0,2.0,167.0,105.0,192.0,39.0,25.0,1516.0,fklearn: Functional Machine Learning.,56.0,24,True,2025-02-26 19:40:35.000,4.0.1,35.0,fklearn,,,,,16.0,16.0,https://pypi.org/project/fklearn,2025-02-26 19:40:35.000,,2430.0,2430.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +576,pytorch_tabular,manujosephv/pytorch_tabular,tabular,,https://github.com/manujosephv/pytorch_tabular,https://github.com/manujosephv/pytorch_tabular,MIT,2020-12-15 07:17:03.000,2025-04-21 20:37:09.000000,2025-04-19 05:05:49,592.0,8.0,151.0,18.0,350.0,10.0,156.0,1488.0,A standard framework for modelling Deep Learning Models for tabular data.,27.0,24,True,2024-11-29 01:07:50.000,1.1.1,13.0,pytorch_tabular,,,,['pytorch'],9.0,,https://pypi.org/project/pytorch_tabular,2024-11-28 05:14:21.000,9.0,7295.0,7296.0,,,,,,,,1.0,54.0,,,,,,,,,,,,,,,,,,, +577,advertorch,BorealisAI/advertorch,adversarial,,https://github.com/BorealisAI/advertorch,https://github.com/BorealisAI/advertorch,GPL-3.0,2018-11-29 22:17:33.000,2023-09-14 02:51:02.000000,2022-05-29 19:09:18,309.0,,197.0,26.0,57.0,27.0,36.0,1335.0,A Toolbox for Adversarial Robustness Research.,21.0,24,False,2020-06-15 01:20:07.000,0.2.3,10.0,advertorch,,,,['pytorch'],199.0,194.0,https://pypi.org/project/advertorch,2020-06-15 01:20:07.000,5.0,1242.0,1242.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +578,RLax,deepmind/rlax,reinforcement-learning,,https://github.com/google-deepmind/rlax,https://github.com/google-deepmind/rlax,Apache-2.0,2020-02-18 07:14:59.000,2025-04-14 15:12:12.000000,2025-04-14 15:12:06,211.0,1.0,91.0,32.0,114.0,9.0,18.0,1310.0,A library of reinforcement learning building blocks in JAX.,22.0,24,True,2023-06-29 15:05:00.621,0.1.6,10.0,rlax,,,,['jax'],337.0,326.0,https://pypi.org/project/rlax,2023-01-09 22:29:35.947,11.0,17270.0,17270.0,,,,,,,,3.0,,,,,,,google-deepmind/rlax,,,,,,,,,,,,, +579,NGT,yahoojapan/NGT,nn-search,,https://github.com/yahoojapan/NGT,https://github.com/yahoojapan/NGT,Apache-2.0,2016-09-01 07:36:57.000,2025-04-24 01:32:16.000000,2025-04-24 01:22:39,225.0,12.0,119.0,35.0,35.0,23.0,122.0,1302.0,Nearest Neighbor Search with Neighborhood Graph and Tree for High-dimensional Data.,18.0,24,True,2025-04-24 01:36:06.000,2.3.15,99.0,ngt,,,,,12.0,,https://pypi.org/project/ngt,2025-02-26 23:24:32.000,12.0,3145.0,3145.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +580,sklearn-porter,nok/sklearn-porter,model-serialisation,,https://github.com/nok/sklearn-porter,https://github.com/nok/sklearn-porter,BSD-3-Clause,2016-06-22 22:21:34.000,2024-06-12 09:16:57.000000,2022-05-22 23:59:48,1219.0,,163.0,32.0,24.0,42.0,34.0,1300.0,"Transpile trained scikit-learn estimators to C, Java, JavaScript and others.",13.0,24,False,2019-12-18 13:39:19.000,0.7.4,20.0,sklearn-porter,,,,['sklearn'],72.0,72.0,https://pypi.org/project/sklearn-porter,2019-12-18 13:39:19.000,,1510.0,1510.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +581,ChainerRL,chainer/chainerrl,reinforcement-learning,,https://github.com/chainer/chainerrl,https://github.com/chainer/chainerrl,MIT,2017-01-30 04:58:15.000,2021-08-10 18:25:48.000000,2021-04-17 06:02:30,3471.0,,223.0,69.0,415.0,65.0,147.0,1187.0,ChainerRL is a deep reinforcement learning library built on top of Chainer.,28.0,24,False,2020-02-14 05:35:56.000,0.8.0,10.0,chainerrl,,,,,182.0,177.0,https://pypi.org/project/chainerrl,2020-02-14 05:35:56.000,5.0,386.0,386.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +582,calamari,Calamari-OCR/calamari,ocr,,https://github.com/Calamari-OCR/calamari,https://github.com/Calamari-OCR/calamari,GPL-3.0,2018-03-20 15:22:29.000,2025-04-17 09:41:25.000000,2024-11-12 23:19:10,478.0,,212.0,53.0,95.0,59.0,219.0,1130.0,Line based ATR Engine based on OCRopy.,21.0,24,False,2024-11-12 23:23:07.000,2.3.1,45.0,calamari_ocr,,,,,8.0,,https://pypi.org/project/calamari_ocr,2024-11-12 23:23:07.000,8.0,3996.0,3996.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +583,keract,philipperemy/keract,interpretability,,https://github.com/philipperemy/keract,https://github.com/philipperemy/keract,MIT,2017-05-17 04:50:57.000,2025-04-07 02:04:56.000000,2025-04-07 02:04:56,417.0,5.0,186.0,31.0,76.0,3.0,86.0,1057.0,Layers Outputs and Gradients in Keras. Made easy.,17.0,24,True,2022-09-25 14:40:40.377,4.5.1,40.0,keract,,,,['tensorflow'],255.0,248.0,https://pypi.org/project/keract,2025-04-07 02:03:50.000,7.0,6451.0,6451.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +584,detoxify,unitaryai/detoxify,nlp,,https://github.com/unitaryai/detoxify,https://github.com/unitaryai/detoxify,Apache-2.0,2020-09-23 15:24:21.000,2025-04-07 20:28:23.000000,2025-03-07 11:33:25,264.0,1.0,120.0,11.0,58.0,37.0,30.0,1032.0,Trained models & code to predict toxic comments on all 3 Jigsaw Toxic Comment Challenges. Built using Pytorch..,14.0,24,True,2024-02-01 14:51:21.000,0.5.2,13.0,detoxify,,,,,897.0,867.0,https://pypi.org/project/detoxify,2024-02-01 14:51:21.000,30.0,118805.0,139699.0,,,,,,,,3.0,1107407.0,,,,,,,,,,,,,,,,,,, +585,scikit-cuda,lebedov/scikit-cuda,gpu-utilities,,https://github.com/lebedov/scikit-cuda,https://github.com/lebedov/scikit-cuda,BSD-3-Clause,2010-09-27 02:02:07.000,2023-10-15 05:57:46.000000,2023-10-15 05:57:46,1036.0,,181.0,47.0,116.0,61.0,170.0,991.0,Python interface to GPU-powered libraries.,44.0,24,False,2019-05-27 00:29:00.000,0.5.3,7.0,scikit-cuda,,,,,346.0,323.0,https://pypi.org/project/scikit-cuda,2019-05-27 00:29:00.000,23.0,801.0,801.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +586,YouTokenToMe,vkcom/youtokentome,nlp,,https://github.com/VKCOM/YouTokenToMe,https://github.com/VKCOM/YouTokenToMe,MIT,2019-06-06 11:38:28.000,2025-04-22 14:57:59.940000,2023-03-29 07:39:45,85.0,,103.0,25.0,55.0,41.0,28.0,965.0,Unsupervised text tokenizer focused on computational efficiency.,8.0,24,False,2020-02-13 09:57:47.000,1.0.6,14.0,youtokentome,conda-forge/youtokentome,,,,833.0,805.0,https://pypi.org/project/youtokentome,2020-02-12 18:24:46.000,28.0,119924.0,122080.0,https://anaconda.org/conda-forge/youtokentome,2025-04-22 14:57:59.940,92724.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +587,NeuPy,itdxer/neupy,ml-frameworks,,https://github.com/itdxer/neupy,https://github.com/itdxer/neupy,MIT,2015-08-24 19:45:11.000,2024-11-18 15:00:19.000000,2023-01-03 21:24:56,1146.0,,158.0,32.0,25.0,35.0,236.0,738.0,NeuPy is a Tensorflow based python library for prototyping and building neural networks.,8.0,24,False,2019-04-04 19:44:59.000,0.8.2,34.0,neupy,,,,,187.0,183.0,https://pypi.org/project/neupy,2019-04-04 19:43:06.000,4.0,3479.0,3479.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +588,aequitas,dssg/aequitas,interpretability,,https://github.com/dssg/aequitas,https://github.com/dssg/aequitas,MIT,2018-02-13 19:40:30.000,2025-03-25 10:51:49.000000,2025-03-25 10:51:37,923.0,2.0,120.0,42.0,119.0,51.0,48.0,715.0,Bias Auditing & Fair ML Toolkit.,23.0,24,True,2024-01-30 12:03:19.000,1.0.0,18.0,aequitas,,,,,194.0,186.0,https://pypi.org/project/aequitas,2024-01-30 12:03:19.000,8.0,23229.0,23229.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +589,Mapbox GL,mapbox/mapboxgl-jupyter,geospatial-data,,https://github.com/mapbox/mapboxgl-jupyter,https://github.com/mapbox/mapboxgl-jupyter,MIT,2017-08-08 15:10:51.000,2025-02-06 21:36:12.000000,2025-02-06 21:36:09,223.0,2.0,137.0,139.0,92.0,42.0,67.0,676.0,Use Mapbox GL JS to visualize data in a Python Jupyter notebook.,23.0,24,True,2019-06-03 21:24:10.000,0.10.2,20.0,mapboxgl,,,,['jupyter'],251.0,239.0,https://pypi.org/project/mapboxgl,2019-06-02 16:02:54.380,12.0,8537.0,8537.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +590,whoosh,mchaput/whoosh,nlp,,https://github.com/mchaput/whoosh,https://github.com/mchaput/whoosh,BSD-1-Clause,2015-04-17 19:34:47.000,2025-04-22 14:56:29.169000,2022-01-15 18:08:37,1718.0,,73.0,13.0,13.0,44.0,7.0,619.0,Pure-Python full-text search library.,42.0,24,False,2016-04-04 01:19:40.000,2.7.4,141.0,whoosh,conda-forge/whoosh,,,,232.0,,https://pypi.org/project/whoosh,2016-04-04 01:19:40.000,232.0,411330.0,420526.0,https://anaconda.org/conda-forge/whoosh,2025-04-22 14:56:29.169,432251.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +591,SKLL,EducationalTestingService/skll,ml-experiments,,https://github.com/EducationalTestingService/skll,https://github.com/EducationalTestingService/skll,,2013-08-02 14:31:46.000,2025-04-22 14:58:06.094000,2024-12-27 14:53:55,3774.0,,67.0,44.0,361.0,19.0,399.0,554.0,SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.,39.0,24,False,2024-12-27 16:29:32.000,5.1.0,72.0,skll,conda-forge/skll,,,['sklearn'],49.0,47.0,https://pypi.org/project/skll,2024-12-27 16:29:32.000,2.0,1434.0,1947.0,https://anaconda.org/conda-forge/skll,2025-04-22 14:58:06.094,21055.0,,,,,3.0,16.0,,,,,,,,,,,,,,,,,,, +592,pymap3d,geospace-code/pymap3d,geospatial-data,,https://github.com/geospace-code/pymap3d,https://github.com/geospace-code/pymap3d,BSD-2-Clause,2014-08-03 04:28:03.000,2025-04-22 14:57:22.480000,2025-01-08 06:03:58,776.0,,87.0,11.0,32.0,9.0,51.0,409.0,pure-Python (Numpy optional) 3D coordinate conversions for geospace ecef enu eci.,19.0,24,True,2024-02-11 00:59:05.000,3.1.0,58.0,pymap3d,conda-forge/pymap3d,,,,540.0,496.0,https://pypi.org/project/pymap3d,2024-02-11 00:59:05.000,44.0,311256.0,313073.0,https://anaconda.org/conda-forge/pymap3d,2025-04-22 14:57:22.480,99937.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +593,NIPY,nipy/nipy,medical-data,,https://github.com/nipy/nipy,https://github.com/nipy/nipy,,2010-05-02 10:00:33.000,2025-04-22 14:56:38.480000,2024-12-24 16:12:08,6798.0,,145.0,34.0,414.0,37.0,141.0,389.0,Neuroimaging in Python FMRI analysis package.,71.0,24,False,2024-10-06 19:42:32.000,0.6.1,9.0,nipy,conda-forge/nipy,,,,265.0,241.0,https://pypi.org/project/nipy,2024-10-06 19:42:32.000,24.0,4122.0,20848.0,https://anaconda.org/conda-forge/nipy,2025-04-22 14:56:38.480,150537.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +594,miceforest,AnotherSamWilson/miceforest,tabular,,https://github.com/AnotherSamWilson/miceforest,https://github.com/AnotherSamWilson/miceforest,MIT,2020-08-22 00:00:22.000,2025-04-22 14:57:57.911000,2024-08-02 00:21:15,339.0,,30.0,8.0,7.0,10.0,80.0,377.0,Multiple Imputation with LightGBM in Python.,8.0,24,True,2024-08-02 00:43:48.000,6.0.3,48.0,miceforest,conda-forge/miceforest,,,,235.0,226.0,https://pypi.org/project/miceforest,2024-08-02 00:43:48.000,9.0,73973.0,74384.0,https://anaconda.org/conda-forge/miceforest,2025-04-22 14:57:57.911,18530.0,,,,,1.0,,,,,,,,,,,,,,,,,,,, +595,ridgeplot,tpvasconcelos/ridgeplot,data-viz,,https://github.com/tpvasconcelos/ridgeplot,https://github.com/tpvasconcelos/ridgeplot,MIT,2021-01-21 18:21:30.000,2025-04-21 16:22:52.000000,2025-03-30 13:15:01,1086.0,35.0,8.0,3.0,263.0,16.0,39.0,228.0,Beautiful ridgeline plots in Python.,4.0,24,False,2025-03-30 13:17:50.000,0.3.2,30.0,ridgeplot,,,https://ridgeplot.readthedocs.io/,,244.0,238.0,https://pypi.org/project/ridgeplot,2025-03-30 13:16:54.000,6.0,27940.0,27940.0,,,,,,,,3.0,40.0,,,,,,,,,,,,,,,,,,, +596,DeepSpeech,mozilla/DeepSpeech,audio,,https://github.com/mozilla/DeepSpeech,https://github.com/mozilla/DeepSpeech,MPL-2.0,2016-06-02 15:04:53.000,2025-04-22 14:57:58.207000,,,,4027.0,,,151.0,,26115.0,"DeepSpeech is an open source embedded (offline, on-device) speech-to-text engine which can run in real time on devices..",143.0,23,True,2020-12-10 17:22:09.000,0.9.3,100.0,deepspeech,conda-forge/deepspeech,,,['tensorflow'],24.0,,https://pypi.org/project/deepspeech,2020-12-19 10:05:12.000,24.0,18301.0,18384.0,https://anaconda.org/conda-forge/deepspeech,2025-04-22 14:57:58.207,3751.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +597,Dejavu,worldveil/dejavu,audio,,https://github.com/worldveil/dejavu,https://github.com/worldveil/dejavu,MIT,2013-11-19 02:50:35.000,2024-04-22 19:23:00.000000,2020-06-03 05:58:03,146.0,,1434.0,261.0,69.0,133.0,137.0,6536.0,Audio fingerprinting and recognition in Python.,23.0,23,False,2015-04-19 21:20:16.000,0.1.3,4.0,PyDejavu,,,,,21.0,21.0,https://pypi.org/project/PyDejavu,2015-04-19 21:20:16.000,,260.0,260.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +598,T5,google-research/text-to-text-transfer-transformer,nlp,,https://github.com/google-research/text-to-text-transfer-transformer,https://github.com/google-research/text-to-text-transfer-transformer,Apache-2.0,2019-10-17 21:45:14.000,2025-02-27 21:54:46.000000,2025-02-27 21:54:41,600.0,1.0,761.0,108.0,591.0,107.0,345.0,6339.0,Code for the paper Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.,60.0,23,True,2023-03-30 16:55:07.154,0.9.4,29.0,t5,,,,['tensorflow'],2.0,,https://pypi.org/project/t5,2021-10-18 13:55:26.000,2.0,51333.0,51333.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +599,FATE,FederatedAI/FATE,privacy-ml,,https://github.com/FederatedAI/FATE,https://github.com/FederatedAI/FATE,Apache-2.0,2019-01-24 10:32:43.000,2024-11-19 08:19:11.000000,2024-11-19 08:19:11,13850.0,,1555.0,135.0,3625.0,78.0,1996.0,5878.0,An Industrial Grade Federated Learning Framework.,102.0,23,True,2024-07-31 11:47:02.000,2.2.0,51.0,ETAF,,,,,,,https://pypi.org/project/ETAF,2020-05-06 09:35:40.000,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +600,MMLSpark,microsoft/SynapseML,distributed-ml,,https://github.com/microsoft/SynapseML,https://github.com/microsoft/SynapseML,MIT,2017-06-05 08:23:44.000,2025-04-19 03:20:10.000000,2025-04-19 03:20:09,1676.0,18.0,842.0,142.0,1626.0,396.0,404.0,5124.0,Simple and Distributed Machine Learning.,122.0,23,True,2025-01-09 23:46:37.000,1.0.9,63.0,mmlspark,,,,['spark'],,,https://pypi.org/project/mmlspark,2020-03-18 01:27:31.000,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +601,deep-daze,lucidrains/deep-daze,image,,https://github.com/lucidrains/deep-daze,https://github.com/lucidrains/deep-daze,MIT,2021-01-17 06:00:50.000,2022-03-13 19:09:50.000000,2022-03-13 19:08:59,231.0,,320.0,75.0,37.0,95.0,77.0,4364.0,Simple command line tool for text to image generation using OpenAIs CLIP and Siren (Implicit neural representation..,14.0,23,False,2022-03-13 19:09:50.000,0.11.1,67.0,deep-daze,,,,,56.0,56.0,https://pypi.org/project/deep-daze,2022-03-13 19:09:50.000,,2212.0,2212.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +602,PyTorch-BigGraph,facebookresearch/PyTorch-BigGraph,graph,,https://github.com/facebookresearch/PyTorch-BigGraph,https://github.com/facebookresearch/PyTorch-BigGraph,BSD-3-Clause,2018-10-01 20:41:16.000,2024-03-03 01:42:05.000000,2024-03-03 01:31:19,175.0,,449.0,88.0,78.0,67.0,137.0,3411.0,Generate embeddings from large-scale graph-structured data.,32.0,23,False,2019-10-14 16:45:11.000,1.0.0,4.0,torchbiggraph,,,,['pytorch'],2.0,,https://pypi.org/project/torchbiggraph,2019-10-14 16:44:41.000,2.0,207398.0,207401.0,,,,,,,,3.0,219.0,,,,,,,,,,,,,,,,,,, +603,vissl,facebookresearch/vissl,image,,https://github.com/facebookresearch/vissl,https://github.com/facebookresearch/vissl,MIT,2020-04-09 19:40:33.000,2024-03-03 01:41:37.000000,2024-03-03 01:31:19,412.0,,331.0,52.0,414.0,82.0,106.0,3280.0,"VISSL is FAIRs library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.",38.0,23,False,2021-11-02 17:21:02.000,0.1.6,6.0,vissl,,,,['pytorch'],60.0,59.0,https://pypi.org/project/vissl,2021-11-02 15:36:07.000,1.0,186.0,186.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +604,ffcv,libffcv/ffcv,image,,https://github.com/libffcv/ffcv,https://github.com/libffcv/ffcv,Apache-2.0,2021-10-13 17:03:39.000,2024-06-16 15:59:22.000000,2024-05-06 14:20:38,944.0,,179.0,20.0,80.0,112.0,180.0,2920.0,FFCV: Fast Forward Computer Vision (and other ML workloads!).,31.0,23,True,2023-03-05 05:44:00.314,1.0.2,7.0,ffcv,,,,,70.0,69.0,https://pypi.org/project/ffcv,2022-01-28 20:40:22.000,1.0,775.0,775.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +605,kubric,google-research/kubric,image,,https://github.com/google-research/kubric,https://github.com/google-research/kubric,Apache-2.0,2020-07-22 19:56:38.000,2025-03-18 13:58:12.000000,2025-03-18 13:58:11,559.0,1.0,235.0,39.0,139.0,64.0,127.0,2476.0,A data generation pipeline for creating semi-realistic synthetic multi-object videos with rich annotations such as..,31.0,23,True,2023-12-27 00:46:01.000,2023.12.27,773.0,kubric-nightly,,,,,7.0,7.0,https://pypi.org/project/kubric-nightly,2023-12-27 00:46:01.000,,22345.0,22345.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +606,Luminoth,tryolabs/luminoth,image,,https://github.com/tryolabs/luminoth,https://github.com/tryolabs/luminoth,BSD-3-Clause,2017-02-16 15:07:46.000,2023-03-24 23:52:00.000000,2020-01-07 20:53:25,838.0,,413.0,132.0,136.0,60.0,128.0,2409.0,Deep Learning toolkit for Computer Vision.,15.0,23,False,2018-11-09 21:35:17.000,0.2.3,10.0,luminoth,,,,['tensorflow'],69.0,67.0,https://pypi.org/project/luminoth,2018-11-09 21:35:17.000,2.0,1044.0,1187.0,,,,,,,,3.0,12911.0,,,,,,,,,,,,,,,,,,, +607,Texar,asyml/texar,nlp,,https://github.com/asyml/texar,https://github.com/asyml/texar,Apache-2.0,2017-07-22 19:02:05.000,2021-08-26 09:49:50.000000,2020-07-29 00:38:30,1719.0,,381.0,77.0,146.0,36.0,126.0,2388.0,"Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the..",43.0,23,False,2019-11-19 04:11:18.000,0.2.4,6.0,texar,,,,['tensorflow'],31.0,29.0,https://pypi.org/project/texar,2019-11-19 04:11:18.000,2.0,188.0,188.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +608,Vulkan Kompute,KomputeProject/kompute,gpu-utilities,,https://github.com/KomputeProject/kompute,https://github.com/KomputeProject/kompute,Apache-2.0,2020-07-29 05:23:33.000,2025-03-19 09:46:20.000000,2025-03-19 09:46:19,1297.0,5.0,155.0,32.0,192.0,73.0,152.0,2187.0,"General purpose GPU compute framework built on Vulkan to support 1000s of cross vendor graphics cards (AMD, Qualcomm,..",32.0,23,True,2024-01-20 15:39:17.000,0.9.0,14.0,kp,,,,,,,https://pypi.org/project/kp,2024-01-20 15:33:09.000,,558.0,569.0,,,,,,,,3.0,642.0,,,,,,,,,,,,,,,,,,, +609,ecco,jalammar/ecco,interpretability,,https://github.com/jalammar/ecco,https://github.com/jalammar/ecco,BSD-3-Clause,2020-11-07 10:06:34.000,2025-04-22 14:58:08.015000,2024-08-15 19:08:06,312.0,,168.0,24.0,34.0,33.0,31.0,2028.0,"Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter..",12.0,23,True,2022-01-09 21:17:53.000,0.1.2,18.0,ecco,conda-forge/ecco,,,['pytorch'],34.0,33.0,https://pypi.org/project/ecco,2022-01-09 21:14:50.000,1.0,1127.0,1293.0,https://anaconda.org/conda-forge/ecco,2025-04-22 14:58:08.015,6590.0,,,,,3.0,140.0,,,,,,,,,,,,,,,,,,, +610,greykite,linkedin/greykite,time-series-data,,https://github.com/linkedin/greykite,https://github.com/linkedin/greykite,BSD-2-Clause,2021-04-27 17:05:53.000,2025-02-20 22:01:53.000000,2025-02-20 22:01:53,29.0,2.0,107.0,39.0,34.0,12.0,100.0,1837.0,"A flexible, intuitive and fast forecasting library.",10.0,23,True,2025-02-20 21:54:29.000,1.1.0,12.0,greykite,,,,,43.0,43.0,https://pypi.org/project/greykite,2025-02-20 21:54:29.000,,9505.0,9505.0,,,,,,,,3.0,36.0,,,,,,,,2.0,,,,,,,,,,, +611,jiant,nyu-mll/jiant,nlp,,https://github.com/nyu-mll/jiant,https://github.com/nyu-mll/jiant,MIT,2018-06-18 18:12:47.000,2023-07-06 22:00:38.000000,2022-10-17 19:34:56,1930.0,,295.0,42.0,801.0,72.0,485.0,1667.0,jiant is an nlp toolkit.,60.0,23,False,2021-05-10 18:56:39.000,2.2.0,19.0,jiant,,,,,6.0,6.0,https://pypi.org/project/jiant,2021-05-10 18:56:39.000,,215.0,215.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +612,Classy Vision,facebookresearch/ClassyVision,image,,https://github.com/facebookresearch/ClassyVision,https://github.com/facebookresearch/ClassyVision,MIT,2019-09-13 22:54:44.000,2025-04-22 14:57:19.815000,2023-03-23 14:35:34,422.0,,278.0,69.0,730.0,51.0,64.0,1602.0,An end-to-end PyTorch framework for image and video classification.,77.0,23,False,2023-03-21 05:24:19.000,0.7.0,18.0,classy_vision,conda-forge/classy_vision,,,['pytorch'],4.0,,https://pypi.org/project/classy_vision,2023-03-21 05:15:00.935,4.0,1178.0,1671.0,https://anaconda.org/conda-forge/classy_vision,2025-04-22 14:57:19.815,31062.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +613,jraph,deepmind/jraph,graph,,https://github.com/google-deepmind/jraph,https://github.com/google-deepmind/jraph,Apache-2.0,2020-11-23 10:27:12.000,2025-04-22 14:58:03.890000,2022-08-31 13:13:15,103.0,,95.0,36.0,17.0,12.0,27.0,1425.0,A Graph Neural Network Library in Jax.,17.0,23,False,2022-08-12 15:24:20.000,0.0.6.de0,5.0,jraph,conda-forge/jraph,,,['jax'],319.0,297.0,https://pypi.org/project/jraph,2022-08-12 15:25:29.659,22.0,35211.0,35424.0,https://anaconda.org/conda-forge/jraph,2025-04-22 14:58:03.890,8960.0,,,,,3.0,,,,,,,google-deepmind/jraph,,,,,,,,,,,,, +614,ADTK,arundo/adtk,time-series-data,,https://github.com/arundo/adtk,https://github.com/arundo/adtk,MPL-2.0,2019-09-27 00:34:22.000,2025-04-22 14:57:22.632000,2020-04-17 02:27:44,79.0,,149.0,24.0,77.0,51.0,37.0,1152.0,A Python toolkit for rule-based/unsupervised anomaly detection in time series.,11.0,23,False,2020-04-17 02:18:00.000,0.6.2,13.0,adtk,conda-forge/adtk,,,,5.0,,https://pypi.org/project/adtk,2020-04-17 02:18:00.000,5.0,312617.0,312780.0,https://anaconda.org/conda-forge/adtk,2025-04-22 14:57:22.632,9999.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +615,AstroML,astroML/astroML,others,,https://github.com/astroML/astroML,https://github.com/astroML/astroML,BSD-2-Clause,2012-10-17 22:33:50.000,2025-04-22 14:56:39.232000,2024-01-04 20:41:21,582.0,,296.0,94.0,123.0,62.0,98.0,1086.0,"Machine learning, statistics, and data mining for astronomy and astrophysics.",31.0,23,False,2022-01-25 21:56:31.000,1.0.2,13.0,astroML,conda-forge/astroml,,,['sklearn'],16.0,,https://pypi.org/project/astroML,2022-03-01 20:02:01.000,16.0,1595.0,2970.0,https://anaconda.org/conda-forge/astroml,2025-04-22 14:56:39.232,53642.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +616,nnAudio,KinWaiCheuk/nnAudio,audio,,https://github.com/KinWaiCheuk/nnAudio,https://github.com/KinWaiCheuk/nnAudio,MIT,2019-09-02 04:31:14.000,2024-02-13 05:58:29.000000,2024-02-13 05:55:37,305.0,,91.0,19.0,73.0,18.0,45.0,1062.0,Audio processing by using pytorch 1D convolution network.,15.0,23,False,2024-02-13 05:58:29.000,0.3.3,40.0,nnAudio,,,,,342.0,338.0,https://pypi.org/project/nnAudio,2024-02-13 05:58:29.000,4.0,66402.0,66402.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +617,Runhouse,run-house/runhouse,ml-frameworks,,https://github.com/run-house/runhouse,https://github.com/run-house/runhouse,Apache-2.0,2022-05-10 14:10:51.000,2025-04-03 16:04:43.000000,2025-04-03 16:04:42,2223.0,97.0,36.0,8.0,1769.0,9.0,42.0,1022.0,"Distribute and run AI workloads magically in Python, like PyTorch for ML infra.",16.0,23,True,2025-03-10 20:19:35.000,0.0.42,50.0,runhouse,,,,,1.0,,https://pypi.org/project/runhouse,2025-03-10 20:19:24.000,1.0,25325.0,25327.0,,,,,,,,3.0,69.0,,,,,,,,,,,,,,,,,,, +618,Neural Structured Learning,tensorflow/neural-structured-learning,tensorflow-utils,,https://github.com/tensorflow/neural-structured-learning,https://github.com/tensorflow/neural-structured-learning,Apache-2.0,2019-08-27 21:48:16.000,2025-01-29 22:28:23.000000,2025-01-29 22:28:21,569.0,1.0,191.0,46.0,61.0,1.0,68.0,992.0,Training neural models with structured signals.,39.0,23,True,2022-07-29 21:05:16.715,1.4.0,8.0,neural-structured-learning,,,,['tensorflow'],512.0,509.0,https://pypi.org/project/neural-structured-learning,2022-07-29 21:05:16.715,3.0,5475.0,5475.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +619,What-If Tool,PAIR-code/what-if-tool,interpretability,,https://github.com/PAIR-code/what-if-tool,https://github.com/PAIR-code/what-if-tool,Apache-2.0,2018-09-07 20:26:10.000,2025-04-22 14:57:28.709000,2024-02-01 21:38:56,330.0,,174.0,30.0,113.0,91.0,56.0,946.0,Source code/webpage/demos for the What-If Tool.,20.0,23,False,2021-10-12 17:42:50.869,1.8.1,40.0,witwidget,conda-forge/tensorboard-plugin-wit,,,,11.0,2.0,https://pypi.org/project/witwidget,2021-10-12 17:42:30.000,6.0,13716.0,55594.0,https://anaconda.org/conda-forge/tensorboard-plugin-wit,2025-04-22 14:57:28.709,2399195.0,,,,,3.0,,wit-widget,https://www.npmjs.com/package/wit-widget,2021-10-12 17:42:50.869,3.0,513.0,,,,,,,,,,,,,, +620,Guild AI,guildai/guildai,ml-experiments,,https://github.com/guildai/guildai,https://github.com/guildai/guildai,Apache-2.0,2017-09-27 18:57:50.000,2023-08-14 08:41:19.000000,2023-08-12 20:19:05,5777.0,,88.0,13.0,77.0,222.0,218.0,878.0,"Experiment tracking, ML developer tools.",30.0,23,False,2023-02-25 17:16:57.621,0.9.0,186.0,guildai,,,,,105.0,105.0,https://pypi.org/project/guildai,2022-05-11 01:13:31.000,,5216.0,5216.0,,,,,,,,3.0,31.0,,,,,,,,,,,,,,,,,,, +621,gmaps,pbugnion/gmaps,geospatial-data,,https://github.com/pbugnion/gmaps,https://github.com/pbugnion/gmaps,BSD-3-Clause,2014-12-01 09:12:06.000,2025-04-22 14:56:37.375000,2019-07-22 06:22:45,1380.0,,147.0,24.0,154.0,79.0,137.0,760.0,Google maps for Jupyter notebooks.,17.0,23,False,2019-07-21 08:49:48.715,0.9.0,96.0,gmaps,conda-forge/gmaps,,,['jupyter'],18.0,,https://pypi.org/project/gmaps,2021-12-15 15:42:57.506,13.0,6710.0,11229.0,https://anaconda.org/conda-forge/gmaps,2025-04-22 14:56:37.375,368591.0,,,,,3.0,,jupyter-gmaps,https://www.npmjs.com/package/jupyter-gmaps,2019-07-21 08:49:48.715,5.0,640.0,,,,,,,,,,,,,, +622,TreeInterpreter,andosa/treeinterpreter,interpretability,,https://github.com/andosa/treeinterpreter,https://github.com/andosa/treeinterpreter,BSD-3-Clause,2015-08-02 20:26:21.000,2025-04-22 14:57:37.117000,2021-02-28 18:33:06,37.0,,140.0,24.0,19.0,26.0,5.0,757.0,Package for interpreting scikit-learns decision tree and random forest predictions.,11.0,23,False,2021-01-10 20:12:39.000,0.2.3,5.0,treeinterpreter,conda-forge/treeinterpreter,,,['sklearn'],705.0,697.0,https://pypi.org/project/treeinterpreter,2021-01-10 20:12:39.000,8.0,106227.0,106401.0,https://anaconda.org/conda-forge/treeinterpreter,2025-04-22 14:57:37.117,9429.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +623,BioPandas,rasbt/biopandas,others,,https://github.com/BioPandas/biopandas,https://github.com/BioPandas/biopandas,BSD-3-Clause,2015-11-21 00:00:14.000,2025-04-22 14:56:30.745000,2024-08-01 17:33:11,360.0,,119.0,15.0,84.0,22.0,38.0,727.0,Working with molecular structures in pandas DataFrames.,18.0,23,True,2024-08-01 17:35:04.000,0.5.1,21.0,biopandas,conda-forge/biopandas,,,['pandas'],402.0,364.0,https://pypi.org/project/biopandas,2024-08-01 17:35:04.000,38.0,11222.0,14407.0,https://anaconda.org/conda-forge/biopandas,2025-04-22 14:56:30.745,178392.0,,,,,3.0,,,,,,,BioPandas/biopandas,,,,,,,,,,,,, +624,vecstack,vecxoz/vecstack,others,,https://github.com/vecxoz/vecstack,https://github.com/vecxoz/vecstack,MIT,2016-11-08 13:23:21.000,2025-04-22 14:57:52.809000,2019-10-30 09:27:48,189.0,,83.0,21.0,12.0,,39.0,692.0,Python package for stacking (machine learning technique).,1.0,23,False,2019-08-12 16:09:01.000,0.4.0,6.0,vecstack,conda-forge/vecstack,,,,570.0,565.0,https://pypi.org/project/vecstack,2019-08-12 16:01:22.000,5.0,11102.0,11158.0,https://anaconda.org/conda-forge/vecstack,2025-04-22 14:57:52.809,2643.0,,,,,3.0,,,,,,,,,3.0,,,,,,,,,,, +625,featurewiz,AutoViML/featurewiz,hyperopt,,https://github.com/AutoViML/featurewiz,https://github.com/AutoViML/featurewiz,Apache-2.0,2020-11-29 16:46:16.000,2025-02-19 01:40:22.000000,2025-02-19 01:34:13,351.0,5.0,95.0,8.0,20.0,1.0,108.0,642.0,Use advanced feature engineering strategies and select best features from your data set with a single line of code...,18.0,23,True,2025-02-19 01:40:22.000,0.6.1,167.0,featurewiz,,,,,87.0,83.0,https://pypi.org/project/featurewiz,2025-02-19 01:40:22.000,4.0,15521.0,15521.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +626,HpBandSter,automl/HpBandSter,hyperopt,,https://github.com/automl/HpBandSter,https://github.com/automl/HpBandSter,BSD-3-Clause,2017-12-17 20:28:20.000,2025-04-22 14:57:41.674000,2022-04-22 06:33:31,188.0,,109.0,25.0,23.0,66.0,35.0,616.0,a distributed Hyperband implementation on Steroids.,11.0,23,False,2019-07-30 12:47:43.000,1.0,8.0,hpbandster,conda-forge/hpbandster,,,,544.0,519.0,https://pypi.org/project/hpbandster,2018-11-06 12:56:55.000,25.0,12288.0,12690.0,https://anaconda.org/conda-forge/hpbandster,2025-04-22 14:57:41.674,20948.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +627,MedPy,loli/medpy,medical-data,,https://github.com/loli/medpy,https://github.com/loli/medpy,GPL-3.0,2012-05-11 10:57:34.000,2025-04-22 14:57:56.027000,2024-07-23 14:46:53,413.0,,141.0,20.0,49.0,2.0,87.0,597.0,Medical image processing in Python.,20.0,23,False,2024-07-23 14:23:57.000,0.5.2,11.0,MedPy,conda-forge/medpy,,,,2771.0,2712.0,https://pypi.org/project/MedPy,2024-07-23 14:23:57.000,59.0,30078.0,32436.0,https://anaconda.org/conda-forge/medpy,2025-04-22 14:57:56.027,108473.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +628,Julius,adefossez/julius,audio,,https://github.com/adefossez/julius,https://github.com/adefossez/julius,MIT,2020-10-26 10:54:21.000,2025-02-17 12:59:31.000000,2025-02-17 12:57:23,73.0,4.0,25.0,9.0,10.0,2.0,10.0,436.0,Fast PyTorch based DSP for audio and 1D signals.,3.0,23,True,2022-09-20 06:43:57.063,0.2.7,11.0,julius,,,,['pytorch'],2799.0,2755.0,https://pypi.org/project/julius,2022-09-20 06:43:57.063,44.0,408750.0,408750.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +629,TorchUncertainty,ENSTA-U2IS-AI/torch-uncertainty,probabilistics,,https://github.com/ENSTA-U2IS-AI/torch-uncertainty,https://github.com/ENSTA-U2IS-AI/torch-uncertainty,Apache-2.0,2023-02-01 16:21:14.000,2025-04-23 19:39:13.000000,2025-03-20 13:37:01,1623.0,140.0,28.0,7.0,114.0,14.0,36.0,381.0,Open-source framework for uncertainty and deep learning models in PyTorch.,12.0,23,True,2025-03-19 14:01:38.000,0.4.3,21.0,torch-uncertainty,,,,['pytorch'],4.0,,https://pypi.org/project/torch-uncertainty,2025-03-20 13:18:17.000,4.0,1411.0,1411.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +630,Orion,Epistimio/orion,hyperopt,,https://github.com/Epistimio/orion,https://github.com/Epistimio/orion,BSD-3-Clause,2017-09-07 06:05:21.000,2025-01-30 14:12:03.000000,2023-11-17 21:43:05,4051.0,,49.0,13.0,716.0,217.0,203.0,293.0,Asynchronous Distributed Hyperparameter Optimization.,34.0,23,False,2023-03-02 22:26:01.035,0.2.7,26.0,orion,,,,,129.0,121.0,https://pypi.org/project/orion,2022-08-22 17:10:40.826,8.0,1808.0,1808.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +631,py3nvml,fbcotter/py3nvml,gpu-utilities,,https://github.com/fbcotter/py3nvml,https://github.com/fbcotter/py3nvml,BSD-3-Clause,2016-11-21 01:07:37.000,2025-04-22 14:57:20.104000,2022-04-14 09:41:50,86.0,,33.0,11.0,9.0,5.0,12.0,246.0,Python 3 Bindings for NVML library. Get NVIDIA GPU status inside your program.,9.0,23,False,2021-11-22 14:30:25.000,0.2.7,14.0,py3nvml,conda-forge/py3nvml,,,,1491.0,1434.0,https://pypi.org/project/py3nvml,2021-11-22 14:30:25.000,57.0,108254.0,110173.0,https://anaconda.org/conda-forge/py3nvml,2025-04-22 14:57:20.104,103627.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +632,micrograd,karpathy/micrograd,pytorch-utils,,https://github.com/karpathy/micrograd,https://github.com/karpathy/micrograd,MIT,2020-04-13 04:31:18.000,2024-08-08 12:54:44.000000,2020-04-18 19:15:25,24.0,,1702.0,157.0,58.0,46.0,12.0,11703.0,A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API.,2.0,22,False,2020-04-18 19:06:59.000,0.1.0,1.0,micrograd,,,,['pytorch'],101.0,98.0,https://pypi.org/project/micrograd,2020-04-18 19:06:59.000,3.0,1748.0,1748.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +633,cortex,cortexlabs/cortex,model-serialisation,,https://github.com/cortexlabs/cortex,https://github.com/cortexlabs/cortex,Apache-2.0,2019-01-24 04:43:14.000,2024-06-12 19:34:23.000000,2023-03-04 05:19:44,2327.0,,607.0,142.0,1363.0,129.0,987.0,8031.0,Production infrastructure for machine learning at scale.,25.0,22,False,2022-09-23 18:01:31.000,0.42.1,63.0,cortex,,,,,2.0,,https://pypi.org/project/cortex,2022-09-23 17:40:01.770,2.0,899.0,899.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +634,Crypto Signals,CryptoSignal/crypto-signal,financial-data,,https://github.com/CryptoSignal/Crypto-Signal,https://github.com/CryptoSignal/Crypto-Signal,MIT,2017-09-16 23:49:24.000,2024-07-07 15:33:11.000000,2022-08-09 13:26:32,565.0,,1253.0,306.0,210.0,66.0,221.0,5155.0,"Github.com/CryptoSignal - Trading & Technical Analysis Bot - 4,100+ stars, 1,100+ forks.",28.0,22,False,,,,,,shadowreaver/crypto-signal,,,,,,,,,1583.0,,,,https://hub.docker.com/r/shadowreaver/crypto-signal,2020-09-03 13:00:35.801133,8.0,144104.0,3.0,,,,,,,,,,,,,,,,,,,, +635,tf-quant-finance,google/tf-quant-finance,financial-data,,https://github.com/google/tf-quant-finance,https://github.com/google/tf-quant-finance,Apache-2.0,2019-07-24 16:09:50.000,2025-03-21 14:29:57.000000,2025-03-21 14:29:54,960.0,3.0,596.0,171.0,48.0,35.0,28.0,4796.0,High-performance TensorFlow library for quantitative finance.,48.0,22,True,,,30.0,tf-quant-finance,,,,['tensorflow'],3.0,,https://pypi.org/project/tf-quant-finance,2022-08-19 12:40:54.257,3.0,503.0,503.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +636,BytePS,bytedance/byteps,distributed-ml,,https://github.com/bytedance/byteps,https://github.com/bytedance/byteps,Apache-2.0,2019-06-25 07:00:13.000,2023-10-03 18:02:27.000000,2022-02-10 07:36:23,432.0,,490.0,82.0,180.0,113.0,161.0,3676.0,A high performance and generic framework for distributed DNN training.,21.0,22,False,2020-08-27 15:42:13.000,0.2.4,8.0,byteps,,bytepsimage/tensorflow,,,3.0,3.0,https://pypi.org/project/byteps,2021-08-02 17:37:42.000,,205.0,224.0,,,,https://hub.docker.com/r/bytepsimage/tensorflow,2020-03-03 02:33:23.358610,,1368.0,3.0,,,,,,,,,,,,,,,,,,,, +637,gpt-2-simple,minimaxir/gpt-2-simple,nlp,,https://github.com/minimaxir/gpt-2-simple,https://github.com/minimaxir/gpt-2-simple,MIT,2019-04-13 20:00:52.000,2022-12-14 11:50:45.000000,2022-05-22 02:02:04,149.0,,676.0,74.0,53.0,179.0,101.0,3405.0,Python package to easily retrain OpenAIs GPT-2 text-generating model on new texts.,21.0,22,False,2021-10-18 02:38:39.000,0.8.1,18.0,gpt-2-simple,,,,['tensorflow'],8.0,,https://pypi.org/project/gpt-2-simple,2021-10-18 01:47:20.000,8.0,2601.0,2610.0,,,,,,,,3.0,663.0,,,,,,,,,,,,,,,,,,, +638,TRFL,deepmind/trfl,reinforcement-learning,,https://github.com/google-deepmind/trfl,https://github.com/google-deepmind/trfl,Apache-2.0,2018-08-08 14:44:11.000,2022-12-08 18:07:05.000000,2021-08-16 11:45:18,123.0,,386.0,201.0,9.0,4.0,16.0,3138.0,TensorFlow Reinforcement Learning.,13.0,22,False,2021-08-16 12:19:16.000,1.2.0,5.0,trfl,,,,['tensorflow'],172.0,170.0,https://pypi.org/project/trfl,2021-08-16 12:19:16.000,2.0,2671.0,2671.0,,,,,,,,3.0,,,,,,,google-deepmind/trfl,,,,,,,,,,,,, +639,opyrator,ml-tooling/opyrator,others,,https://github.com/ml-tooling/opyrator,https://github.com/ml-tooling/opyrator,MIT,2021-04-06 08:09:06.000,2025-04-22 14:58:08.330000,2021-05-06 12:10:38,127.0,,158.0,45.0,74.0,2.0,31.0,3115.0,"Turns your machine learning code into microservices with web API, interactive GUI, and more.",4.0,22,False,2021-05-04 18:48:03.000,0.0.12,11.0,opyrator,conda-forge/opyrator,,,,56.0,56.0,https://pypi.org/project/opyrator,2021-05-04 18:48:03.000,,553.0,615.0,https://anaconda.org/conda-forge/opyrator,2025-04-22 14:58:08.330,2424.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +640,NLP Architect,IntelLabs/nlp-architect,nlp,,https://github.com/IntelLabs/nlp-architect,https://github.com/IntelLabs/nlp-architect,Apache-2.0,2018-05-17 21:00:13.000,2022-11-07 16:21:47.000000,2022-11-07 16:21:47,957.0,,454.0,162.0,120.0,22.0,112.0,2939.0,A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language..,40.0,22,False,2020-11-17 12:32:37.000,0.5.5.1,13.0,nlp-architect,,,,,11.0,11.0,https://pypi.org/project/nlp-architect,2020-04-12 11:34:38.000,,380.0,380.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +641,Texthero,jbesomi/texthero,nlp,,https://github.com/jbesomi/texthero,https://github.com/jbesomi/texthero,MIT,2020-04-06 15:16:05.000,2023-08-29 08:45:13.000000,2023-08-29 08:45:10,277.0,,239.0,43.0,110.0,80.0,64.0,2903.0,"Text preprocessing, representation and visualization from zero to hero.",21.0,22,False,2021-07-01 17:11:02.000,1.1.0,10.0,texthero,,,,,6.0,,https://pypi.org/project/texthero,2021-07-01 17:11:02.000,6.0,2336.0,2339.0,,,,,,,,3.0,219.0,,,,,,,,,,,,,,,,,,, +642,analytics-zoo,intel-analytics/analytics-zoo,distributed-ml,,https://github.com/intel/analytics-zoo,https://github.com/intel/analytics-zoo,Apache-2.0,2024-03-05 03:41:26.000,2025-01-09 01:09:27.000000,2025-01-09 01:05:46,3464.0,,727.0,7.0,35.0,406.0,855.0,2607.0,"Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray.",109.0,22,True,2024-03-05 10:02:36.000,0.1.0,418.0,analytics-zoo,,,,['spark'],1.0,,https://pypi.org/project/analytics-zoo,2022-08-22 20:19:01.213,1.0,1438.0,1438.0,,,,,,,,3.0,,,,,,,intel/analytics-zoo,,,,,,,,,,,,, +643,SRU,asappresearch/sru,pytorch-utils,,https://github.com/asappresearch/sru,https://github.com/asappresearch/sru,MIT,2017-08-28 20:37:41.000,2022-01-04 21:17:53.000000,2021-05-19 15:52:48,400.0,,295.0,63.0,78.0,65.0,68.0,2101.0,Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755).,21.0,22,False,2021-05-18 16:13:10.000,2.6.0,32.0,sru,,,,['pytorch'],3.0,,https://pypi.org/project/sru,2021-06-17 23:33:37.000,3.0,2555.0,2555.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +644,hiddenlayer,waleedka/hiddenlayer,ml-experiments,,https://github.com/waleedka/hiddenlayer,https://github.com/waleedka/hiddenlayer,MIT,2018-05-18 22:34:51.000,2024-02-11 12:41:49.000000,2020-04-24 06:58:09,58.0,,255.0,43.0,15.0,57.0,35.0,1825.0,"Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.",6.0,22,False,2018-12-03 04:33:29.000,0.2,3.0,hiddenlayer,,,,"['pytorch', 'tensorflow', 'jupyter']",377.0,366.0,https://pypi.org/project/hiddenlayer,2020-04-24 07:32:11.000,11.0,4943.0,4943.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +645,graph4nlp,graph4ai/graph4nlp,graph,,https://github.com/graph4ai/graph4nlp,https://github.com/graph4ai/graph4nlp,Apache-2.0,2020-07-16 03:28:48.000,2024-06-24 03:38:13.000000,2022-11-13 04:54:45,1941.0,,200.0,28.0,424.0,11.0,163.0,1680.0,Graph4nlp is the library for the easy use of Graph Neural Networks for NLP. Welcome to visit our DLG4NLP website..,29.0,22,False,2022-01-20 18:07:32.000,0.5.5,12.0,graph4nlp,,,,['pytorch'],,,https://pypi.org/project/graph4nlp,2022-01-20 15:18:44.000,,542.0,542.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +646,Mesh,tensorflow/mesh,distributed-ml,,https://github.com/tensorflow/mesh,https://github.com/tensorflow/mesh,Apache-2.0,2018-09-20 20:23:34.000,2023-11-17 19:39:54.000000,2023-11-17 19:39:45,658.0,,255.0,50.0,312.0,98.0,18.0,1604.0,Mesh TensorFlow: Model Parallelism Made Easier.,50.0,22,False,2022-05-15 21:06:13.000,0.1.21,27.0,mesh-tensorflow,,,,['tensorflow'],3.0,,https://pypi.org/project/mesh-tensorflow,2022-05-15 21:06:13.000,3.0,57482.0,57482.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +647,ThunderSVM,Xtra-Computing/thundersvm,ml-frameworks,,https://github.com/Xtra-Computing/thundersvm,https://github.com/Xtra-Computing/thundersvm,Apache-2.0,2014-12-11 04:24:04.000,2024-04-01 08:11:14.000000,2024-04-01 08:11:13,912.0,,217.0,56.0,55.0,82.0,149.0,1595.0,ThunderSVM: A Fast SVM Library on GPUs and CPUs.,37.0,22,True,2020-03-13 12:36:30.000,0.3.12,9.0,thundersvm,,,,,,,https://pypi.org/project/thundersvm,2020-03-13 12:36:30.000,,1551.0,1580.0,,,,,,,,3.0,2950.0,,,,,,,,,,,,,,,,,,, +648,FinQuant,fmilthaler/FinQuant,financial-data,,https://github.com/fmilthaler/FinQuant,https://github.com/fmilthaler/FinQuant,MIT,2019-01-20 15:07:19.000,2023-11-04 08:38:31.000000,2023-09-03 19:16:54,508.0,,207.0,32.0,87.0,17.0,33.0,1521.0,"A program for financial portfolio management, analysis and optimisation.",11.0,22,False,2023-09-04 06:57:56.000,0.7.0,15.0,FinQuant,,,,,96.0,95.0,https://pypi.org/project/FinQuant,2023-09-04 06:57:56.000,1.0,538.0,538.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +649,PFRL,pfnet/pfrl,reinforcement-learning,,https://github.com/pfnet/pfrl,https://github.com/pfnet/pfrl,MIT,2020-06-24 09:31:50.000,2024-08-04 22:39:35.000000,2024-08-04 17:00:39,437.0,,151.0,88.0,122.0,33.0,46.0,1227.0,PFRL: a PyTorch-based deep reinforcement learning library.,20.0,22,True,2023-07-16 15:34:00.704,0.4.0,6.0,pfrl,,,,,122.0,121.0,https://pypi.org/project/pfrl,2023-07-16 15:34:00.704,1.0,373.0,373.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +650,Sockeye,awslabs/sockeye,nlp,,https://github.com/awslabs/sockeye,https://github.com/awslabs/sockeye,Apache-2.0,2017-06-08 07:44:30.000,2024-10-24 08:18:17.000000,2024-10-24 08:17:36,836.0,,323.0,48.0,799.0,11.0,300.0,1214.0,Sequence-to-sequence framework with a focus on Neural Machine Translation based on PyTorch.,60.0,22,True,2023-03-03 07:51:00.411,3.1.34,85.0,sockeye,,,,['mxnet'],,,https://pypi.org/project/sockeye,2023-03-03 07:51:00.411,,2769.0,2769.0,,,,,,,,3.0,21.0,,,,,,,,,,,,,,,,,,, +651,luminol,linkedin/luminol,time-series-data,,https://github.com/linkedin/luminol,https://github.com/linkedin/luminol,Apache-2.0,2015-11-18 23:16:33.000,2023-05-09 00:52:44.000000,2023-05-09 00:52:44,72.0,,215.0,64.0,29.0,31.0,12.0,1208.0,Anomaly Detection and Correlation library.,9.0,22,False,2016-01-20 01:01:44.000,0.3.1,5.0,luminol,,,,,85.0,83.0,https://pypi.org/project/luminol,2017-12-11 06:04:15.000,2.0,9766.0,9766.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +652,fastFM,ibayer/fastFM,recommender-systems,,https://github.com/ibayer/fastFM,https://github.com/ibayer/fastFM,BSD-3-Clause,2014-10-27 12:25:51.000,2022-07-17 13:12:39.000000,2021-03-24 12:22:31,297.0,,206.0,27.0,61.0,52.0,61.0,1084.0,fastFM: A Library for Factorization Machines.,20.0,22,False,2017-11-23 06:59:56.000,0.2.11,10.0,fastfm,,,,,130.0,127.0,https://pypi.org/project/fastfm,2017-11-23 06:59:56.000,3.0,1195.0,1201.0,,,,,,,,3.0,824.0,,,,,,,,,,,,,,,,,,, +653,geoplotlib,andrea-cuttone/geoplotlib,geospatial-data,,https://github.com/andrea-cuttone/geoplotlib,https://github.com/andrea-cuttone/geoplotlib,MIT,2015-02-24 13:13:07.000,2025-04-22 14:57:53.193000,2019-05-06 07:06:50,159.0,,169.0,56.0,14.0,30.0,19.0,1034.0,python toolbox for visualizing geographical data and making maps.,8.0,22,False,2016-07-27 14:55:01.000,0.3.2,4.0,geoplotlib,conda-forge/geoplotlib,,,,192.0,190.0,https://pypi.org/project/geoplotlib,2016-07-27 14:55:01.000,2.0,570.0,784.0,https://anaconda.org/conda-forge/geoplotlib,2025-04-22 14:57:53.193,10093.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +654,tf-explain,sicara/tf-explain,interpretability,,https://github.com/sicara/tf-explain,https://github.com/sicara/tf-explain,MIT,2019-07-15 08:26:24.000,2024-06-03 10:38:45.000000,2022-06-30 08:14:18,208.0,,111.0,48.0,99.0,44.0,51.0,1025.0,Interpretability Methods for tf.keras models with Tensorflow 2.x.,18.0,22,False,2021-11-18 20:57:29.000,0.3.1,8.0,tf-explain,,,,['tensorflow'],295.0,284.0,https://pypi.org/project/tf-explain,2021-11-18 20:57:29.000,11.0,4239.0,4239.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +655,TSFEL,fraunhoferportugal/tsfel,time-series-data,,https://github.com/fraunhoferportugal/tsfel,https://github.com/fraunhoferportugal/tsfel,BSD-3-Clause,2019-01-09 16:41:30.000,2024-10-17 08:47:41.000000,2024-10-17 08:43:32,431.0,,143.0,20.0,88.0,10.0,72.0,1002.0,An intuitive library to extract features from time series.,20.0,22,True,2024-09-12 10:50:23.000,0.1.9,13.0,tsfel,,,,,204.0,197.0,https://pypi.org/project/tsfel,2024-09-12 10:43:35.000,7.0,8741.0,8741.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +656,Saliency,PAIR-code/saliency,tensorflow-utils,,https://github.com/PAIR-code/saliency,https://github.com/PAIR-code/saliency,Apache-2.0,2017-06-09 22:07:35.000,2024-03-20 19:51:28.000000,2024-03-20 19:28:51,85.0,,191.0,24.0,58.0,12.0,27.0,972.0,"Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).",18.0,22,False,2024-03-20 19:51:28.000,0.2.1,12.0,saliency,,,,['tensorflow'],140.0,132.0,https://pypi.org/project/saliency,2024-03-20 19:51:28.000,8.0,14019.0,14019.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +657,kapre,keunwoochoi/kapre,audio,,https://github.com/keunwoochoi/kapre,https://github.com/keunwoochoi/kapre,MIT,2016-12-14 18:36:36.000,2023-10-23 02:52:41.000000,2022-07-04 00:10:02,195.0,,146.0,22.0,46.0,17.0,82.0,928.0,kapre: Keras Audio Preprocessors.,13.0,22,False,2022-01-21 20:10:47.000,Kapre-0.3.7,24.0,kapre,,,,['tensorflow'],2515.0,2506.0,https://pypi.org/project/kapre,2022-01-21 20:09:21.000,9.0,2308.0,2308.0,,,,,,,,3.0,32.0,,,,,,,,,,,,,,,,,,, +658,Baal,baal-org/baal,probabilistics,,https://github.com/baal-org/baal,https://github.com/baal-org/baal,Apache-2.0,2019-09-30 20:16:26.000,2025-04-22 14:57:44.821000,2024-06-27 20:02:41,240.0,,87.0,16.0,160.0,20.0,94.0,895.0,Bayesian active learning library for research and industrial usecases.,23.0,22,True,2024-06-11 15:50:56.000,2.0.0,21.0,baal,conda-forge/baal,,,,68.0,66.0,https://pypi.org/project/baal,2024-06-11 15:50:56.000,2.0,1831.0,2074.0,https://anaconda.org/conda-forge/baal,2025-04-22 14:57:44.821,12424.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +659,Pandas-Bokeh,PatrikHlobil/Pandas-Bokeh,data-viz,,https://github.com/PatrikHlobil/Pandas-Bokeh,https://github.com/PatrikHlobil/Pandas-Bokeh,MIT,2018-11-23 20:49:14.000,2024-04-10 17:11:06.000000,2023-03-06 07:52:05,311.0,,113.0,24.0,36.0,35.0,69.0,883.0,Bokeh Plotting Backend for Pandas and GeoPandas.,15.0,22,False,2021-04-11 17:43:13.000,0.5.5,16.0,pandas-bokeh,,,,['pandas'],727.0,715.0,https://pypi.org/project/pandas-bokeh,2021-04-11 17:43:13.000,12.0,6184.0,6184.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +660,icevision,airctic/icevision,image,,https://github.com/airctic/icevision,https://github.com/airctic/icevision,Apache-2.0,2020-05-04 01:57:02.000,2024-11-26 19:03:40.000000,2024-10-31 11:39:03,1235.0,,132.0,22.0,594.0,63.0,511.0,857.0,"An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come.",41.0,22,True,2022-02-10 15:55:46.374,0.12.0,41.0,icevision,,,,,6.0,,https://pypi.org/project/icevision,2022-02-10 15:55:46.374,6.0,4192.0,4192.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +661,mlens,flennerhag/mlens,others,,https://github.com/flennerhag/mlens,https://github.com/flennerhag/mlens,MIT,2017-01-10 20:53:47.000,2023-11-13 16:09:34.000000,2020-02-25 14:31:53,879.0,,108.0,28.0,60.0,27.0,74.0,854.0,ML-Ensemble high performance ensemble learning.,7.0,22,False,2018-10-30 22:34:35.000,0.2.3,14.0,mlens,,,,,520.0,519.0,https://pypi.org/project/mlens,2018-10-30 22:30:43.000,1.0,4177.0,4177.0,,,,,,,,3.0,,,,,,,,,3.0,,,,,,,,,,, +662,finetune,IndicoDataSolutions/finetune,nlp,,https://github.com/IndicoDataSolutions/finetune,https://github.com/IndicoDataSolutions/finetune,MPL-2.0,2018-06-12 17:02:16.000,2025-03-31 18:51:15.000000,2025-03-31 18:51:05,1512.0,3.0,78.0,30.0,703.0,22.0,118.0,710.0,Scikit-learn style model finetuning for NLP.,24.0,22,True,2023-09-29 10:19:51.000,0.10.0,39.0,finetune,,,,"['tensorflow', 'sklearn']",16.0,14.0,https://pypi.org/project/finetune,2023-09-29 10:19:51.000,2.0,750.0,750.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +663,pivottablejs,nicolaskruchten/jupyter_pivottablejs,data-viz,,https://github.com/nicolaskruchten/jupyter_pivottablejs,https://github.com/nicolaskruchten/jupyter_pivottablejs,MIT,2015-09-09 13:39:18.000,2025-04-22 15:32:21.072000,2018-12-04 14:43:25,32.0,,88.0,20.0,9.0,25.0,41.0,700.0,"Dragndrop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js.",3.0,22,False,2018-01-15 18:14:37.000,0.9.0,10.0,pivottablejs,anaconda/pivottablejs,,,['jupyter'],528.0,518.0,https://pypi.org/project/pivottablejs,2018-01-15 18:14:37.000,10.0,17228.0,17259.0,https://anaconda.org/anaconda/pivottablejs,2025-04-22 15:32:21.072,3495.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +664,Torchbearer,pytorchbearer/torchbearer,ml-frameworks,,https://github.com/pytorchbearer/torchbearer,https://github.com/pytorchbearer/torchbearer,MIT,2018-03-12 16:30:42.000,2023-12-04 11:10:47.000000,2023-12-04 11:10:46,442.0,,68.0,24.0,433.0,10.0,237.0,640.0,torchbearer: A model fitting library for PyTorch.,14.0,22,False,2023-12-01 18:48:07.000,0.5.5,26.0,torchbearer,,,,['pytorch'],100.0,96.0,https://pypi.org/project/torchbearer,2023-12-01 18:48:07.000,4.0,1539.0,1539.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +665,skope-rules,scikit-learn-contrib/skope-rules,sklearn-utils,,https://github.com/scikit-learn-contrib/skope-rules,https://github.com/scikit-learn-contrib/skope-rules,BSD-1-Clause,2018-02-18 13:42:47.000,2024-01-31 14:01:51.000000,2023-02-14 11:18:28,249.0,,100.0,25.0,33.0,35.0,6.0,634.0,machine learning with logical rules in Python.,19.0,22,False,2020-12-11 09:37:02.000,1.0.1,4.0,skope-rules,,,,['sklearn'],432.0,424.0,https://pypi.org/project/skope-rules,2020-01-25 12:01:37.000,8.0,86412.0,86412.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +666,detecto,alankbi/detecto,image,,https://github.com/alankbi/detecto,https://github.com/alankbi/detecto,MIT,2019-12-11 21:50:28.000,2025-04-22 14:57:54.494000,2022-02-09 16:35:40,142.0,,101.0,22.0,26.0,45.0,62.0,617.0,Build fully-functioning computer vision models with PyTorch.,12.0,22,False,2022-02-02 00:22:07.000,1.2.2,13.0,detecto,conda-forge/detecto,,,['pytorch'],193.0,191.0,https://pypi.org/project/detecto,2022-02-02 00:12:06.000,2.0,2690.0,2832.0,https://anaconda.org/conda-forge/detecto,2025-04-22 14:57:54.494,6550.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +667,small-text,webis-de/small-text,nlp,,https://github.com/webis-de/small-text,https://github.com/webis-de/small-text,MIT,2021-05-24 08:06:41.000,2025-04-22 14:58:21.176000,2025-04-06 17:36:49,734.0,21.0,70.0,21.0,10.0,18.0,48.0,613.0,Active Learning for Text Classification in Python.,9.0,22,True,2024-11-24 19:15:11.000,2.0.0.de1,24.0,small-text,conda-forge/small-text,,,"['sklearn', 'pytorch']",34.0,34.0,https://pypi.org/project/small-text,2025-04-06 17:43:10.000,,1338.0,1769.0,https://anaconda.org/conda-forge/small-text,2025-04-22 14:58:21.176,14235.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +668,random-forest-importances,parrt/random-forest-importances,interpretability,,https://github.com/parrt/random-forest-importances,https://github.com/parrt/random-forest-importances,MIT,2018-03-22 19:20:13.000,2025-03-24 16:48:44.000000,2025-03-24 16:48:44,253.0,2.0,132.0,21.0,21.0,8.0,31.0,611.0,Code to compute permutation and drop-column importances in Python scikit-learn models.,16.0,22,True,2021-01-28 23:23:17.000,1.3.7,22.0,rfpimp,,,,['sklearn'],186.0,181.0,https://pypi.org/project/rfpimp,2021-01-28 23:19:33.000,5.0,12526.0,12526.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +669,Quantus,understandable-machine-intelligence-lab/quantus,interpretability,,https://github.com/understandable-machine-intelligence-lab/Quantus,https://github.com/understandable-machine-intelligence-lab/Quantus,GPL-3.0,2021-03-18 15:04:58.000,2025-02-07 18:03:48.000000,2025-02-05 11:04:30,1822.0,5.0,77.0,10.0,222.0,51.0,84.0,598.0,Quantus is an eXplainable AI toolkit for responsible evaluation of neural network explanations.,24.0,22,False,2023-12-05 11:42:47.000,0.5.3,27.0,quantus,,,,,55.0,54.0,https://pypi.org/project/quantus,2023-12-05 11:42:47.000,1.0,1512.0,1519.0,,,,,,,,3.0,285.0,,,,,,,,,,,,,,,,,,, +670,PyWaffle,gyli/PyWaffle,data-viz,,https://github.com/gyli/PyWaffle,https://github.com/gyli/PyWaffle,MIT,2017-11-14 20:03:47.000,2025-04-22 14:56:58.537000,2024-06-16 04:23:17,307.0,,106.0,8.0,15.0,6.0,16.0,595.0,Make Waffle Charts in Python.,6.0,22,True,2024-06-16 04:18:08.000,1.1.1,28.0,pywaffle,conda-forge/pywaffle,,,,514.0,508.0,https://pypi.org/project/pywaffle,2024-06-16 04:18:08.000,6.0,13427.0,13718.0,https://anaconda.org/conda-forge/pywaffle,2025-04-22 14:56:58.537,15747.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +671,joypy,leotac/joypy,data-viz,,https://github.com/leotac/joypy,https://github.com/leotac/joypy,MIT,2017-07-30 17:18:50.000,2025-04-22 14:57:03.596000,2021-12-19 09:41:43,133.0,,59.0,10.0,21.0,17.0,37.0,587.0,Joyplots in Python with matplotlib & pandas.,8.0,22,False,2021-12-19 09:42:50.000,0.2.6,17.0,joypy,conda-forge/joypy,,,,542.0,533.0,https://pypi.org/project/joypy,2021-12-19 09:42:50.000,9.0,14463.0,15063.0,https://anaconda.org/conda-forge/joypy,2025-04-22 14:57:03.596,31227.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +672,happy-transformer,EricFillion/happy-transformer,nlp,,https://github.com/EricFillion/happy-transformer,https://github.com/EricFillion/happy-transformer,Apache-2.0,2019-10-06 22:02:12.000,2025-04-22 04:13:27.000000,2025-03-22 19:05:46,1220.0,2.0,68.0,6.0,217.0,21.0,109.0,532.0,Happy Transformer makes it easy to fine-tune and perform inference with NLP Transformer models.,14.0,22,True,2023-08-07 03:02:27.000,3.0.0,40.0,happytransformer,,,,['huggingface'],328.0,323.0,https://pypi.org/project/happytransformer,2023-08-05 22:54:02.000,5.0,3125.0,3125.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +673,Hyperactive,SimonBlanke/Hyperactive,hyperopt,,https://github.com/SimonBlanke/Hyperactive,https://github.com/SimonBlanke/Hyperactive,MIT,2018-11-01 08:53:30.000,2025-04-15 18:20:53.000000,2025-04-15 18:20:53,2420.0,8.0,47.0,10.0,28.0,15.0,64.0,517.0,An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.,12.0,22,True,2024-08-14 15:06:05.000,4.8.0,80.0,hyperactive,,,,,50.0,37.0,https://pypi.org/project/hyperactive,2024-08-15 14:23:15.000,13.0,3360.0,3364.0,,,,,,,,3.0,306.0,,,,,,,,,,,,,,,,,,, +674,apricot,jmschrei/apricot,others,,https://github.com/jmschrei/apricot,https://github.com/jmschrei/apricot,MIT,2018-08-12 02:42:12.000,2024-08-20 18:39:53.000000,2021-11-18 21:06:54,172.0,,48.0,8.0,10.0,13.0,21.0,504.0,apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine..,4.0,22,False,2023-11-17 16:33:58.000,0.6.1,14.0,apricot-select,,,,,202.0,186.0,https://pypi.org/project/apricot-select,2021-02-18 06:55:02.000,16.0,11976.0,11976.0,,,,,,,,3.0,32.0,,,,,,,,,,,,,,,,,,, +675,pykale,pykale/pykale,others,,https://github.com/pykale/pykale,https://github.com/pykale/pykale,MIT,2020-06-30 08:06:10.000,2025-04-24 12:57:56.000000,2025-04-24 11:12:35,3141.0,75.0,66.0,9.0,277.0,11.0,117.0,457.0,Knowledge-Aware machine LEarning (KALE): accessible machine learning from multiple sources for interdisciplinary..,26.0,22,True,2023-07-13 11:41:03.541,0.1.2,12.0,pykale,,,,['pytorch'],6.0,6.0,https://pypi.org/project/pykale,2022-04-12 08:56:50.000,,414.0,414.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +676,SUOD,yzhao062/SUOD,others,,https://github.com/yzhao062/SUOD,https://github.com/yzhao062/SUOD,BSD-2-Clause,2019-11-20 00:23:54.000,2025-03-24 21:18:50.000000,2025-03-24 21:11:36,170.0,2.0,49.0,16.0,2.0,12.0,3.0,385.0,(MLSys 21) An Acceleration System for Large-scare Unsupervised Heterogeneous Outlier Detection (Anomaly Detection).,3.0,22,True,2025-03-24 21:18:50.000,0.1.4,15.0,suod,,,,,559.0,550.0,https://pypi.org/project/suod,2025-03-24 21:18:50.000,9.0,11292.0,11292.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +677,vega,vega/ipyvega,data-viz,,https://github.com/vega/ipyvega,https://github.com/vega/ipyvega,BSD-3-Clause,2015-08-04 03:22:47.000,2025-04-22 14:56:23.980000,2025-01-01 01:30:41,688.0,,65.0,27.0,510.0,15.0,91.0,380.0,IPython/Jupyter notebook module for Vega and Vega-Lite.,15.0,22,True,2024-09-25 14:29:32.000,4.1.0,41.0,vega,conda-forge/vega,,,['jupyter'],21.0,4.0,https://pypi.org/project/vega,2024-09-25 14:29:32.000,17.0,17428.0,29756.0,https://anaconda.org/conda-forge/vega,2025-04-22 14:56:23.980,727406.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +678,Studio.ml,studioml/studio,ml-experiments,,https://github.com/studioml/studio,https://github.com/studioml/studio,Apache-2.0,2017-05-15 01:49:28.000,2024-07-06 00:47:45.000000,2023-09-06 17:29:29,2412.0,,52.0,22.0,232.0,57.0,195.0,380.0,Studio: Simplify and expedite model building process.,24.0,22,False,2021-09-14 22:55:51.000,0.0.49,208.0,studioml,,,,,7.0,7.0,https://pypi.org/project/studioml,2021-09-14 22:55:51.000,,5679.0,5679.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +679,upgini,upgini/upgini,tabular,,https://github.com/upgini/upgini,https://github.com/upgini/upgini,BSD-3-Clause,2021-12-08 21:53:58.000,2025-04-24 10:20:47.000000,2025-04-19 14:45:42,874.0,57.0,25.0,5.0,323.0,5.0,,330.0,Data search & enrichment library for Machine Learning Easily find and add relevant features to your ML & AI pipeline..,13.0,22,True,2025-04-19 14:46:00.000,1.2.80,1026.0,upgini,,,,,9.0,9.0,https://pypi.org/project/upgini,2025-04-24 10:20:47.000,,27617.0,27617.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +680,celer,mathurinm/celer,sklearn-utils,,https://github.com/mathurinm/celer,https://github.com/mathurinm/celer,BSD-3-Clause,2018-02-20 19:37:31.000,2025-04-23 14:14:50.000000,2025-04-23 13:57:29,268.0,3.0,35.0,9.0,204.0,22.0,77.0,222.0,"Fast solver for L1-type problems: Lasso, sparse Logisitic regression, Group Lasso, weighted Lasso, Multitask Lasso, etc.",14.0,22,False,2025-04-04 14:57:26.000,0.7.4,16.0,celer,,,,['sklearn'],53.0,48.0,https://pypi.org/project/celer,2025-04-04 14:57:26.000,5.0,3158.0,3158.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +681,stop-words,Alir3z4/python-stop-words,nlp,,https://github.com/Alir3z4/python-stop-words,https://github.com/Alir3z4/python-stop-words,BSD-3-Clause,2014-05-26 06:44:03.000,2024-03-12 10:32:40.000000,2018-07-23 21:04:09,90.0,,29.0,6.0,20.0,5.0,9.0,155.0,Get list of common stop words in various languages in Python.,8.0,22,False,2018-07-23 20:58:34.000,2018.7.23,8.0,stop-words,,,,,2550.0,2506.0,https://pypi.org/project/stop-words,2018-07-23 20:55:55.000,44.0,107190.0,107190.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +682,DEβ«ΆTR,facebookresearch/detr,image,,https://github.com/facebookresearch/detr,https://github.com/facebookresearch/detr,Apache-2.0,2020-05-26 23:54:52.000,2024-03-12 15:58:25.000000,2024-03-12 15:58:25,48.0,,2466.0,149.0,89.0,255.0,286.0,14260.0,End-to-End Object Detection with Transformers.,27.0,21,False,2020-06-29 16:41:01.000,0.2,1.0,,,,,['pytorch'],21.0,21.0,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +683,nebullvm,nebuly-ai/nebullvm,model-serialisation,,https://github.com/nebuly-ai/optimate,https://github.com/nebuly-ai/optimate,Apache-2.0,2022-02-12 17:17:14.000,2024-07-22 02:07:03.000000,2024-07-22 02:07:02,771.0,,634.0,91.0,152.0,100.0,102.0,8370.0,A collection of libraries to optimise AI model performances.,40.0,21,True,2023-06-18 11:03:00.511,0.10.0,26.0,nebullvm,,,,,2.0,,https://pypi.org/project/nebullvm,2023-06-18 11:03:00.511,2.0,1027.0,1027.0,,,,,,,,3.0,,,,,,,nebuly-ai/optimate,,,,,,,,,,,,, +684,PySlowFast,facebookresearch/SlowFast,image,,https://github.com/facebookresearch/SlowFast,https://github.com/facebookresearch/SlowFast,Apache-2.0,2019-08-20 22:47:26.000,2024-11-26 11:06:14.000000,2024-11-26 10:38:20,194.0,,1210.0,92.0,51.0,416.0,292.0,6907.0,PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.,34.0,21,True,,,1.0,pyslowfast,,,,['pytorch'],23.0,23.0,https://pypi.org/project/pyslowfast,2020-01-15 23:51:07.000,,44.0,44.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +685,graph-nets,deepmind/graph_nets,graph,,https://github.com/google-deepmind/graph_nets,https://github.com/google-deepmind/graph_nets,Apache-2.0,2018-08-31 08:19:28.000,2022-12-12 11:28:07.000000,2022-12-12 11:28:07,48.0,,782.0,223.0,25.0,8.0,122.0,5380.0,Build Graph Nets in Tensorflow.,11.0,21,False,2020-01-29 16:00:25.000,1.1.0,7.0,graph-nets,,,,['tensorflow'],22.0,20.0,https://pypi.org/project/graph-nets,2020-01-29 16:00:25.000,2.0,961.0,961.0,,,,,,,,3.0,,,,,,,google-deepmind/graph_nets,,,,,,,,,,,,, +686,mace,XiaoMi/mace,ml-frameworks,,https://github.com/XiaoMi/mace,https://github.com/XiaoMi/mace,Apache-2.0,2018-06-27 03:50:12.000,2024-06-17 09:17:33.000000,2024-03-11 13:23:01,3347.0,,820.0,228.0,111.0,57.0,622.0,5012.0,MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.,69.0,21,False,2022-01-13 09:55:14.000,1.1.1,12.0,,,,,,,,,,,,19.0,,,,,,,,3.0,1543.0,,,,,,,,,,,,,,,,,,, +687,Image Super-Resolution,idealo/image-super-resolution,image,,https://github.com/idealo/image-super-resolution,https://github.com/idealo/image-super-resolution,Apache-2.0,2018-11-26 13:41:13.000,2024-12-18 16:08:09.000000,2024-12-18 16:08:09,151.0,,753.0,103.0,35.0,107.0,113.0,4732.0,Super-scale your images and run experiments with Residual Dense and Adversarial Networks.,11.0,21,True,2020-01-08 15:37:35.000,2.2.0,11.0,ISR,,idealo/image-super-resolution-gpu,,['tensorflow'],5.0,,https://pypi.org/project/ISR,2020-01-08 15:37:35.000,5.0,6690.0,6693.0,,,,https://hub.docker.com/r/idealo/image-super-resolution-gpu,2019-04-01 13:48:45.697251,1.0,277.0,3.0,,,,,,,,,,,,,,,,,,,, +688,ReAgent,facebookresearch/ReAgent,reinforcement-learning,,https://github.com/facebookresearch/ReAgent,https://github.com/facebookresearch/ReAgent,BSD-3-Clause,2017-07-27 17:53:21.000,2025-03-12 03:58:30.000000,2025-03-12 03:53:03,1611.0,2.0,514.0,146.0,610.0,86.0,75.0,3615.0,"A platform for Reasoning systems (Reinforcement Learning, Contextual Bandits, etc.).",173.0,21,True,2020-01-27 22:06:00.000,0.0.0,2.0,reagent,,,,['pytorch'],,,https://pypi.org/project/reagent,2020-05-27 20:58:01.000,,71.0,71.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +689,TensorWatch,microsoft/tensorwatch,ml-experiments,,https://github.com/microsoft/tensorwatch,https://github.com/microsoft/tensorwatch,MIT,2019-05-15 08:29:34.000,2023-08-30 07:47:40.000000,2023-08-30 07:47:36,119.0,,357.0,100.0,16.0,53.0,17.0,3439.0,"Debugging, monitoring and visualization for Python Machine Learning and Data Science.",15.0,21,False,2020-03-04 07:26:22.000,0.9.1,14.0,tensorwatch,,,,,169.0,162.0,https://pypi.org/project/tensorwatch,2020-03-04 07:26:22.000,7.0,1103.0,1103.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +690,igel,nidhaloff/igel,hyperopt,,https://github.com/nidhaloff/igel,https://github.com/nidhaloff/igel,MIT,2020-08-27 20:54:59.000,2023-04-08 21:24:52.000000,2023-04-08 21:24:51,429.0,,179.0,64.0,55.0,6.0,44.0,3113.0,"a delightful machine learning tool that allows you to train, test, and use models without writing code.",22.0,21,False,2021-11-19 16:51:47.000,1.0.0,34.0,igel,,,,,6.0,6.0,https://pypi.org/project/igel,2021-11-19 16:45:29.543,,1005.0,1005.0,,,,,,,,3.0,54.0,,,,,,,,,,,,,,,,,,, +691,AdaBound,Luolc/AdaBound,pytorch-utils,,https://github.com/Luolc/AdaBound,https://github.com/Luolc/AdaBound,Apache-2.0,2019-02-15 18:05:20.000,2023-07-23 10:44:20.000000,2019-03-06 17:01:45,27.0,,331.0,70.0,2.0,19.0,7.0,2914.0,An optimizer that trains as fast as Adam and as good as SGD.,2.0,21,False,2019-03-06 16:44:42.000,0.0.5,4.0,adabound,,,,['pytorch'],227.0,224.0,https://pypi.org/project/adabound,2019-02-26 04:23:45.000,3.0,1786.0,1786.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +692,Coach,IntelLabs/coach,reinforcement-learning,,https://github.com/IntelLabs/coach,https://github.com/IntelLabs/coach,Apache-2.0,2017-10-01 19:27:43.000,2022-12-11 17:54:07.000000,2022-12-11 17:54:06,524.0,,462.0,124.0,225.0,90.0,183.0,2346.0,Reinforcement Learning Coach by Intel AI Lab enables easy experimentation with state of the art Reinforcement Learning..,38.0,21,False,2019-10-10 14:17:10.000,1.0.1,13.0,rl_coach,,,,,2.0,,https://pypi.org/project/rl_coach,2019-10-10 14:17:10.000,2.0,196.0,196.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +693,pdftabextract,WZBSocialScienceCenter/pdftabextract,ocr,,https://github.com/WZBSocialScienceCenter/pdftabextract,https://github.com/WZBSocialScienceCenter/pdftabextract,Apache-2.0,2016-07-08 11:44:46.000,2022-06-24 09:51:22.000000,2022-06-24 09:51:22,171.0,,372.0,83.0,4.0,5.0,18.0,2237.0,A set of tools for extracting tables from PDF files helping to do data mining on (OCR-processed) scanned documents.,4.0,21,False,2018-01-09 08:00:24.000,0.3.0,5.0,pdftabextract,,,,,51.0,51.0,https://pypi.org/project/pdftabextract,2018-01-09 08:00:24.000,,589.0,589.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +694,reformer-pytorch,lucidrains/reformer-pytorch,pytorch-utils,,https://github.com/lucidrains/reformer-pytorch,https://github.com/lucidrains/reformer-pytorch,MIT,2020-01-09 20:42:37.000,2023-06-21 14:17:49.000000,2023-06-21 14:07:30,249.0,,252.0,52.0,35.0,16.0,105.0,2164.0,"Reformer, the efficient Transformer, in Pytorch.",11.0,21,False,2021-11-06 23:09:00.000,1.4.4,139.0,reformer-pytorch,,,,['pytorch'],,,https://pypi.org/project/reformer-pytorch,2021-11-06 23:09:00.000,,19953.0,19953.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +695,BlazingSQL,BlazingDB/blazingsql,gpu-utilities,,https://github.com/BlazingDB/blazingsql,https://github.com/BlazingDB/blazingsql,Apache-2.0,2018-09-24 18:25:45.000,2025-03-25 16:26:10.601000,2021-09-30 21:51:09,8208.0,,184.0,56.0,895.0,146.0,586.0,1960.0,"BlazingSQL is a lightweight, GPU accelerated, SQL engine for Python. Built on RAPIDS cuDF.",51.0,21,False,2021-08-16 15:40:43.000,21.08.00,19.0,,blazingsql/blazingsql-protocol,,,,,,,,,,16.0,https://anaconda.org/blazingsql/blazingsql-protocol,2025-03-25 16:26:10.601,1096.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +696,benchmark_VAE,clementchadebec/benchmark_VAE,others,,https://github.com/clementchadebec/benchmark_VAE,https://github.com/clementchadebec/benchmark_VAE,Apache-2.0,2021-10-02 16:26:24.000,2024-07-31 12:13:28.000000,2024-07-17 07:59:47,373.0,,171.0,17.0,74.0,26.0,45.0,1904.0,Unifying Variational Autoencoder (VAE) implementations in Pytorch (NeurIPS 2022).,18.0,21,True,2023-09-06 15:46:59.000,0.1.2,12.0,pythae,,,,['pytorch'],40.0,40.0,https://pypi.org/project/pythae,2023-09-06 15:46:59.000,,1166.0,1166.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +697,fast-bert,utterworks/fast-bert,nlp,,https://github.com/utterworks/fast-bert,https://github.com/utterworks/fast-bert,Apache-2.0,2019-04-18 22:01:20.000,2024-08-19 09:45:05.000000,2024-08-19 09:41:36,346.0,,341.0,40.0,68.0,163.0,95.0,1895.0,Super easy library for BERT based NLP models.,37.0,21,True,2024-08-19 09:45:05.000,2.0.26,72.0,fast-bert,,,,,,,https://pypi.org/project/fast-bert,2024-08-19 09:45:05.000,,2542.0,2542.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +698,Antialiased CNNs,adobe/antialiased-cnns,pytorch-utils,,https://github.com/adobe/antialiased-cnns,https://github.com/adobe/antialiased-cnns,CC BY-NC-SA 4.0,2019-05-14 20:51:25.000,2024-04-08 12:49:27.000000,2021-09-29 18:48:52,239.0,,202.0,36.0,7.0,15.0,33.0,1671.0,pip install antialiased-cnns to improve stability and accuracy.,6.0,21,False,2020-10-23 22:45:52.000,0.3,6.0,antialiased-cnns,,,,['pytorch'],84.0,78.0,https://pypi.org/project/antialiased-cnns,2020-10-23 22:42:49.000,6.0,4010.0,4010.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +699,DELTA,Delta-ML/delta,nlp,,https://github.com/Delta-ML/delta,https://github.com/Delta-ML/delta,Apache-2.0,2019-05-29 08:33:57.000,2025-04-16 19:27:35.000000,2020-12-17 06:57:15,932.0,,292.0,64.0,204.0,5.0,74.0,1591.0,DELTA is a deep learning based natural language and speech processing platform. LF AI & DATA Projects:..,41.0,21,False,2020-07-16 09:31:45.000,0.3.3,4.0,delta-nlp,,zh794390558/delta,,['tensorflow'],2.0,2.0,https://pypi.org/project/delta-nlp,2020-03-27 04:46:19.000,,121.0,306.0,,,,https://hub.docker.com/r/zh794390558/delta,2021-08-03 14:50:00.516864,,13160.0,3.0,,,,,,,,,,,,,,,,,,,, +700,lore,instacart/lore,ml-experiments,,https://github.com/instacart/lore,https://github.com/instacart/lore,MIT,2017-10-19 21:51:45.000,2023-05-13 02:26:19.000000,2022-09-27 19:41:48,274.0,,135.0,99.0,150.0,21.0,20.0,1550.0,Lore makes machine learning approachable for Software Engineers and maintainable for Machine Learning Researchers.,29.0,21,False,2022-02-18 18:01:38.000,0.8.6,233.0,lore,,,,,25.0,25.0,https://pypi.org/project/lore,2022-02-18 18:01:38.000,,7242.0,7242.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +701,MLBox,AxeldeRomblay/MLBox,hyperopt,,https://github.com/AxeldeRomblay/MLBox,https://github.com/AxeldeRomblay/MLBox,BSD-1-Clause,2017-06-01 16:59:24.000,2023-08-06 18:20:04.000000,2020-08-25 09:26:27,1121.0,,272.0,64.0,51.0,23.0,75.0,1513.0,MLBox is a powerful Automated Machine Learning python library.,9.0,21,False,2020-08-25 09:32:37.000,0.8.5,21.0,mlbox,,,,,37.0,37.0,https://pypi.org/project/mlbox,2020-08-25 09:32:37.000,,367.0,367.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +702,anaGo,Hironsan/anago,nlp,,https://github.com/Hironsan/anago,https://github.com/Hironsan/anago,MIT,2017-06-26 21:28:36.000,2022-12-07 23:44:31.000000,2021-04-01 12:34:50,298.0,,367.0,59.0,47.0,46.0,71.0,1482.0,"Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.",11.0,21,False,2018-07-17 01:59:21.000,1.0.8,14.0,anago,,,,['tensorflow'],41.0,35.0,https://pypi.org/project/anago,2018-07-17 01:59:21.000,6.0,391.0,391.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +703,tensorrec,jfkirk/tensorrec,recommender-systems,,https://github.com/jfkirk/tensorrec,https://github.com/jfkirk/tensorrec,Apache-2.0,2017-02-28 18:51:11.000,2023-05-22 21:34:54.000000,2020-02-04 21:10:25,334.0,,221.0,62.0,48.0,40.0,90.0,1287.0,A TensorFlow recommendation algorithm and framework in Python.,9.0,21,False,2019-04-02 00:53:47.000,0.26.2,30.0,tensorrec,,,,['tensorflow'],38.0,38.0,https://pypi.org/project/tensorrec,2019-04-02 00:53:47.000,,561.0,561.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +704,Performer Pytorch,lucidrains/performer-pytorch,pytorch-utils,,https://github.com/lucidrains/performer-pytorch,https://github.com/lucidrains/performer-pytorch,MIT,2020-10-03 03:41:36.000,2022-02-02 20:34:04.000000,2022-02-02 20:33:18,124.0,,142.0,17.0,11.0,43.0,43.0,1124.0,"An implementation of Performer, a linear attention-based transformer, in Pytorch.",6.0,21,False,2022-02-02 20:34:04.000,1.1.4,80.0,performer-pytorch,,,,['pytorch'],200.0,195.0,https://pypi.org/project/performer-pytorch,2022-02-02 20:34:04.000,5.0,7298.0,7298.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +705,UForm,unum-cloud/uform,nlp,,https://github.com/unum-cloud/uform,https://github.com/unum-cloud/uform,Apache-2.0,2023-02-21 10:04:40.000,2025-01-03 23:13:37.000000,2025-01-03 23:11:28,298.0,,64.0,15.0,65.0,12.0,22.0,1122.0,"Pocket-Sized Multimodal AI for content understanding and generation across multilingual texts, images, and video, up..",19.0,21,True,2025-01-03 23:13:37.000,3.1.1,37.0,uform,,,,['pytorch'],36.0,34.0,https://pypi.org/project/uform,2025-01-03 23:13:37.000,2.0,1170.0,1192.0,,,,,,,,3.0,597.0,,,,,,,,,,,,,,,,,,, +706,attention-ocr,emedvedev/attention-ocr,ocr,,https://github.com/emedvedev/attention-ocr,https://github.com/emedvedev/attention-ocr,MIT,2017-07-21 18:35:19.000,2023-10-20 17:48:54.000000,2023-10-20 17:48:54,207.0,,249.0,47.0,46.0,26.0,127.0,1081.0,A Tensorflow model for text recognition (CNN + seq2seq with visual attention) available as a Python package and..,28.0,21,False,2020-10-12 06:56:40.000,0.7.6,21.0,aocr,,,,['tensorflow'],32.0,32.0,https://pypi.org/project/aocr,2019-04-19 05:28:27.000,,539.0,539.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +707,TensorNets,taehoonlee/tensornets,tensorflow-utils,,https://github.com/taehoonlee/tensornets,https://github.com/taehoonlee/tensornets,MIT,2017-09-19 05:19:01.000,2021-01-02 06:28:10.000000,2021-01-02 06:26:24,284.0,,182.0,50.0,12.0,16.0,42.0,1003.0,High level network definitions with pre-trained weights in TensorFlow.,6.0,21,False,2020-03-31 04:38:27.000,0.4.6,12.0,tensornets,,,,['tensorflow'],91.0,87.0,https://pypi.org/project/tensornets,2020-03-31 04:35:15.000,4.0,270.0,270.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +708,robustness,MadryLab/robustness,adversarial,,https://github.com/MadryLab/robustness,https://github.com/MadryLab/robustness,MIT,2019-08-21 09:26:33.000,2025-04-22 14:57:33.362000,2022-02-14 20:43:06,145.0,,181.0,18.0,42.0,28.0,60.0,935.0,"A library for experimenting with, training and evaluating neural networks, with a focus on adversarial robustness.",13.0,21,False,2020-12-01 06:11:12.000,1.2.1.post2,10.0,robustness,conda-forge/robustness,,,,207.0,204.0,https://pypi.org/project/robustness,2020-12-01 06:21:33.000,3.0,956.0,1157.0,https://anaconda.org/conda-forge/robustness,2025-04-22 14:57:33.362,11289.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +709,iterative-stratification,trent-b/iterative-stratification,sklearn-utils,,https://github.com/trent-b/iterative-stratification,https://github.com/trent-b/iterative-stratification,BSD-3-Clause,2018-02-04 00:32:10.000,2024-10-12 16:41:54.000000,2024-10-12 16:34:55,60.0,,75.0,6.0,5.0,2.0,25.0,863.0,scikit-learn cross validators for iterative stratification of multilabel data.,7.0,21,True,2024-10-12 16:41:54.000,0.1.9,8.0,iterative-stratification,,,,['sklearn'],591.0,576.0,https://pypi.org/project/iterative-stratification,2024-10-12 16:41:54.000,15.0,43975.0,43975.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +710,PDPbox,SauceCat/PDPbox,data-viz,,https://github.com/SauceCat/PDPbox,https://github.com/SauceCat/PDPbox,MIT,2017-06-26 08:01:54.000,2025-04-22 14:57:08.147000,2023-06-05 01:35:02,228.0,,129.0,17.0,25.0,29.0,41.0,853.0,python partial dependence plot toolbox.,7.0,21,False,2023-06-05 02:53:01.145,0.3.0,4.0,pdpbox,conda-forge/pdpbox,,,,26.0,,https://pypi.org/project/pdpbox,2021-03-14 16:21:17.000,26.0,11645.0,12125.0,https://anaconda.org/conda-forge/pdpbox,2025-04-22 14:57:08.147,23528.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +711,deeplift,kundajelab/deeplift,interpretability,,https://github.com/kundajelab/deeplift,https://github.com/kundajelab/deeplift,MIT,2016-06-01 02:18:06.000,2022-04-28 10:04:52.000000,2021-11-11 17:50:26,553.0,,165.0,37.0,46.0,43.0,49.0,853.0,Public facing deeplift repo.,11.0,21,False,2018-07-13 21:11:52.000,0.6.6,21.0,deeplift,,,,,119.0,110.0,https://pypi.org/project/deeplift,2020-11-11 09:32:57.000,9.0,776.0,776.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +712,sklearn-deap,rsteca/sklearn-deap,hyperopt,,https://github.com/rsteca/sklearn-deap,https://github.com/rsteca/sklearn-deap,MIT,2015-10-28 22:52:34.000,2024-02-10 07:16:54.000000,2021-07-30 15:06:27,104.0,,124.0,29.0,29.0,21.0,34.0,772.0,Use evolutionary algorithms instead of gridsearch in scikit-learn.,23.0,21,False,2021-07-30 15:13:54.000,0.3.0,14.0,sklearn-deap,,,,['sklearn'],49.0,49.0,https://pypi.org/project/sklearn-deap,2021-07-30 15:13:54.000,,1162.0,1162.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +713,NearPy,pixelogik/NearPy,nn-search,,https://github.com/pixelogik/NearPy,https://github.com/pixelogik/NearPy,MIT,2013-04-25 09:10:26.000,2023-02-23 15:20:18.000000,2023-01-22 20:07:16,161.0,,148.0,36.0,33.0,26.0,39.0,767.0,"Python framework for fast (approximated) nearest neighbour search in large, high-dimensional data sets using different..",20.0,21,False,2016-09-27 13:04:44.000,1.0.0,8.0,NearPy,,,,,119.0,119.0,https://pypi.org/project/NearPy,2016-09-27 13:03:12.000,,1196.0,1196.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +714,Test Tube,williamFalcon/test-tube,hyperopt,,https://github.com/williamFalcon/test-tube,https://github.com/williamFalcon/test-tube,MIT,2017-09-06 02:14:57.000,2022-07-22 06:10:37.000000,2020-03-17 22:44:47,642.0,,74.0,24.0,37.0,27.0,21.0,736.0,Python library to easily log experiments and parallelize hyperparameter search for neural networks.,16.0,21,False,2019-12-01 01:19:50.000,0.7.5,64.0,test_tube,,,,,35.0,,https://pypi.org/project/test_tube,2019-12-01 01:19:50.000,35.0,34798.0,34798.0,,,,,,,,3.0,29.0,,,,,,,,,,,,,,,,,,, +715,MONAILabel,Project-MONAI/MONAILabel,others,,https://github.com/Project-MONAI/MONAILabel,https://github.com/Project-MONAI/MONAILabel,Apache-2.0,2021-03-26 15:25:10.000,2025-04-07 21:11:00.000000,2025-04-03 09:22:35,1017.0,2.0,216.0,21.0,890.0,139.0,405.0,700.0,MONAI Label is an intelligent open source image labeling and learning tool.,66.0,21,True,2024-10-17 22:32:00.000,0.8.4,114.0,monailabel-weekly,,,,,,,https://pypi.org/project/monailabel-weekly,2023-10-01 02:24:07.000,,1721.0,4265.0,,,,,,,,3.0,114484.0,,,,,,,,,,,,,,,,,,, +716,combo,yzhao062/combo,sklearn-utils,,https://github.com/yzhao062/combo,https://github.com/yzhao062/combo,BSD-2-Clause,2019-07-14 01:13:36.000,2023-01-14 04:46:24.000000,2023-01-14 04:46:24,210.0,,107.0,29.0,1.0,15.0,3.0,648.0,(AAAI 20) A Python Toolbox for Machine Learning Model Combination.,2.0,21,False,2022-04-02 16:20:07.000,0.1.3,13.0,combo,,,,"['sklearn', 'xgboost']",714.0,697.0,https://pypi.org/project/combo,2022-04-02 16:20:07.000,17.0,29088.0,29088.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +717,TensorBoard Logger,TeamHG-Memex/tensorboard_logger,ml-experiments,,https://github.com/TeamHG-Memex/tensorboard_logger,https://github.com/TeamHG-Memex/tensorboard_logger,MIT,2016-10-27 14:02:25.000,2022-12-26 20:24:35.000000,2019-10-21 07:52:07,46.0,,50.0,28.0,12.0,13.0,15.0,630.0,Log TensorBoard events without touching TensorFlow.,5.0,21,False,2018-02-08 07:28:51.000,0.1.0,5.0,tensorboard_logger,,,,,261.0,253.0,https://pypi.org/project/tensorboard_logger,2018-02-08 07:28:51.000,8.0,30241.0,30241.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +718,Neuraxle,Neuraxio/Neuraxle,hyperopt,,https://github.com/Neuraxio/Neuraxle,https://github.com/Neuraxio/Neuraxle,Apache-2.0,2019-03-26 21:01:54.000,2023-05-01 22:43:43.000000,2022-08-16 17:43:49,1877.0,,57.0,18.0,217.0,49.0,316.0,610.0,The worlds cleanest AutoML library - Do hyperparameter tuning with the right pipeline abstractions to write clean deep..,9.0,21,False,2022-08-16 19:54:29.000,0.8.1,27.0,neuraxle,,,,,68.0,67.0,https://pypi.org/project/neuraxle,2022-08-16 19:50:37.507,1.0,560.0,560.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +719,seglearn,dmbee/seglearn,time-series-data,,https://github.com/dmbee/seglearn,https://github.com/dmbee/seglearn,BSD-3-Clause,2018-03-05 20:53:59.000,2022-08-27 09:01:18.000000,2022-08-27 09:00:35,283.0,,64.0,25.0,31.0,5.0,24.0,574.0,Python module for machine learning time series:.,14.0,21,False,2022-08-27 09:04:02.113,1.2.5,24.0,seglearn,,,,,53.0,51.0,https://pypi.org/project/seglearn,2021-03-13 16:18:30.000,2.0,2489.0,2489.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +720,Poutyne,GRAAL-Research/poutyne,pytorch-utils,,https://github.com/GRAAL-Research/poutyne,https://github.com/GRAAL-Research/poutyne,LGPL-3.0,2017-12-07 18:30:17.000,2024-12-03 23:28:10.000000,2024-12-03 23:20:00,773.0,,65.0,15.0,116.0,8.0,48.0,572.0,A simplified framework and utilities for PyTorch.,23.0,21,False,2024-12-03 23:22:07.000,1.17.3,39.0,poutyne,,,,['pytorch'],153.0,148.0,https://pypi.org/project/poutyne,2024-12-03 23:22:26.000,5.0,4625.0,4625.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +721,Auto ViML,AutoViML/Auto_ViML,hyperopt,,https://github.com/AutoViML/Auto_ViML,https://github.com/AutoViML/Auto_ViML,Apache-2.0,2019-06-10 13:09:15.000,2025-01-30 01:17:41.000000,2025-01-30 01:07:03,335.0,4.0,102.0,25.0,8.0,,34.0,537.0,Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome...,9.0,21,True,2025-01-30 01:17:41.000,0.2.2,148.0,autoviml,,,,,31.0,28.0,https://pypi.org/project/autoviml,2025-01-30 01:17:41.000,3.0,6487.0,6487.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +722,tick,X-DataInitiative/tick,time-series-data,,https://github.com/X-DataInitiative/tick,https://github.com/X-DataInitiative/tick,BSD-3-Clause,2016-12-01 10:59:08.000,2024-11-27 12:27:25.000000,2023-03-05 00:16:57,419.0,,110.0,35.0,277.0,85.0,174.0,503.0,"Module for statistical learning, with a particular emphasis on time-dependent modelling.",20.0,21,False,2019-09-11 11:25:15.000,0.6,23.0,tick,,,,,95.0,93.0,https://pypi.org/project/tick,2020-05-24 22:01:17.000,2.0,1561.0,1565.0,,,,,,,,3.0,427.0,,,,,,,,,,,,,,,,,,, +723,Popmon,ing-bank/popmon,data-viz,,https://github.com/ing-bank/popmon,https://github.com/ing-bank/popmon,MIT,2020-04-23 11:21:14.000,2025-01-24 15:56:18.000000,2025-01-24 15:48:14,549.0,,36.0,13.0,230.0,16.0,41.0,500.0,Monitor the stability of a Pandas or Spark dataframe.,19.0,21,True,2025-01-24 15:56:18.000,1.4.7,37.0,popmon,,,,"['pandas', 'spark']",26.0,22.0,https://pypi.org/project/popmon,2025-01-24 15:56:18.000,4.0,13239.0,13243.0,,,,,,,,3.0,255.0,,,,,,,,,,,,,,,,,,, +724,TimeSide,Parisson/TimeSide,audio,,https://github.com/Parisson/TimeSide,https://github.com/Parisson/TimeSide,AGPL-3.0,2011-11-21 21:48:08.000,2024-10-14 17:26:35.000000,2024-10-14 15:20:39,3847.0,,60.0,28.0,110.0,33.0,184.0,384.0,scalable audio processing framework and server written in Python.,23.0,21,False,2023-01-03 17:34:09.000,1.1.3,28.0,TimeSide,,,,,20.0,20.0,https://pypi.org/project/TimeSide,2020-11-27 09:33:19.000,,687.0,687.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +725,impyute,eltonlaw/impyute,others,,https://github.com/eltonlaw/impyute,https://github.com/eltonlaw/impyute,MIT,2017-01-21 09:16:27.000,2021-11-06 21:15:04.000000,2021-11-06 21:15:04,292.0,,49.0,10.0,37.0,29.0,37.0,359.0,Data imputations library to preprocess datasets with missing data.,11.0,21,False,2019-04-29 02:33:05.659,0.0.8,8.0,impyute,,,,,269.0,253.0,https://pypi.org/project/impyute,2017-05-31 08:31:47.000,16.0,3631.0,3631.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +726,OMLT,cog-imperial/omlt,model-serialisation,,https://github.com/cog-imperial/OMLT,https://github.com/cog-imperial/OMLT,,2021-06-03 12:39:38.000,2025-04-04 22:31:41.000000,2025-04-04 22:31:41,529.0,3.0,61.0,12.0,95.0,26.0,41.0,311.0,Represent trained machine learning models as Pyomo optimization formulations.,21.0,21,False,2025-03-21 03:10:28.000,1.2.2,10.0,omlt,,,,,31.0,27.0,https://pypi.org/project/omlt,2025-03-21 03:10:28.000,4.0,19321.0,19321.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +727,textpipe,textpipe/textpipe,nlp,,https://github.com/textpipe/textpipe,https://github.com/textpipe/textpipe,MIT,2018-06-21 16:23:32.000,2021-06-09 11:55:53.000000,2021-06-09 11:55:53,371.0,,27.0,21.0,239.0,24.0,25.0,302.0,Textpipe: clean and extract metadata from text.,29.0,21,False,2021-01-25 14:05:21.000,0.12.2,39.0,textpipe,,,,,11.0,10.0,https://pypi.org/project/textpipe,2021-01-25 14:05:21.000,1.0,1281.0,1281.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +728,sk-dist,Ibotta/sk-dist,distributed-ml,,https://github.com/Ibotta/sk-dist,https://github.com/Ibotta/sk-dist,Apache-2.0,2019-08-14 21:07:17.000,2025-04-18 20:07:39.000000,2023-02-07 20:17:52,60.0,,56.0,24.0,43.0,8.0,10.0,284.0,Distributed scikit-learn meta-estimators in PySpark.,8.0,21,False,2020-05-14 22:20:14.000,0.1.9,12.0,sk-dist,,,,"['sklearn', 'spark']",22.0,20.0,https://pypi.org/project/sk-dist,2020-05-14 22:20:14.000,2.0,329434.0,329434.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +729,somoclu,peterwittek/somoclu,distributed-ml,,https://github.com/peterwittek/somoclu,https://github.com/peterwittek/somoclu,MIT,2013-01-16 06:33:16.000,2025-04-22 14:56:39.798000,2024-01-18 11:58:51,626.0,,69.0,27.0,32.0,35.0,113.0,273.0,"Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters.",20.0,21,False,2023-02-18 02:51:08.166,1.7.6,18.0,somoclu,conda-forge/somoclu,,,,18.0,,https://pypi.org/project/somoclu,2023-02-18 02:51:08.166,18.0,2831.0,5904.0,https://anaconda.org/conda-forge/somoclu,2025-04-22 14:56:39.798,165032.0,,,,,3.0,2105.0,,,,,,,,,,,,,,,,,,, +730,pyRDF2Vec,IBCNServices/pyRDF2Vec,graph,,https://github.com/predict-idlab/pyRDF2Vec,https://github.com/predict-idlab/pyRDF2Vec,MIT,2019-06-13 11:36:12.000,2025-04-02 14:37:36.000000,2023-07-02 18:02:16,1462.0,,50.0,14.0,233.0,23.0,64.0,256.0,Python Implementation and Extension of RDF2Vec.,7.0,21,False,2021-06-09 10:56:14.000,0.2.3,11.0,pyrdf2vec,,,,,54.0,48.0,https://pypi.org/project/pyrdf2vec,2021-06-09 10:56:14.000,6.0,645.0,645.0,,,,,,,,3.0,,,,,,,predict-idlab/pyRDF2Vec,,,,,,,,,,,,, +731,DeepMatcher,anhaidgroup/deepmatcher,nlp,,https://github.com/anhaidgroup/deepmatcher,https://github.com/anhaidgroup/deepmatcher,BSD-3-Clause,2017-12-01 19:01:11.000,2024-06-18 11:46:06.000000,2021-06-13 00:22:13,176.0,,1727.0,19.0,19.0,72.0,24.0,5208.0,Python package for performing Entity and Text Matching using Deep Learning.,7.0,20,False,2021-05-27 22:28:29.000,0.1.2,13.0,deepmatcher,,,,,,,https://pypi.org/project/deepmatcher,2021-06-13 01:13:24.000,,1588.0,1588.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +732,PyAlgoTrade,gbeced/pyalgotrade,financial-data,,https://github.com/gbeced/pyalgotrade,https://github.com/gbeced/pyalgotrade,Apache-2.0,2012-03-07 01:09:54.000,2023-11-13 07:16:00.000000,2023-03-05 22:07:59,1158.0,,1385.0,355.0,59.0,51.0,,4532.0,Python Algorithmic Trading Library.,11.0,20,False,,,8.0,pyalgotrade,,,,,,,https://pypi.org/project/pyalgotrade,2018-08-21 01:48:25.000,,717.0,717.0,,,,,,,,3.0,,,,,,,,,-4.0,,,,,,,,,,, +733,lightseq,bytedance/lightseq,nlp,,https://github.com/bytedance/lightseq,https://github.com/bytedance/lightseq,Apache-2.0,2019-12-06 08:25:24.000,2023-05-16 10:47:48.000000,2023-05-10 04:35:39,269.0,,326.0,56.0,242.0,176.0,111.0,3266.0,LightSeq: A High Performance Library for Sequence Processing and Generation.,17.0,20,False,2022-11-03 06:46:55.989,3.0.1,22.0,lightseq,,,,,2.0,,https://pypi.org/project/lightseq,2022-11-03 06:46:55.989,2.0,4573.0,4584.0,,,,,,,,3.0,706.0,,,,,,,,,,,,,,,,,,, +734,image-match,ProvenanceLabs/image-match,image,,https://github.com/rhsimplex/image-match,https://github.com/rhsimplex/image-match,Apache-2.0,2016-03-08 18:16:45.000,2022-12-06 11:29:04.000000,2022-12-06 11:29:04,406.0,,405.0,99.0,54.0,55.0,48.0,2959.0,Quickly search over billions of images.,19.0,20,False,2017-02-13 14:54:48.000,1.1.2,10.0,image_match,,,,,4.0,,https://pypi.org/project/image_match,2017-02-13 14:54:48.000,4.0,523.0,523.0,,,,,,,,3.0,,,,,,,rhsimplex/image-match,,,,,,,,,,,,, +735,StreamAlert,airbnb/streamalert,others,,https://github.com/airbnb/streamalert,https://github.com/airbnb/streamalert,Apache-2.0,2017-01-22 01:10:56.000,2023-10-23 17:15:34.000000,2022-07-20 20:54:36,1904.0,,332.0,100.0,1000.0,94.0,263.0,2869.0,"StreamAlert is a serverless, realtime data analysis framework which empowers you to ingest, analyze, and alert on data..",33.0,20,False,2021-11-04 19:07:51.000,3.5.0,28.0,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +736,DeepWalk,phanein/deepwalk,graph,,https://github.com/phanein/deepwalk,https://github.com/phanein/deepwalk,GPL-3.0,2014-08-23 03:38:20.000,2023-06-14 23:22:41.000000,2020-04-02 01:05:35,46.0,,831.0,85.0,30.0,46.0,80.0,2723.0,DeepWalk - Deep Learning for Graphs.,10.0,20,False,2018-04-29 21:05:18.000,1.0.3,4.0,deepwalk,,,,,79.0,79.0,https://pypi.org/project/deepwalk,2018-04-29 21:05:18.000,,560.0,560.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +737,DIG,divelab/DIG,graph,,https://github.com/divelab/DIG,https://github.com/divelab/DIG,GPL-3.0,2020-10-30 03:51:15.000,2024-07-15 07:18:56.000000,2024-02-04 20:37:53,1083.0,,283.0,30.0,41.0,35.0,176.0,1949.0,A library for graph deep learning research.,50.0,20,False,2023-04-07 20:33:15.000,1.1.0,10.0,dig,,,,,,,https://pypi.org/project/dig,2015-08-23 10:30:20.000,,597.0,597.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +738,GraphGym,snap-stanford/GraphGym,graph,,https://github.com/snap-stanford/GraphGym,https://github.com/snap-stanford/GraphGym,MIT,2020-10-14 05:01:35.000,2023-11-10 05:37:18.000000,2023-03-14 23:02:49,75.0,,182.0,22.0,22.0,20.0,30.0,1791.0,Platform for designing and evaluating Graph Neural Networks (GNN).,6.0,20,False,2022-03-24 23:28:17.000,0.4.0,3.0,graphgym,,,,,10.0,10.0,https://pypi.org/project/graphgym,2022-03-24 23:19:13.000,,230.0,231.0,,,,,,,,3.0,52.0,,,,,,,,,,,,,,,,,,, +739,Magnitude,plasticityai/magnitude,nn-search,,https://github.com/plasticityai/magnitude,https://github.com/plasticityai/magnitude,MIT,2018-02-24 07:28:16.000,2023-08-03 00:59:57.000000,2020-07-17 20:19:46,350.0,,118.0,37.0,11.0,39.0,51.0,1645.0,"A fast, efficient universal vector embedding utility package.",4.0,20,False,2020-05-25 11:26:36.000,0.1.143,128.0,pymagnitude,,,,,9.0,,https://pypi.org/project/pymagnitude,2020-05-25 11:26:36.000,9.0,2657.0,2657.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +740,AlphaPy,ScottfreeLLC/AlphaPy,hyperopt,,https://github.com/ScottfreeLLC/AlphaPy,https://github.com/ScottfreeLLC/AlphaPy,Apache-2.0,2016-02-14 00:47:32.000,2024-12-15 17:30:26.000000,2024-12-15 17:30:23,439.0,,234.0,69.0,7.0,15.0,29.0,1458.0,Python AutoML for Trading Systems and Sports Betting.,5.0,20,True,2020-08-29 18:48:20.000,2.5.0,25.0,alphapy,,,,,8.0,8.0,https://pypi.org/project/alphapy,2020-08-29 18:44:15.000,,796.0,796.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +741,DLTK,DLTK/DLTK,medical-data,,https://github.com/DLTK/DLTK,https://github.com/DLTK/DLTK,Apache-2.0,2017-05-02 15:40:36.000,2023-03-24 22:27:46.000000,2019-01-21 14:01:28,379.0,,405.0,99.0,36.0,13.0,24.0,1440.0,Deep Learning Toolkit for Medical Image Analysis.,9.0,20,False,2018-02-26 17:43:57.000,0.2.1,5.0,dltk,,,,['tensorflow'],34.0,34.0,https://pypi.org/project/dltk,2018-02-26 17:43:57.000,,124.0,124.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +742,DiCE,interpretml/DiCE,interpretability,,https://github.com/interpretml/DiCE,https://github.com/interpretml/DiCE,MIT,2019-05-02 09:51:02.000,2024-11-22 18:05:50.000000,2024-11-22 17:35:27,783.0,,195.0,17.0,268.0,88.0,94.0,1399.0,Generate Diverse Counterfactual Explanations for any machine learning model.,19.0,20,True,2023-10-26 11:36:48.000,0.11,12.0,dice-ml,,,,"['tensorflow', 'pytorch']",6.0,,https://pypi.org/project/dice-ml,2023-10-27 03:54:06.000,6.0,35705.0,35705.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +743,doc2text,jlsutherland/doc2text,ocr,,https://github.com/jlsutherland/doc2text,https://github.com/jlsutherland/doc2text,MIT,2016-08-28 19:30:02.000,2020-12-01 22:56:27.000000,2020-12-01 22:56:26,62.0,,100.0,37.0,14.0,15.0,9.0,1276.0,Detect text blocks and OCR poorly scanned PDFs in bulk. Python module available via pip.,5.0,20,False,2016-09-06 21:59:21.000,0.2.4,5.0,doc2text,,,,,183.0,181.0,https://pypi.org/project/doc2text,2016-09-06 21:59:21.000,2.0,3267.0,3267.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +744,nude.py,hhatto/nude.py,image,,https://github.com/hhatto/nude.py,https://github.com/hhatto/nude.py,MIT,2013-06-09 06:55:55.000,2020-11-23 13:49:32.000000,2020-11-23 13:49:02,79.0,,131.0,34.0,16.0,9.0,4.0,928.0,Nudity detection with Python.,12.0,20,False,2020-11-23 13:49:17.000,0.5.1,10.0,nudepy,,,,,3659.0,3654.0,https://pypi.org/project/nudepy,2020-11-23 13:49:17.000,5.0,446.0,446.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +745,evojax,google/evojax,jax-utils,,https://github.com/google/evojax,https://github.com/google/evojax,Apache-2.0,2021-12-07 00:30:07.000,2025-04-22 14:58:11.525000,2024-06-27 07:26:43,298.0,,101.0,24.0,52.0,20.0,17.0,897.0,EvoJAX: Hardware-accelerated Neuroevolution.,14.0,20,True,2024-06-18 06:17:13.000,0.2.17,23.0,evojax,conda-forge/evojax,,,['jax'],34.0,28.0,https://pypi.org/project/evojax,2024-06-18 06:17:13.000,6.0,1334.0,2313.0,https://anaconda.org/conda-forge/evojax,2025-04-22 14:58:11.525,37233.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +746,TF Compression,tensorflow/compression,tensorflow-utils,,https://github.com/tensorflow/compression,https://github.com/tensorflow/compression,Apache-2.0,2018-05-15 23:32:19.000,2025-04-15 08:31:15.000000,2025-04-15 08:30:45,300.0,2.0,253.0,44.0,18.0,11.0,92.0,883.0,Data compression in TensorFlow.,24.0,20,True,2024-08-07 20:25:13.000,2.17.0,26.0,tensorflow-compression,,,,['tensorflow'],2.0,,https://pypi.org/project/tensorflow-compression,2024-02-02 01:38:32.000,2.0,3731.0,3731.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +747,LOFO,aerdem4/lofo-importance,interpretability,,https://github.com/aerdem4/lofo-importance,https://github.com/aerdem4/lofo-importance,MIT,2019-01-14 10:46:46.000,2025-02-14 12:15:27.000000,2025-02-14 12:08:46,33.0,1.0,87.0,12.0,36.0,4.0,26.0,833.0,Leave One Feature Out Importance.,6.0,20,True,2025-02-14 12:15:27.000,0.3.5,15.0,lofo-importance,,,,,45.0,40.0,https://pypi.org/project/lofo-importance,2025-02-14 12:15:27.000,5.0,2382.0,2382.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +748,Merlin,NVIDIA-Merlin/Merlin,gpu-utilities,,https://github.com/NVIDIA-Merlin/Merlin,https://github.com/NVIDIA-Merlin/Merlin,Apache-2.0,2021-03-30 23:35:26.000,2024-12-05 20:47:53.000000,2024-07-22 10:16:42,493.0,,121.0,30.0,561.0,211.0,247.0,819.0,"NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature..",32.0,20,True,2024-06-14 12:19:07.000,24.06.00,16.0,merlin-core,,,,,1.0,,https://pypi.org/project/merlin-core,2023-08-29 16:27:32.000,1.0,24502.0,24502.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +749,NeoML,neoml-lib/neoml,ml-frameworks,,https://github.com/neoml-lib/neoml,https://github.com/neoml-lib/neoml,Apache-2.0,2020-06-14 17:37:36.000,2024-10-23 17:51:18.000000,2024-09-30 12:29:20,1251.0,,126.0,29.0,1060.0,37.0,54.0,774.0,Machine learning framework for both deep learning and traditional algorithms.,40.0,20,True,2023-12-26 02:42:15.000,2.0.210,15.0,neoml,,,,,2.0,2.0,https://pypi.org/project/neoml,2023-12-26 02:42:15.000,,1451.0,1451.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +750,tcav,tensorflow/tcav,interpretability,,https://github.com/tensorflow/tcav,https://github.com/tensorflow/tcav,Apache-2.0,2018-07-03 17:45:35.000,2024-07-30 21:34:45.000000,2021-09-16 17:56:31,171.0,,151.0,33.0,84.0,16.0,55.0,637.0,Code for the TCAV ML interpretability project.,19.0,20,False,2021-02-23 16:17:42.000,0.2.2,4.0,tcav,,,,['tensorflow'],31.0,28.0,https://pypi.org/project/tcav,2021-02-23 16:17:42.000,3.0,395.0,395.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +751,N2,kakao/n2,nn-search,,https://github.com/kakao/n2,https://github.com/kakao/n2,Apache-2.0,2017-11-23 02:27:59.000,2023-06-27 16:54:16.000000,2023-06-27 16:54:13,266.0,,75.0,38.0,17.0,14.0,22.0,576.0,TOROS N2 - lightweight approximate Nearest Neighbor library which runs fast even with large datasets.,22.0,20,False,2020-10-16 03:43:47.000,0.1.7,9.0,n2,,,,,42.0,38.0,https://pypi.org/project/n2,2020-10-16 03:10:01.000,4.0,401.0,401.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +752,pyhsmm,mattjj/pyhsmm,probabilistics,,https://github.com/mattjj/pyhsmm,https://github.com/mattjj/pyhsmm,MIT,2012-03-18 17:40:13.000,2025-01-25 05:40:47.000000,2025-01-25 05:40:47,1428.0,1.0,170.0,55.0,21.0,39.0,61.0,556.0,Bayesian inference in HSMMs and HMMs.,14.0,20,True,2017-05-10 17:14:37.000,0.1.7,8.0,pyhsmm,,,,,35.0,34.0,https://pypi.org/project/pyhsmm,2017-05-10 17:14:37.000,1.0,323.0,323.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +753,deepsnap,snap-stanford/deepsnap,graph,,https://github.com/snap-stanford/deepsnap,https://github.com/snap-stanford/deepsnap,MIT,2020-06-06 21:17:38.000,2023-11-11 03:23:44.000000,2023-11-11 03:23:44,413.0,,57.0,59.0,9.0,25.0,25.0,556.0,Python library assists deep learning on graphs.,18.0,20,False,2021-09-05 23:08:21.000,0.2.1,5.0,deepsnap,,,,,129.0,127.0,https://pypi.org/project/deepsnap,2021-09-05 22:57:16.000,2.0,483.0,483.0,,,,,,,,3.0,15.0,,,,,,,,,,,,,,,,,,, +754,pymdp,infer-actively/pymdp,others,,https://github.com/infer-actively/pymdp,https://github.com/infer-actively/pymdp,MIT,2019-11-27 19:03:35.000,2025-02-28 08:35:47.000000,2025-02-06 14:03:46,992.0,4.0,101.0,32.0,107.0,26.0,27.0,518.0,A Python implementation of active inference for Markov Decision Processes.,19.0,20,True,2023-03-25 17:58:52.000,0.0.7.1,8.0,inferactively-pymdp,,,,,20.0,20.0,https://pypi.org/project/inferactively-pymdp,2022-12-08 15:25:01.498,,7198.0,7198.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +755,rrcf,kLabUM/rrcf,others,,https://github.com/kLabUM/rrcf,https://github.com/kLabUM/rrcf,MIT,2018-10-20 05:39:05.000,2024-02-24 12:21:01.000000,2023-08-12 16:28:59,266.0,,112.0,18.0,57.0,30.0,21.0,507.0,Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams.,7.0,20,False,2023-04-30 02:25:49.592,0.4.4,8.0,rrcf,,,,,95.0,87.0,https://pypi.org/project/rrcf,2023-04-30 02:25:49.592,8.0,6025.0,6025.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +756,pydlm,wwrechard/pydlm,time-series-data,,https://github.com/wwrechard/pydlm,https://github.com/wwrechard/pydlm,BSD-3-Clause,2016-06-29 07:58:53.000,2024-09-07 07:05:09.000000,2024-09-07 07:05:06,387.0,,98.0,27.0,34.0,36.0,15.0,485.0,A python library for Bayesian time series modeling.,7.0,20,True,2024-08-13 04:20:08.000,0.1.1.13,15.0,pydlm,,,,,41.0,39.0,https://pypi.org/project/pydlm,2024-08-13 04:20:45.000,2.0,66988.0,66988.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +757,elegy,poets-ai/elegy,ml-frameworks,,https://github.com/poets-ai/elegy,https://github.com/poets-ai/elegy,MIT,2020-06-30 14:00:37.000,2022-12-15 19:23:10.000000,2022-05-23 17:26:29,339.0,,32.0,15.0,148.0,40.0,66.0,475.0,A High Level API for Deep Learning in JAX.,18.0,20,False,2022-03-23 21:51:07.000,0.8.6,33.0,elegy,,,,"['tensorflow', 'jax']",56.0,56.0,https://pypi.org/project/elegy,2022-04-22 15:42:03.000,,1449.0,1449.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +758,chefboost,serengil/chefboost,ml-frameworks,,https://github.com/serengil/chefboost,https://github.com/serengil/chefboost,MIT,2019-03-06 12:26:27.000,2025-03-31 11:38:09.000000,2025-03-31 11:38:09,405.0,1.0,101.0,16.0,11.0,,50.0,475.0,"A Lightweight Decision Tree Framework supporting regular algorithms: ID3, C4.5, CART, CHAID and Regression Trees; some..",7.0,20,True,2024-10-30 20:46:59.000,0.0.19,19.0,chefboost,,,,,69.0,69.0,https://pypi.org/project/chefboost,2024-10-30 20:46:59.000,,7411.0,7411.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +759,optunity,claesenm/optunity,hyperopt,,https://github.com/claesenm/optunity,https://github.com/claesenm/optunity,BSD-3-Clause,2014-05-28 17:29:11.000,2023-11-25 01:31:29.000000,2020-05-11 14:32:38,782.0,,77.0,23.0,12.0,48.0,49.0,419.0,optimization routines for hyperparameter tuning.,9.0,20,False,2015-09-30 05:02:00.000,1.1.1,6.0,optunity,,,,,147.0,144.0,https://pypi.org/project/optunity,2015-09-30 05:02:00.000,3.0,973.0,973.0,,,,,,,,3.0,108.0,,,,,,,,,,,,,,,,,,, +760,animatplot,t-makaro/animatplot,data-viz,,https://github.com/t-makaro/animatplot,https://github.com/t-makaro/animatplot,MIT,2017-04-03 00:54:04.000,2025-04-22 14:57:01.743000,2024-08-29 18:18:33,183.0,,38.0,9.0,32.0,17.0,20.0,416.0,A python package for animating plots build on matplotlib.,6.0,20,True,2024-08-29 18:26:55.000,0.4.3,11.0,animatplot,conda-forge/animatplot,,,,78.0,74.0,https://pypi.org/project/animatplot,2024-08-29 17:08:23.000,4.0,848.0,1157.0,https://anaconda.org/conda-forge/animatplot,2025-04-22 14:57:01.743,16690.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +761,scikit-rebate,EpistasisLab/scikit-rebate,others,,https://github.com/EpistasisLab/scikit-rebate,https://github.com/EpistasisLab/scikit-rebate,MIT,2016-09-19 13:36:17.000,2025-04-22 14:56:45.026000,2021-02-15 17:10:59,283.0,,73.0,24.0,48.0,18.0,19.0,416.0,"A scikit-learn-compatible Python implementation of ReBATE, a suite of Relief-based feature selection algorithms for..",14.0,20,False,2017-04-12 16:12:01.000,0.3.4,13.0,skrebate,conda-forge/skrebate,,,['sklearn'],28.0,,https://pypi.org/project/skrebate,2021-03-20 17:11:52.000,28.0,4352.0,5008.0,https://anaconda.org/conda-forge/skrebate,2025-04-22 14:56:45.026,37431.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +762,tsflex,predict-idlab/tsflex,time-series-data,,https://github.com/predict-idlab/tsflex,https://github.com/predict-idlab/tsflex,MIT,2021-07-06 15:16:45.577,2025-04-22 14:57:56.438000,2024-09-06 09:27:10,824.0,,26.0,8.0,78.0,33.0,23.0,415.0,Flexible time series feature extraction & processing.,6.0,20,True,2024-09-06 09:28:53.000,0.4.1,38.0,tsflex,conda-forge/tsflex,,,,24.0,22.0,https://pypi.org/project/tsflex,2024-09-06 09:26:32.000,2.0,2233.0,2936.0,https://anaconda.org/conda-forge/tsflex,2025-04-22 14:57:56.438,31635.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +763,TensorFlow Cloud,tensorflow/cloud,tensorflow-utils,,https://github.com/tensorflow/cloud,https://github.com/tensorflow/cloud,Apache-2.0,2020-02-10 18:51:59.000,2025-01-29 14:59:50.000000,2025-01-29 14:59:43,578.0,1.0,90.0,27.0,321.0,76.0,27.0,378.0,The TensorFlow Cloud repository provides APIs that will allow to easily go from debugging and training your Keras and..,28.0,20,True,2021-06-17 01:15:10.000,0.1.16,19.0,tensorflow-cloud,,,,['tensorflow'],7.0,,https://pypi.org/project/tensorflow-cloud,2021-06-17 01:15:10.000,7.0,37438.0,37438.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +764,vegafusion,vegafusion/vegafusion,data-viz,,https://github.com/vega/vegafusion,https://github.com/vega/vegafusion,BSD-3-Clause,2021-10-01 09:19:27.000,2025-04-22 14:58:12.870000,2025-02-23 00:15:07,717.0,2.0,20.0,23.0,399.0,53.0,92.0,353.0,Serverside scaling for Vega and Altair visualizations.,6.0,20,True,2025-02-23 00:18:29.000,2.0.2,75.0,vegafusion-jupyter,conda-forge/vegafusion-python-embed,,,,5.0,,https://pypi.org/project/vegafusion-jupyter,2024-05-09 19:01:07.000,2.0,2403.0,14373.0,https://anaconda.org/conda-forge/vegafusion-python-embed,2025-04-22 14:58:12.870,419456.0,,,,,3.0,12484.0,vegafusion-jupyter,https://www.npmjs.com/package/vegafusion-jupyter,2024-05-09 19:11:31.675,3.0,314.0,vega/vegafusion,,,,,,,,,,,,, +765,MXBoard,awslabs/mxboard,ml-experiments,,https://github.com/awslabs/mxboard,https://github.com/awslabs/mxboard,Apache-2.0,2018-02-06 23:03:51.000,2021-11-30 10:46:24.000000,2020-01-24 23:21:55,42.0,,47.0,24.0,19.0,15.0,17.0,324.0,Logging MXNet data for visualization in TensorBoard.,9.0,20,False,2018-05-22 20:25:51.000,0.1.0,12.0,mxboard,,,,['mxnet'],279.0,279.0,https://pypi.org/project/mxboard,2018-05-22 20:25:51.000,,1955.0,1955.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +766,Glow,projectglow/glow,medical-data,,https://github.com/projectglow/glow,https://github.com/projectglow/glow,Apache-2.0,2019-10-04 21:26:47.000,2025-04-22 14:57:47.356000,2024-11-07 18:17:34,501.0,,113.0,19.0,589.0,58.0,130.0,276.0,An open-source toolkit for large-scale genomic analysis.,28.0,20,False,2024-10-20 03:22:37.000,2.0.3,17.0,glow.py,conda-forge/glow,,,,,,https://pypi.org/project/glow.py,2024-03-12 08:52:09.000,,18167.0,18295.0,https://anaconda.org/conda-forge/glow,2025-04-22 14:57:47.356,6326.0,,,,,3.0,197.0,,,,,,,,,,,,,,,,,,, +767,solt,Oulu-IMEDS/solt,image,,https://github.com/imedslab/solt,https://github.com/imedslab/solt,MIT,2018-08-02 15:09:05.000,2025-04-22 07:59:09.000000,2025-04-14 11:48:30,401.0,21.0,19.0,5.0,34.0,20.0,48.0,265.0,Streaming over lightweight data transformations.,6.0,20,False,2020-03-10 14:09:31.000,0.1.9,18.0,solt,,,,,65.0,62.0,https://pypi.org/project/solt,2020-03-10 14:09:31.000,3.0,467.0,467.0,,,,,,,,3.0,,,,,,,imedslab/solt,,,,,,,,,,,,, +768,Larq Compute Engine,larq/compute-engine,model-serialisation,,https://github.com/larq/compute-engine,https://github.com/larq/compute-engine,Apache-2.0,2019-08-29 15:02:43.000,2025-04-14 06:29:06.000000,2025-04-14 06:29:04,594.0,1.0,36.0,22.0,648.0,21.0,131.0,249.0,Highly optimized inference engine for Binarized Neural Networks.,18.0,20,False,2024-06-21 06:39:45.000,0.16.0,21.0,larq-compute-engine,,,,,10.0,10.0,https://pypi.org/project/larq-compute-engine,2024-06-21 07:18:03.000,,2494.0,2514.0,,,,,,,,3.0,1295.0,,,,,,,,,,,,,,,,,,, +769,Funsor,pyro-ppl/funsor,probabilistics,,https://github.com/pyro-ppl/funsor,https://github.com/pyro-ppl/funsor,Apache-2.0,2019-01-30 23:13:39.000,2023-08-31 18:37:21.000000,2023-08-31 18:34:42,577.0,,21.0,17.0,464.0,90.0,76.0,239.0,Functional tensors for probabilistic programming.,11.0,20,False,2023-08-31 18:37:22.000,0.4.6,12.0,funsor,,,,['pytorch'],95.0,85.0,https://pypi.org/project/funsor,2023-01-23 08:32:39.757,10.0,6990.0,6990.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +770,pyfasttext,vrasneur/pyfasttext,nlp,,https://github.com/vrasneur/pyfasttext,https://github.com/vrasneur/pyfasttext,GPL-3.0,2017-06-30 18:44:42.000,2018-12-08 15:32:09.000000,2018-12-08 15:02:12,153.0,,31.0,9.0,4.0,20.0,29.0,227.0,Yet another Python binding for fastText.,4.0,20,False,2018-12-08 15:32:09.000,0.4.6,13.0,pyfasttext,,,,,456.0,454.0,https://pypi.org/project/pyfasttext,2018-12-08 15:32:09.000,2.0,1192.0,1196.0,,,,,,,,3.0,438.0,,,,,,,,,,,,,,,,,,, +771,SerpentAI,SerpentAI/SerpentAI,reinforcement-learning,,https://github.com/SerpentAI/SerpentAI,https://github.com/SerpentAI/SerpentAI,MIT,2017-04-16 21:48:39.000,2022-11-07 01:59:31.000000,2020-05-22 22:34:09,250.0,,785.0,334.0,58.0,2.0,,6873.0,Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!.,7.0,19,False,2018-02-17 00:12:46.000,2018.1.2,18.0,SerpentAI,,,,,,,https://pypi.org/project/SerpentAI,2018-02-17 00:12:46.000,,340.0,347.0,,,,,,,,3.0,416.0,,,,,,,,,,,,,,,,,,, +772,Spotlight,maciejkula/spotlight,recommender-systems,,https://github.com/maciejkula/spotlight,https://github.com/maciejkula/spotlight,MIT,2017-06-25 18:52:19.000,2025-03-25 16:28:52.378000,2020-02-09 21:03:48,299.0,,412.0,102.0,83.0,67.0,48.0,3015.0,Deep recommender models using PyTorch.,11.0,19,False,2019-09-08 10:19:53.000,0.1.6,7.0,,maciejkula/spotlight,,,['pytorch'],,,,,,,97.0,https://anaconda.org/maciejkula/spotlight,2025-03-25 16:28:52.378,9181.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +773,keepsake,replicate/keepsake,ml-experiments,,https://github.com/replicate/keepsake,https://github.com/replicate/keepsake,Apache-2.0,2020-07-01 04:37:44.000,2025-02-25 23:52:42.000000,2024-12-03 12:26:16,792.0,,71.0,27.0,1029.0,127.0,65.0,1664.0,Version control for machine learning.,18.0,19,True,2021-03-11 21:15:01.000,0.4.2,7.0,keepsake,,,,,1.0,,https://pypi.org/project/keepsake,2021-01-25 21:51:16.000,1.0,218.0,218.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +774,Lambda Networks,lucidrains/lambda-networks,pytorch-utils,,https://github.com/lucidrains/lambda-networks,https://github.com/lucidrains/lambda-networks,MIT,2020-10-08 19:01:15.000,2020-11-18 19:54:34.000000,2020-11-18 19:54:30,31.0,,155.0,45.0,3.0,13.0,15.0,1531.0,"Implementation of LambdaNetworks, a new approach to image recognition that reaches SOTA with less compute.",3.0,19,False,2020-11-18 08:19:23.000,0.4.0,11.0,lambda-networks,,,,['pytorch'],33.0,33.0,https://pypi.org/project/lambda-networks,2020-11-18 08:19:23.000,,837.0,837.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +775,AdvBox,advboxes/AdvBox,adversarial,,https://github.com/advboxes/AdvBox,https://github.com/advboxes/AdvBox,Apache-2.0,2018-08-08 08:55:41.000,2023-02-15 19:57:27.000000,2022-08-08 02:56:23,378.0,,257.0,54.0,65.0,8.0,31.0,1392.0,Advbox is a toolbox to generate adversarial examples that fool neural networks in..,19.0,19,False,2018-12-05 02:48:50.000,0.4.1,2.0,advbox,,,,,5.0,5.0,https://pypi.org/project/advbox,2018-12-05 02:48:50.000,,112.0,112.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +776,XAI,EthicalML/xai,interpretability,,https://github.com/EthicalML/xai,https://github.com/EthicalML/xai,MIT,2019-01-11 20:00:09.000,2021-10-30 06:35:19.000000,2021-10-30 06:30:12,91.0,,175.0,43.0,5.0,4.0,7.0,1162.0,XAI - An eXplainability toolbox for machine learning.,3.0,19,False,2021-10-30 06:35:19.000,0.1.0,6.0,xai,,,,,38.0,38.0,https://pypi.org/project/xai,2021-10-30 06:33:26.000,,571.0,571.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +777,Torch-Struct,harvardnlp/pytorch-struct,pytorch-utils,,https://github.com/harvardnlp/pytorch-struct,https://github.com/harvardnlp/pytorch-struct,MIT,2019-08-26 19:34:30.000,2022-04-20 08:21:20.000000,2022-01-30 19:49:08,271.0,,93.0,31.0,72.0,31.0,30.0,1112.0,"Fast, general, and tested differentiable structured prediction in PyTorch.",16.0,19,False,2021-02-15 20:20:59.000,0.5,2.0,torch-struct,,,,['pytorch'],2.0,,https://pypi.org/project/torch-struct,2021-02-14 02:43:46.000,2.0,10724.0,10724.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +778,Dragonfly,dragonfly/dragonfly,hyperopt,,https://github.com/dragonfly/dragonfly,https://github.com/dragonfly/dragonfly,MIT,2018-04-20 22:19:50.000,2023-06-19 20:23:17.000000,2022-10-01 22:21:50,400.0,,233.0,28.0,38.0,43.0,21.0,880.0,An open source python library for scalable Bayesian optimisation.,13.0,19,False,2022-10-01 22:28:00.848,0.1.7,10.0,dragonfly-opt,,,,,,,https://pypi.org/project/dragonfly-opt,2022-10-01 22:28:00.848,,4244.0,4244.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +779,pytorch2keras,gmalivenko/pytorch2keras,model-serialisation,,https://github.com/gmalivenko/pytorch2keras,https://github.com/gmalivenko/pytorch2keras,MIT,2017-11-16 20:21:43.000,2022-12-08 11:42:52.000000,2021-08-06 08:18:46,282.0,,143.0,14.0,24.0,64.0,69.0,860.0,PyTorch to Keras model convertor.,13.0,19,False,2020-05-14 10:03:56.000,0.2.4,23.0,pytorch2keras,,,,,107.0,106.0,https://pypi.org/project/pytorch2keras,2020-05-14 10:03:56.000,1.0,653.0,653.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +780,Tensor Sensor,parrt/tensor-sensor,pytorch-utils,,https://github.com/parrt/tensor-sensor,https://github.com/parrt/tensor-sensor,MIT,2020-08-28 22:54:04.000,2025-04-22 14:58:02.427000,2022-04-07 20:49:56,235.0,,37.0,11.0,13.0,8.0,16.0,805.0,"The goal of this library is to generate more helpful exception messages for matrix algebra expressions for numpy,..",4.0,19,False,2021-12-11 21:24:11.000,1.0,37.0,tensor-sensor,conda-forge/tensor-sensor,,,['pytorch'],53.0,53.0,https://pypi.org/project/tensor-sensor,2021-12-11 21:24:35.000,,1107.0,1215.0,https://anaconda.org/conda-forge/tensor-sensor,2025-04-22 14:58:02.427,4576.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +781,tffm,geffy/tffm,tensorflow-utils,,https://github.com/geffy/tffm,https://github.com/geffy/tffm,MIT,2016-05-02 17:06:07.000,2022-01-17 20:39:04.000000,2022-01-17 20:38:58,107.0,,175.0,33.0,15.0,19.0,22.0,781.0,TensorFlow implementation of an arbitrary order Factorization Machine.,11.0,19,False,2022-01-17 20:35:57.000,1.0.2,3.0,tffm,,,,['tensorflow'],16.0,16.0,https://pypi.org/project/tffm,2022-01-17 20:35:57.000,,157.0,157.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +782,Objax,google/objax,ml-frameworks,,https://github.com/google/objax,https://github.com/google/objax,Apache-2.0,2020-08-20 06:20:40.000,2024-01-27 00:16:56.000000,2024-01-27 00:08:50,463.0,,78.0,23.0,162.0,51.0,62.0,770.0,Objax is a machine learning framework that provides an Object Oriented layer for JAX.,26.0,19,False,2023-11-06 22:17:30.000,1.8.0,11.0,objax,,,,['jax'],4.0,,https://pypi.org/project/objax,2023-11-06 22:03:10.000,4.0,831.0,831.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +783,matrixprofile-ts,target/matrixprofile-ts,time-series-data,,https://github.com/target/matrixprofile-ts,https://github.com/target/matrixprofile-ts,Apache-2.0,2018-09-10 19:03:34.000,2024-07-16 19:49:29.000000,2020-04-25 18:37:42,198.0,,103.0,25.0,49.0,15.0,54.0,735.0,A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile.,15.0,19,False,2019-08-08 01:24:38.000,0.0.9,9.0,matrixprofile-ts,,,,,34.0,32.0,https://pypi.org/project/matrixprofile-ts,2019-08-08 01:24:38.000,2.0,614.0,614.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +784,dabl,amueller/dabl,sklearn-utils,,https://github.com/amueller/dabl,https://github.com/amueller/dabl,BSD-3-Clause,2020-01-30 18:26:49.000,2024-12-16 23:31:08.000000,2024-08-07 21:38:41,314.0,,104.0,4.0,3.0,1.0,,727.0,Data Analysis Baseline Library.,24.0,19,True,2024-12-16 23:31:08.000,0.3.2,20.0,dabl,,,,['sklearn'],3.0,,https://pypi.org/project/dabl,2024-12-16 23:31:08.000,3.0,4250.0,4250.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +785,baikal,alegonz/baikal,others,,https://github.com/alegonz/baikal,https://github.com/alegonz/baikal,BSD-3-Clause,2019-01-21 12:59:02.000,2025-04-22 14:57:03.201000,2021-04-11 07:50:00,405.0,,29.0,17.0,42.0,6.0,18.0,590.0,A graph-based functional API for building complex scikit-learn pipelines.,2.0,19,False,2020-11-15 13:40:18.000,0.4.2,19.0,baikal,conda-forge/cython-blis,,,,16.0,15.0,https://pypi.org/project/baikal,2020-11-15 13:40:18.000,1.0,616.0,45751.0,https://anaconda.org/conda-forge/cython-blis,2025-04-22 14:57:03.201,2482451.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +786,recmetrics,statisticianinstilettos/recmetrics,recommender-systems,,https://github.com/statisticianinstilettos/recmetrics,https://github.com/statisticianinstilettos/recmetrics,MIT,2018-10-15 15:29:49.000,2024-01-11 20:34:53.000000,2023-10-04 12:31:54,297.0,,100.0,16.0,53.0,13.0,16.0,581.0,A library of metrics for evaluating recommender systems.,20.0,19,False,2022-04-26 18:03:18.000,0.1.5,20.0,recmetrics,,,,,62.0,62.0,https://pypi.org/project/recmetrics,2022-04-26 17:57:01.000,,4864.0,4864.0,,,,,,,,3.0,9.0,,,,,,,,,,,,,,,,,,, +787,Auto Tune Models,HDI-Project/ATM,hyperopt,,https://github.com/HDI-Project/ATM,https://github.com/HDI-Project/ATM,MIT,2016-10-14 18:03:00.000,2020-02-21 17:44:07.000000,2020-02-21 17:40:58,775.0,,137.0,54.0,72.0,18.0,71.0,529.0,"Auto Tune Models - A multi-tenant, multi-data system for automated machine learning (model selection and tuning).",17.0,19,False,2019-07-30 09:28:26.000,0.2.2,14.0,atm,,,,,26.0,26.0,https://pypi.org/project/atm,2019-07-30 09:25:11.000,,390.0,390.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +788,Brainiak,brainiak/brainiak,medical-data,,https://github.com/brainiak/brainiak,https://github.com/brainiak/brainiak,Apache-2.0,2016-02-08 23:19:27.000,2025-01-07 00:51:13.258034,2025-01-06 19:07:43,406.0,,137.0,33.0,333.0,89.0,140.0,353.0,Brain Imaging Analysis Kit.,35.0,19,True,2025-01-06 23:14:48.000,0.12,21.0,brainiak,,brainiak/brainiak,,,,,https://pypi.org/project/brainiak,2025-01-07 00:16:42.000,,2436.0,2453.0,,,,https://hub.docker.com/r/brainiak/brainiak,2025-01-07 00:51:13.258034,1.0,1930.0,3.0,,,,,,,,,,,,,,,,,,,, +789,fairness-indicators,tensorflow/fairness-indicators,interpretability,,https://github.com/tensorflow/fairness-indicators,https://github.com/tensorflow/fairness-indicators,Apache-2.0,2019-09-30 22:56:45.000,2025-01-22 19:50:40.000000,2025-01-22 18:08:56,337.0,,81.0,23.0,362.0,29.0,10.0,349.0,Tensorflows Fairness Evaluation and Visualization Toolkit.,36.0,19,True,2025-01-22 19:50:40.000,0.47.0,32.0,fairness-indicators,,,,"['tensorflow', 'jupyter']",,,https://pypi.org/project/fairness-indicators,2025-01-22 19:50:40.000,,2763.0,2763.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +790,Camphr,PKSHATechnology-Research/camphr,nlp,,https://github.com/PKSHATechnology-Research/camphr,https://github.com/PKSHATechnology-Research/camphr,Apache-2.0,2020-02-10 03:39:58.000,2023-03-07 22:10:10.175000,2021-08-18 06:06:51,1404.0,,17.0,5.0,217.0,4.0,26.0,340.0,Camphr - NLP libary for creating pipeline components.,8.0,19,False,2023-03-07 22:10:10.175,0.8.9,49.0,camphr,,,,['spacy'],17.0,15.0,https://pypi.org/project/camphr,2023-03-07 22:10:10.175,2.0,1779.0,1779.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +791,Sherpa,sherpa-ai/sherpa,hyperopt,,https://github.com/sherpa-ai/sherpa,https://github.com/sherpa-ai/sherpa,GPL-3.0,2018-05-16 21:41:54.000,2020-10-18 07:57:50.000000,2020-10-18 07:57:48,823.0,,54.0,11.0,60.0,17.0,41.0,337.0,"Hyperparameter optimization that enables researchers to experiment, visualize, and scale quickly.",43.0,19,False,2020-07-31 05:29:09.000,1.0.7,8.0,parameter-sherpa,,,,,46.0,42.0,https://pypi.org/project/parameter-sherpa,2019-11-23 21:32:27.000,4.0,361.0,361.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +792,ivis,beringresearch/ivis,data-viz,,https://github.com/beringresearch/ivis,https://github.com/beringresearch/ivis,Apache-2.0,2018-08-13 08:31:01.000,2024-09-29 23:44:29.000000,2024-09-29 23:43:33,584.0,,43.0,12.0,64.0,3.0,57.0,332.0,Dimensionality reduction in very large datasets using Siamese Networks.,10.0,19,True,2024-06-13 05:28:35.000,2.0.11,36.0,ivis,,,,['tensorflow'],39.0,37.0,https://pypi.org/project/ivis,2024-06-13 05:28:35.000,2.0,1784.0,1784.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +793,launchpad,deepmind/launchpad,distributed-ml,,https://github.com/google-deepmind/launchpad,https://github.com/google-deepmind/launchpad,Apache-2.0,2021-02-18 15:16:49.000,2023-08-22 08:22:46.000000,2023-08-22 08:22:26,367.0,,40.0,16.0,6.0,19.0,21.0,320.0,Launchpad is a library that simplifies writing distributed programs and seamlessly launching them on a range of..,28.0,19,False,2022-04-28 06:23:38.000,0.5.2,9.0,dm-launchpad,,,,['tensorflow'],3.0,,https://pypi.org/project/dm-launchpad,2022-04-28 06:23:38.000,3.0,1641.0,1641.0,,,,,,,,3.0,,,,,,,google-deepmind/launchpad,,,,,,,,,,,,, +794,PipelineDP,OpenMined/PipelineDP,privacy-ml,,https://github.com/OpenMined/PipelineDP,https://github.com/OpenMined/PipelineDP,Apache-2.0,2021-02-10 18:04:22.000,2025-04-07 10:59:45.000000,2025-04-07 10:59:45,441.0,7.0,80.0,19.0,461.0,28.0,51.0,276.0,PipelineDP is a Python framework for applying differentially private aggregations to large datasets using batch..,33.0,19,False,2023-10-25 10:51:36.000,0.2.1,23.0,pipeline-dp,,,,,8.0,8.0,https://pypi.org/project/pipeline-dp,2023-11-22 19:01:05.000,,835.0,835.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +795,numerizer,jaidevd/numerizer,nlp,,https://github.com/jaidevd/numerizer,https://github.com/jaidevd/numerizer,MIT,2019-12-02 07:00:34.000,2024-09-26 08:36:59.000000,2024-09-26 08:31:01,28.0,,24.0,7.0,15.0,4.0,11.0,228.0,A Python module to convert natural language numerics into ints and floats.,4.0,19,False,2024-09-26 08:36:59.000,0.2.4,12.0,numerizer,,,,,100.0,97.0,https://pypi.org/project/numerizer,2024-09-26 08:36:59.000,3.0,26997.0,26997.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +796,modelkit,Cornerstone-OnDemand/modelkit,model-serialisation,,https://github.com/Cornerstone-OnDemand/modelkit,https://github.com/Cornerstone-OnDemand/modelkit,MIT,2021-05-14 12:10:51.000,2025-02-24 10:11:46.000000,2024-06-06 14:27:44,864.0,,17.0,8.0,186.0,12.0,23.0,154.0,Toolkit for developing and maintaining ML models.,14.0,19,False,2025-02-24 10:11:46.000,0.1.3,36.0,modelkit,,,,,,,https://pypi.org/project/modelkit,2025-02-24 10:11:46.000,,8962.0,8962.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +797,nvidia-ml-py3,nicolargo/nvidia-ml-py3,gpu-utilities,,https://github.com/nicolargo/nvidia-ml-py3,https://github.com/nicolargo/nvidia-ml-py3,BSD-3-Clause,2017-06-03 07:47:03.000,2025-04-22 15:32:34.997000,2024-06-30 08:01:08,6.0,,57.0,4.0,2.0,3.0,1.0,138.0,Python 3 Bindings for the NVIDIA Management Library.,2.0,19,False,2017-06-03 07:43:46.000,7.352.0,1.0,nvidia-ml-py3,anaconda/nvidia-ml,,,,10699.0,10570.0,https://pypi.org/project/nvidia-ml-py3,2017-06-03 07:43:46.000,129.0,422322.0,422351.0,https://anaconda.org/anaconda/nvidia-ml,2025-04-22 15:32:34.997,1322.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +798,mesh-transformer-jax,kingoflolz/mesh-transformer-jax,distributed-ml,,https://github.com/kingoflolz/mesh-transformer-jax,https://github.com/kingoflolz/mesh-transformer-jax,Apache-2.0,2021-03-13 23:31:13.000,2023-01-21 00:09:29.000000,2023-01-12 19:54:10,143.0,,891.0,110.0,51.0,48.0,160.0,6328.0,Model parallel transformers in JAX and Haiku.,23.0,18,False,,,,,,,,['jax'],20.0,20.0,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +799,pycls,facebookresearch/pycls,image,,https://github.com/facebookresearch/pycls,https://github.com/facebookresearch/pycls,MIT,2019-06-10 22:47:17.000,2024-03-20 15:45:40.000000,2023-08-26 20:55:56,106.0,,237.0,58.0,106.0,27.0,56.0,2154.0,"Codebase for Image Classification Research, written in PyTorch.",19.0,18,False,2021-05-21 00:29:47.000,0.2,3.0,pycls,,,,['pytorch'],,,https://pypi.org/project/pycls,2020-09-05 00:21:00.000,,1375.0,1375.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +800,NeuroNER,Franck-Dernoncourt/NeuroNER,nlp,,https://github.com/Franck-Dernoncourt/NeuroNER,https://github.com/Franck-Dernoncourt/NeuroNER,MIT,2017-03-07 01:24:15.000,2023-03-24 22:29:09.000000,2019-10-02 23:26:11,132.0,,457.0,79.0,36.0,84.0,68.0,1707.0,Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.,7.0,18,False,2019-10-02 23:30:15.000,1.0.8,7.0,pyneuroner,,,,,,,https://pypi.org/project/pyneuroner,2019-10-02 23:30:15.000,,319.0,319.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +801,Advisor,tobegit3hub/advisor,hyperopt,,https://github.com/tobegit3hub/advisor,https://github.com/tobegit3hub/advisor,Apache-2.0,2017-09-14 03:50:33.000,2019-11-11 07:09:57.869705,2019-11-11 06:59:31,165.0,,254.0,52.0,13.0,20.0,13.0,1556.0,Open-source implementation of Google Vizier for hyper parameters tuning.,11.0,18,False,2018-10-18 02:54:09.000,0.1.6,4.0,advisor,,tobegit3hub/advisor,,,,,https://pypi.org/project/advisor,2018-10-18 02:54:09.000,,158.0,176.0,,,,https://hub.docker.com/r/tobegit3hub/advisor,2019-11-11 07:09:57.869705,,1708.0,3.0,,,,,,,,,,,,,,,,,,,, +802,Xcessiv,reiinakano/xcessiv,hyperopt,,https://github.com/reiinakano/xcessiv,https://github.com/reiinakano/xcessiv,Apache-2.0,2017-03-07 18:18:25.000,2018-06-06 22:23:37.000000,2017-08-21 00:51:15,316.0,,109.0,54.0,34.0,22.0,13.0,1268.0,"A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.",6.0,18,False,2017-08-21 00:53:25.000,0.5.1,34.0,xcessiv,,,,,4.0,3.0,https://pypi.org/project/xcessiv,2017-08-21 00:49:41.000,1.0,674.0,674.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +803,Tez,abhishekkrthakur/tez,pytorch-utils,,https://github.com/abhishekkrthakur/tez,https://github.com/abhishekkrthakur/tez,Apache-2.0,2020-11-13 10:19:22.000,2023-01-29 16:52:18.000000,2022-09-16 11:03:31,144.0,,143.0,16.0,11.0,25.0,18.0,1164.0,Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle..,2.0,18,False,2022-09-20 02:28:33.973,0.7.2,26.0,tez,,,,['pytorch'],60.0,58.0,https://pypi.org/project/tez,2022-09-20 02:28:33.973,2.0,1141.0,1141.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +804,Auto TS,AutoViML/Auto_TS,time-series-data,,https://github.com/AutoViML/Auto_TS,https://github.com/AutoViML/Auto_TS,Apache-2.0,2020-02-15 15:23:32.000,2024-08-20 13:45:17.000000,2024-05-05 11:51:05,300.0,,117.0,21.0,27.0,2.0,88.0,754.0,"Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of..",13.0,18,True,2024-05-05 11:51:57.000,0.0.92,39.0,auto-ts,,,,,,,https://pypi.org/project/auto-ts,2024-05-05 11:51:57.000,,3215.0,3215.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +805,ThunderGBM,Xtra-Computing/thundergbm,ml-frameworks,,https://github.com/Xtra-Computing/thundergbm,https://github.com/Xtra-Computing/thundergbm,Apache-2.0,2016-11-11 09:58:08.000,2025-03-19 09:06:36.000000,2025-03-19 09:06:35,613.0,2.0,87.0,25.0,4.0,39.0,42.0,697.0,ThunderGBM: Fast GBDTs and Random Forests on GPUs.,12.0,18,True,2022-09-19 20:15:07.376,0.3.17,25.0,thundergbm,,,,,4.0,4.0,https://pypi.org/project/thundergbm,2022-09-19 20:15:07.376,,535.0,535.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +806,nboost,koursaros-ai/nboost,nlp,,https://github.com/koursaros-ai/nboost,https://github.com/koursaros-ai/nboost,Apache-2.0,2019-10-29 20:56:24.000,2020-09-30 14:51:16.000000,2020-07-16 19:48:25,1336.0,,66.0,16.0,21.0,29.0,50.0,676.0,"NBoost is a scalable, search-api-boosting platform for deploying transformer models to improve the relevance of search..",10.0,18,False,2020-06-12 20:05:15.000,0.3.9,26.0,nboost,,,,,5.0,5.0,https://pypi.org/project/nboost,2020-06-12 20:05:15.000,,619.0,619.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +807,opytimizer,gugarosa/opytimizer,hyperopt,,https://github.com/gugarosa/opytimizer,https://github.com/gugarosa/opytimizer,Apache-2.0,2017-11-01 16:04:01.000,2024-10-22 13:32:17.000000,2024-08-18 17:07:49,821.0,,42.0,14.0,18.0,,22.0,615.0,Opytimizer is a Python library consisting of meta-heuristic optimization algorithms.,4.0,18,True,2024-08-18 17:19:42.000,3.1.4,28.0,opytimizer,,,,,21.0,21.0,https://pypi.org/project/opytimizer,2024-08-18 17:19:42.000,,857.0,857.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +808,fastT5,Ki6an/fastT5,nlp,,https://github.com/Ki6an/fastT5,https://github.com/Ki6an/fastT5,Apache-2.0,2021-03-11 08:46:42.000,2023-04-24 18:46:40.000000,2022-04-05 03:21:24,38.0,,72.0,13.0,10.0,26.0,41.0,578.0,boost inference speed of T5 models by 5x & reduce the model size by 3x.,5.0,18,False,2022-04-05 03:23:12.000,0.1.4,14.0,fastt5,,,,,54.0,54.0,https://pypi.org/project/fastt5,2022-04-05 03:23:12.000,,722.0,722.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +809,shap-hypetune,cerlymarco/shap-hypetune,hyperopt,,https://github.com/cerlymarco/shap-hypetune,https://github.com/cerlymarco/shap-hypetune,MIT,2021-05-16 09:30:03.000,2024-06-08 12:12:57.000000,2024-02-21 14:09:04,30.0,,70.0,7.0,6.0,4.0,32.0,576.0,A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models.,3.0,18,False,2024-02-21 14:38:09.000,0.2.7,10.0,shap-hypetune,,,,,24.0,22.0,https://pypi.org/project/shap-hypetune,2024-02-21 14:34:22.000,2.0,4209.0,4209.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +810,scikit-tda,scikit-tda/scikit-tda,sklearn-utils,,https://github.com/scikit-tda/scikit-tda,https://github.com/scikit-tda/scikit-tda,MIT,2018-04-13 21:00:31.000,2024-07-19 18:49:00.000000,2024-07-19 16:10:42,70.0,,54.0,17.0,10.0,4.0,18.0,540.0,Topological Data Analysis for Python.,6.0,18,True,2024-07-19 18:49:00.000,1.1.1,6.0,scikit-tda,,,,['sklearn'],83.0,83.0,https://pypi.org/project/scikit-tda,2024-07-19 18:49:00.000,,1148.0,1148.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +811,Case Recommender,caserec/CaseRecommender,recommender-systems,,https://github.com/caserec/CaseRecommender,https://github.com/caserec/CaseRecommender,MIT,2015-11-12 18:25:39.000,2024-01-10 20:36:33.000000,2021-11-25 23:08:43,204.0,,92.0,21.0,19.0,6.0,20.0,496.0,Case Recommender: A Flexible and Extensible Python Framework for Recommender Systems.,11.0,18,False,2021-11-25 23:19:05.000,1.1.1,42.0,caserecommender,,,,['sklearn'],15.0,15.0,https://pypi.org/project/caserecommender,2021-11-25 23:19:05.000,,896.0,896.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +812,DESlib,scikit-learn-contrib/DESlib,sklearn-utils,,https://github.com/scikit-learn-contrib/DESlib,https://github.com/scikit-learn-contrib/DESlib,BSD-3-Clause,2017-12-08 22:49:49.000,2024-04-15 06:19:14.000000,2024-04-15 06:19:14,282.0,,105.0,12.0,130.0,18.0,138.0,486.0,A Python library for dynamic classifier and ensemble selection.,17.0,18,True,2024-04-12 03:07:31.000,0.3.7,6.0,deslib,,,,['sklearn'],3.0,,https://pypi.org/project/deslib,2024-04-12 03:07:31.000,3.0,3759.0,3759.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +813,Sematch,gsi-upm/sematch,graph,,https://github.com/gsi-upm/sematch,https://github.com/gsi-upm/sematch,Apache-2.0,2012-11-30 11:11:53.000,2023-11-07 11:11:44.000000,2023-11-07 11:10:46,137.0,,109.0,70.0,7.0,15.0,19.0,438.0,semantic similarity framework for knowledge graph.,10.0,18,False,2017-04-17 10:56:52.000,1.0.4,5.0,sematch,,,,,49.0,49.0,https://pypi.org/project/sematch,2017-04-17 10:56:52.000,,204.0,204.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +814,model-card-toolkit,tensorflow/model-card-toolkit,interpretability,,https://github.com/tensorflow/model-card-toolkit,https://github.com/tensorflow/model-card-toolkit,Apache-2.0,2020-07-24 16:48:58.000,2023-07-26 12:05:00.000000,2023-07-26 12:04:59,273.0,,88.0,18.0,248.0,10.0,23.0,432.0,A toolkit that streamlines and automates the generation of model cards.,22.0,18,False,2023-04-03 18:05:05.715,2.0.0,12.0,model-card-toolkit,,,,,1.0,,https://pypi.org/project/model-card-toolkit,2022-04-28 16:34:21.000,1.0,1832.0,1832.0,,,,,,,,3.0,31.0,,,,,,,,,,,,,,,,,,, +815,textaugment,dsfsi/textaugment,nlp,,https://github.com/dsfsi/textaugment,https://github.com/dsfsi/textaugment,MIT,2019-05-06 12:28:19.000,2024-02-20 11:57:52.000000,2023-11-17 08:50:12,72.0,,60.0,7.0,12.0,11.0,18.0,415.0,TextAugment: Text Augmentation Library.,8.0,18,False,2023-11-16 20:54:10.000,2.0.0,9.0,textaugment,,,,,169.0,165.0,https://pypi.org/project/textaugment,2023-11-16 20:49:04.000,4.0,3701.0,3702.0,,,,,,,,3.0,135.0,,,,,,,,,,,,,,,,,,, +816,carefree-learn,carefree0910/carefree-learn,tabular,,https://github.com/carefree0910/carefree-learn,https://github.com/carefree0910/carefree-learn,MIT,2020-06-17 17:44:17.000,2024-03-18 12:01:04.000000,2024-03-18 12:01:00,5152.0,,38.0,10.0,1.0,2.0,80.0,407.0,Deep Learning PyTorch.,1.0,18,False,2024-01-09 05:17:07.000,0.5.0,103.0,carefree-learn,,,,['pytorch'],8.0,8.0,https://pypi.org/project/carefree-learn,2024-01-09 05:17:07.000,,2034.0,2034.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +817,datmo,datmo/datmo,ml-experiments,,https://github.com/datmo/datmo,https://github.com/datmo/datmo,MIT,2017-11-03 05:46:43.000,2022-06-21 21:41:58.000000,2019-11-29 00:48:44,1051.0,,30.0,9.0,121.0,31.0,150.0,344.0,Open source production model management tool for data scientists.,6.0,18,False,2018-12-07 06:16:42.000,0.0.40,41.0,datmo,,,,,7.0,7.0,https://pypi.org/project/datmo,2018-12-07 06:16:42.000,,754.0,754.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +818,bluefog,Bluefog-Lib/bluefog,distributed-ml,,https://github.com/Bluefog-Lib/bluefog,https://github.com/Bluefog-Lib/bluefog,Apache-2.0,2019-12-03 05:27:21.000,2024-07-25 10:59:34.000000,2023-03-28 03:38:13,1094.0,,69.0,21.0,59.0,30.0,32.0,291.0,Distributed and decentralized training framework for PyTorch over graph.,9.0,18,False,2021-05-15 01:39:45.000,0.3.0,10.0,bluefog,,,,['pytorch'],5.0,5.0,https://pypi.org/project/bluefog,2021-05-15 01:39:45.000,,190.0,193.0,,,,,,,,3.0,206.0,,,,,,,,,,,,,,,,,,, +819,DeepGraph,deepgraph/deepgraph,graph,,https://github.com/deepgraph/deepgraph,https://github.com/deepgraph/deepgraph,BSD-3-Clause,2015-10-27 12:28:45.000,2025-04-22 14:56:39.337000,2025-03-24 18:31:02,192.0,2.0,41.0,18.0,4.0,10.0,8.0,289.0,Analyze Data with Pandas-based Networks. Documentation:.,3.0,18,False,2024-03-27 10:16:33.000,0.2.4,14.0,deepgraph,conda-forge/deepgraph,,,['pandas'],12.0,12.0,https://pypi.org/project/deepgraph,2024-03-27 10:16:33.000,,1619.0,6652.0,https://anaconda.org/conda-forge/deepgraph,2025-04-22 14:56:39.337,271797.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +820,skggm,skggm/skggm,sklearn-utils,,https://github.com/skggm/skggm,https://github.com/skggm/skggm,MIT,2016-06-11 18:35:56.000,2024-03-20 15:29:38.000000,2023-06-15 16:53:55,703.0,,44.0,9.0,61.0,31.0,47.0,247.0,Scikit-learn compatible estimation of general graphical models.,7.0,18,False,2018-09-12 01:12:49.000,0.2.8,6.0,skggm,,,,['sklearn'],22.0,18.0,https://pypi.org/project/skggm,2018-09-12 01:12:49.000,4.0,179.0,179.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +821,Muda,bmcfee/muda,audio,,https://github.com/bmcfee/muda,https://github.com/bmcfee/muda,ISC,2014-11-07 21:21:22.000,2021-12-15 16:53:25.527000,2021-05-03 14:04:36,293.0,,33.0,13.0,36.0,9.0,44.0,234.0,A library for augmenting annotated audio data.,7.0,18,False,2019-11-15 15:46:21.000,0.4.1,12.0,muda,,,,,33.0,31.0,https://pypi.org/project/muda,2019-11-15 15:46:21.000,2.0,272.0,272.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +822,chitra,gradsflow/chitra,ml-experiments,,https://github.com/aniketmaurya/chitra,https://github.com/aniketmaurya/chitra,Apache-2.0,2020-01-23 14:17:54.000,2025-04-22 14:58:08.672000,2024-06-01 12:08:31,372.0,,37.0,5.0,136.0,,35.0,227.0,"A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model..",14.0,18,False,2021-11-26 17:10:22.000,0.2.0,38.0,chitra,conda-forge/chitra,,,,1.0,,https://pypi.org/project/chitra,2022-01-09 08:50:45.005,1.0,1548.0,1667.0,https://anaconda.org/conda-forge/chitra,2025-04-22 14:58:08.672,4656.0,,,,,3.0,,,,,,,aniketmaurya/chitra,,,,,,,,,,,,, +823,effector,givasile/effector,interpretability,,https://github.com/givasile/effector,https://github.com/givasile/effector,MIT,2022-03-31 07:54:32.000,2025-04-14 08:46:20.000000,2025-04-14 08:44:04,475.0,95.0,1.0,3.0,1.0,,3.0,86.0,Effector - a Python package for global and regional effect methods.,6.0,18,False,2025-04-14 08:46:43.000,0.1.6,44.0,effector,,,,,5.0,5.0,https://pypi.org/project/effector,2025-04-14 08:46:20.000,,1623.0,1623.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +824,DeepMind Lab,deepmind/lab,reinforcement-learning,,https://github.com/google-deepmind/lab,https://github.com/google-deepmind/lab,,2016-11-30 13:41:26.000,2023-01-04 15:38:37.000000,2023-01-04 15:19:06,509.0,,1357.0,460.0,22.0,60.0,167.0,7217.0,A customisable 3D platform for agent-based AI research.,9.0,17,False,2020-12-07 11:26:33.000,release-2020-12-07,8.0,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,google-deepmind/lab,,,,,,,,,,,,, +825,scenic,google-research/scenic,image,,https://github.com/google-research/scenic,https://github.com/google-research/scenic,Apache-2.0,2021-07-12 14:27:08.000,2025-04-17 08:22:27.000000,2025-04-15 08:59:22,727.0,9.0,451.0,36.0,885.0,152.0,119.0,3518.0,Scenic: A Jax Library for Computer Vision Research and Beyond.,93.0,17,True,,,,,,,,['jax'],,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +826,Fiber,uber/fiber,distributed-ml,,https://github.com/uber/fiber,https://github.com/uber/fiber,Apache-2.0,2020-01-07 18:16:24.000,2023-03-19 22:55:22.000000,2021-03-15 07:00:08,66.0,,111.0,18.0,37.0,20.0,8.0,1045.0,Distributed Computing for AI Made Simple.,5.0,17,False,2020-07-09 03:28:28.000,0.2.1,6.0,fiber,,,,,92.0,91.0,https://pypi.org/project/fiber,2020-07-09 03:28:28.000,1.0,295.0,295.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +827,Caer,jasmcaus/caer,image,,https://github.com/jasmcaus/caer,https://github.com/jasmcaus/caer,MIT,2020-08-06 18:36:14.000,2023-10-13 12:16:35.000000,2023-04-01 08:26:45,5080.0,,102.0,20.0,58.0,2.0,13.0,789.0,"A lightweight Computer Vision library. Scale your models, not boilerplate.",8.0,17,False,2021-10-13 21:04:12.000,2.0.8,119.0,caer,,,https://caer.rtfd.io,,2.0,,https://pypi.org/project/caer,2021-10-13 21:04:12.000,2.0,6457.0,6457.0,,,,,,,,3.0,48.0,,,,,,,,,,,,,,,,,,, +828,parallelformers,tunib-ai/parallelformers,distributed-ml,,https://github.com/tunib-ai/parallelformers,https://github.com/tunib-ai/parallelformers,Apache-2.0,2021-07-17 12:50:43.000,2023-04-24 11:42:30.000000,2022-07-27 19:55:38,93.0,,57.0,14.0,10.0,26.0,17.0,786.0,Parallelformers: An Efficient Model Parallelization Toolkit for Deployment.,5.0,17,False,2022-07-27 19:52:00.185,1.2.7,19.0,parallelformers,,,,,68.0,68.0,https://pypi.org/project/parallelformers,2022-07-27 19:52:00.185,,544.0,544.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +829,HyperparameterHunter,HunterMcGushion/hyperparameter_hunter,hyperopt,,https://github.com/HunterMcGushion/hyperparameter_hunter,https://github.com/HunterMcGushion/hyperparameter_hunter,MIT,2018-06-01 23:17:00.000,2021-01-20 03:52:41.000000,2021-01-20 03:52:40,1096.0,,103.0,24.0,101.0,37.0,84.0,706.0,Easy hyperparameter optimization and automatic result saving across machine learning algorithms and libraries.,4.0,17,False,2021-02-16 11:34:12.211,3.0.0,16.0,hyperparameter-hunter,,,,,,,https://pypi.org/project/hyperparameter-hunter,2018-06-14 02:21:57.000,,435.0,442.0,,,,,,,,3.0,563.0,,,,,,,,,,,,,,,,,,, +830,textflint,textflint/textflint,adversarial,,https://github.com/textflint/textflint,https://github.com/textflint/textflint,GPL-3.0,2021-03-06 11:15:52.000,2022-09-27 17:09:16.000000,2022-06-21 04:27:47,257.0,,94.0,17.0,19.0,5.0,29.0,644.0,Unified Multilingual Robustness Evaluation Toolkit for Natural Language Processing.,18.0,17,False,2022-03-15 07:18:47.000,0.1.0,6.0,textflint,,,,,19.0,19.0,https://pypi.org/project/textflint,2022-03-15 07:18:47.000,,628.0,628.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +831,kglib,vaticle/kglib,graph,,https://github.com/typedb/typedb-ml,https://github.com/typedb/typedb-ml,Apache-2.0,2018-09-16 16:46:48.000,2023-11-18 17:08:08.000000,2023-11-18 17:08:08,508.0,,93.0,37.0,106.0,12.0,51.0,551.0,TypeDB-ML is the Machine Learning integrations library for TypeDB.,13.0,17,False,2022-07-29 11:37:34.000,0.3.0,8.0,grakn-kglib,,,,,,,https://pypi.org/project/grakn-kglib,2020-08-19 15:39:10.000,,296.0,299.0,,,,,,,,3.0,257.0,,,,,,typedb/typedb-ml,,,,,,,,,,,,, +832,sklearn-evaluation,edublancas/sklearn-evaluation,interpretability,,https://github.com/edublancas/sklearn-evaluation,https://github.com/edublancas/sklearn-evaluation,MIT,2023-01-15 21:18:52.000,2024-09-18 17:05:04.000000,2023-01-13 21:57:34,832.0,,54.0,,,,,455.0,"Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook..",19.0,17,False,2024-09-18 17:05:04.000,0.12.2,50.0,sklearn-evaluation,,,,['sklearn'],3.0,,https://pypi.org/project/sklearn-evaluation,2024-09-18 17:05:04.000,3.0,4495.0,4495.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +833,OpenRec,ylongqi/openrec,recommender-systems,,https://github.com/ylongqi/openrec,https://github.com/ylongqi/openrec,Apache-2.0,2017-11-29 16:04:40.000,2023-03-24 23:54:19.000000,2020-02-19 07:57:17,213.0,,84.0,34.0,47.0,5.0,12.0,415.0,OpenRec is an open-source and modular library for neural network-inspired recommendation algorithms.,11.0,17,False,2020-02-18 06:52:11.000,0.3.0,12.0,openrec,,,,,5.0,4.0,https://pypi.org/project/openrec,2020-02-18 06:52:11.000,1.0,237.0,237.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +834,Pywick,achaiah/pywick,pytorch-utils,,https://github.com/achaiah/pywick,https://github.com/achaiah/pywick,MIT,2019-03-25 15:42:47.000,2022-02-04 15:57:11.000000,2021-10-22 03:09:17,149.0,,38.0,14.0,39.0,2.0,13.0,400.0,High-level batteries-included neural network training library for Pytorch.,4.0,17,False,2021-10-22 03:19:11.000,0.6.5,8.0,pywick,,,,['pytorch'],13.0,13.0,https://pypi.org/project/pywick,2021-10-22 03:19:11.000,,193.0,193.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +835,tfdeploy,riga/tfdeploy,model-serialisation,,https://github.com/riga/tfdeploy,https://github.com/riga/tfdeploy,BSD-3-Clause,2016-03-07 13:08:21.000,2025-01-04 18:56:14.000000,2025-01-04 18:56:14,175.0,,38.0,21.0,5.0,11.0,23.0,354.0,Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.,4.0,17,True,2017-03-30 10:51:26.000,0.4.2,22.0,tfdeploy,,,,['tensorflow'],,,https://pypi.org/project/tfdeploy,2017-03-30 10:51:26.000,,730.0,730.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +836,Torch Points 3D,nicolas-chaulet/torch-points3d,image,,https://github.com/nicolas-chaulet/torch-points3d,https://github.com/nicolas-chaulet/torch-points3d,BSD-3-Clause,2022-01-09 14:41:37.000,2021-12-10 20:17:18.000000,2021-12-10 20:17:18,1788.0,,48.0,1.0,,,,238.0,Pytorch framework for doing deep learning on point clouds.,29.0,17,False,2021-04-30 09:00:22.000,1.3.0,14.0,torch-points3d,,,,['pytorch'],,,https://pypi.org/project/torch-points3d,2021-04-30 09:00:22.000,,1535.0,1535.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +837,steppy,minerva-ml/steppy,ml-experiments,,https://github.com/minerva-ml/steppy,https://github.com/minerva-ml/steppy,MIT,2018-01-15 09:40:49.000,2018-11-23 09:49:59.000000,2018-11-23 09:47:34,69.0,,32.0,12.0,54.0,13.0,50.0,134.0,"Lightweight, Python library for fast and reproducible experimentation.",7.0,17,False,2018-11-23 09:49:59.000,0.1.16,16.0,steppy,,,,,65.0,60.0,https://pypi.org/project/steppy,2018-11-23 09:49:59.000,5.0,370.0,370.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +838,Collie,ShopRunner/collie,recommender-systems,,https://github.com/ShopRunner/collie,https://github.com/ShopRunner/collie,BSD-3-Clause,2021-04-12 20:54:06.000,2024-02-21 16:29:12.000000,2023-03-31 15:44:32,231.0,,20.0,30.0,53.0,7.0,7.0,112.0,"A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.",15.0,17,False,2023-03-31 16:09:03.477,1.3.1,10.0,collie,,,,['pytorch'],53.0,53.0,https://pypi.org/project/collie,2022-01-18 23:07:16.000,,451.0,451.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +839,OpenNRE,thunlp/OpenNRE,nlp,,https://github.com/thunlp/OpenNRE,https://github.com/thunlp/OpenNRE,MIT,2017-02-26 07:37:12.000,2024-01-10 11:52:49.000000,2024-01-10 11:52:48,177.0,,1055.0,121.0,25.0,17.0,353.0,4400.0,An Open-Source Package for Neural Relation Extraction (NRE).,14.0,16,False,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +840,StarSpace,facebookresearch/StarSpace,ml-frameworks,,https://github.com/facebookresearch/StarSpace,https://github.com/facebookresearch/StarSpace,MIT,2017-06-28 17:50:18.000,2022-12-04 04:02:21.000000,2019-12-13 19:03:25,138.0,,531.0,174.0,110.0,56.0,149.0,3953.0,"Learning embeddings for classification, retrieval and ranking.",17.0,16,False,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +841,Euler,alibaba/euler,graph,,https://github.com/alibaba/euler,https://github.com/alibaba/euler,Apache-2.0,2019-01-10 06:32:32.000,2023-08-19 12:30:48.000000,2020-07-29 05:53:01,8.0,,560.0,137.0,28.0,217.0,102.0,2898.0,A distributed graph deep learning framework.,5.0,16,False,2020-07-07 02:24:18.000,2.0.0,2.0,euler-gl,,,,['tensorflow'],2.0,2.0,https://pypi.org/project/euler-gl,2019-04-10 01:53:45.000,,59.0,59.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +842,automl-gs,minimaxir/automl-gs,hyperopt,,https://github.com/minimaxir/automl-gs,https://github.com/minimaxir/automl-gs,MIT,2019-01-13 18:57:44.000,2019-10-22 11:20:40.000000,2019-04-05 06:48:14,102.0,,171.0,60.0,10.0,26.0,6.0,1857.0,"Provide an input CSV and a target field to predict, generate a model + code to run it.",7.0,16,False,2019-04-05 06:51:04.000,0.2.1,2.0,automl_gs,,,,,,,https://pypi.org/project/automl_gs,2019-04-05 06:47:54.000,,61.0,61.0,,,,,,,,3.0,52.0,,,,,,,,,,,,,,,,,,, +843,AutoGL,THUMNLab/AutoGL,graph,,https://github.com/THUMNLab/AutoGL,https://github.com/THUMNLab/AutoGL,Apache-2.0,2020-11-30 14:26:22.000,2024-08-08 16:55:04.000000,2024-02-05 15:11:35,743.0,,121.0,29.0,111.0,16.0,25.0,1108.0,An autoML framework & toolkit for machine learning on graphs.,16.0,16,False,2022-12-30 06:11:04.000,0.4.0,4.0,auto-graph-learning,,,,['pytorch'],,,https://pypi.org/project/auto-graph-learning,2020-12-23 08:05:25.000,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +844,TextBox,RUCAIBox/TextBox,nlp,,https://github.com/RUCAIBox/TextBox,https://github.com/RUCAIBox/TextBox,MIT,2020-11-08 07:35:46.000,2023-07-27 14:39:30.000000,2023-05-18 02:26:52,1358.0,,118.0,19.0,295.0,3.0,70.0,1088.0,TextBox 2.0 is a text generation library with pre-trained language models.,18.0,16,False,2022-12-28 02:06:22.000,2.0.0,10.0,textbox,,,,,7.0,7.0,https://pypi.org/project/textbox,2021-04-15 09:35:06.000,,4.0,4.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +845,Translate,pytorch/translate,nlp,,https://github.com/pytorch/translate,https://github.com/pytorch/translate,BSD-3-Clause,2018-04-24 16:44:04.000,2023-04-27 20:56:00.000000,2022-06-10 23:04:56,813.0,,203.0,42.0,667.0,28.0,27.0,833.0,Translate - a PyTorch Language Library.,89.0,16,False,,,1.0,pytorch-translate,,,,['pytorch'],,,https://pypi.org/project/pytorch-translate,2018-05-01 19:59:40.000,,24.0,24.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +846,madgrad,facebookresearch/madgrad,pytorch-utils,,https://github.com/facebookresearch/madgrad,https://github.com/facebookresearch/madgrad,MIT,2021-01-12 19:41:06.000,2025-01-27 18:38:03.000000,2025-01-27 18:38:03,25.0,1.0,57.0,16.0,8.0,,10.0,803.0,MADGRAD Optimization Method.,3.0,16,True,,,4.0,madgrad,,,,['pytorch'],102.0,101.0,https://pypi.org/project/madgrad,2022-03-08 18:23:32.000,1.0,3929.0,3929.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +847,Anchor,marcotcr/anchor,interpretability,,https://github.com/marcotcr/anchor,https://github.com/marcotcr/anchor,BSD-2-Clause,2018-02-02 23:38:50.000,2022-07-19 18:09:12.000000,2022-07-19 18:08:39,47.0,,112.0,28.0,10.0,25.0,51.0,801.0,Code for High-Precision Model-Agnostic Explanations paper.,10.0,16,False,,,10.0,anchor_exp,,,,,2.0,,https://pypi.org/project/anchor_exp,2020-09-10 22:52:00.000,2.0,1380.0,1380.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +848,FlashTorch,MisaOgura/flashtorch,interpretability,,https://github.com/MisaOgura/flashtorch,https://github.com/MisaOgura/flashtorch,MIT,2019-03-22 13:00:57.000,2023-09-21 07:22:50.000000,2023-09-21 07:22:50,127.0,,85.0,15.0,15.0,10.0,22.0,740.0,Visualization toolkit for neural networks in PyTorch! Demo --.,2.0,16,False,2020-05-29 14:39:38.000,0.1.3,12.0,flashtorch,,,,['pytorch'],23.0,23.0,https://pypi.org/project/flashtorch,2020-05-29 14:38:32.000,,307.0,307.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +849,cuSignal,rapidsai/cusignal,gpu-utilities,,https://github.com/rapidsai/cusignal,https://github.com/rapidsai/cusignal,Apache-2.0,2019-08-22 14:27:27.000,2023-09-21 18:53:21.000000,2023-09-21 18:53:18,1296.0,,128.0,42.0,435.0,25.0,130.0,724.0,GPU accelerated signal processing.,45.0,16,False,2023-08-09 16:45:21.000,23.08.00,21.0,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +850,SpeedTorch,Santosh-Gupta/SpeedTorch,gpu-utilities,,https://github.com/Santosh-Gupta/SpeedTorch,https://github.com/Santosh-Gupta/SpeedTorch,MIT,2019-09-07 18:57:52.000,2020-02-21 23:13:29.000000,2020-02-21 23:13:28,170.0,,39.0,23.0,4.0,4.0,2.0,685.0,Library for faster pinned CPU - GPU transfer in Pytorch.,3.0,16,False,2020-01-06 05:27:17.000,0.1.6,14.0,SpeedTorch,,,,['pytorch'],9.0,7.0,https://pypi.org/project/SpeedTorch,2020-01-06 05:27:17.000,2.0,474.0,474.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +851,KD-Lib,SforAiDl/KD_Lib,others,,https://github.com/SforAiDl/KD_Lib,https://github.com/SforAiDl/KD_Lib,MIT,2020-05-10 13:08:42.000,2023-03-01 21:06:37.000000,2023-03-01 21:03:09,298.0,,58.0,14.0,83.0,19.0,49.0,624.0,A Pytorch Knowledge Distillation library for benchmarking and extending works in the domains of Knowledge..,6.0,16,False,2022-05-18 08:35:04.000,0.0.32,8.0,KD-Lib,,,,['pytorch'],,,https://pypi.org/project/KD-Lib,2022-05-18 08:35:04.000,,301.0,301.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +852,caliban,google/caliban,ml-experiments,,https://github.com/google/caliban,https://github.com/google/caliban,Apache-2.0,2020-06-02 18:12:50.000,2024-06-06 22:38:20.000000,2024-01-25 16:57:26,261.0,,66.0,18.0,101.0,19.0,15.0,500.0,"Research workflows made easy, locally and in the Cloud.",10.0,16,False,2023-06-16 17:26:21.434,0.4.2,11.0,caliban,,,,,4.0,4.0,https://pypi.org/project/caliban,2020-09-12 19:41:23.000,,525.0,525.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +853,VizSeq,facebookresearch/vizseq,nlp,,https://github.com/facebookresearch/vizseq,https://github.com/facebookresearch/vizseq,MIT,2019-08-26 13:19:38.000,2025-03-07 17:59:22.000000,2025-03-07 17:59:20,82.0,1.0,61.0,15.0,68.0,7.0,9.0,445.0,"An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.).",4.0,16,True,2020-08-07 01:13:52.000,0.1.15,16.0,vizseq,,,,,12.0,12.0,https://pypi.org/project/vizseq,2020-08-07 01:13:52.000,,289.0,289.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +854,ExplainX.ai,explainX/explainx,interpretability,,https://github.com/explainX/explainx,https://github.com/explainX/explainx,MIT,2020-06-16 14:27:15.000,2024-08-21 16:55:05.000000,2024-08-21 16:55:05,192.0,,55.0,9.0,17.0,10.0,29.0,431.0,Explainable AI framework for data scientists. Explain & debug any blackbox machine learning model with a single line..,5.0,16,True,2021-02-07 11:06:21.000,2.407,56.0,explainx,,,,,,,https://pypi.org/project/explainx,2021-02-04 16:44:24.000,,1607.0,1607.0,,,,,,,,3.0,20.0,,,,,,,,,,,,,,,,,,, +855,Adversary,airbnb/artificial-adversary,adversarial,,https://github.com/airbnb/artificial-adversary,https://github.com/airbnb/artificial-adversary,MIT,2018-08-08 04:42:11.000,2025-04-22 14:57:32.689000,2018-08-29 15:31:30,15.0,,56.0,17.0,6.0,6.0,,402.0,Tool to generate adversarial text examples and test machine learning models against them.,5.0,16,False,2018-08-29 15:14:41.000,1.1.1,3.0,Adversary,conda-forge/artificial-adversary,,,,14.0,13.0,https://pypi.org/project/Adversary,2018-08-29 15:14:41.000,1.0,87.0,229.0,https://anaconda.org/conda-forge/artificial-adversary,2025-04-22 14:57:32.689,8138.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +856,pdvega,altair-viz/pdvega,data-viz,,https://github.com/altair-viz/pdvega,https://github.com/altair-viz/pdvega,MIT,2018-01-11 21:30:27.000,2019-03-29 16:09:14.000000,2019-03-29 16:09:13,177.0,,30.0,22.0,21.0,17.0,10.0,344.0,Interactive plotting for Pandas using Vega-Lite.,9.0,16,False,,,1.0,pdvega,,,,,91.0,91.0,https://pypi.org/project/pdvega,2018-02-01 04:56:43.000,,41.0,41.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +857,pandas-ml,pandas-ml/pandas-ml,others,,https://github.com/pandas-ml/pandas-ml,https://github.com/pandas-ml/pandas-ml,BSD-3-Clause,2015-02-21 03:14:04.000,2020-08-14 12:29:33.000000,2019-03-05 01:36:55,153.0,,79.0,17.0,93.0,30.0,18.0,318.0,"pandas, scikit-learn, xgboost and seaborn integration.",5.0,16,False,2019-03-05 01:36:12.000,0.6.1,9.0,pandas-ml,,,,"['sklearn', 'pandas']",2.0,,https://pypi.org/project/pandas-ml,2019-03-05 01:35:23.000,2.0,2265.0,2265.0,,,,,,,,3.0,12.0,,,,,,,,,,,,,,,,,,, +858,skift,shaypal5/skift,nlp,,https://github.com/shaypal5/skift,https://github.com/shaypal5/skift,MIT,2018-02-03 11:37:21.000,2022-06-07 15:07:07.000000,2022-06-07 15:07:04,141.0,,24.0,10.0,8.0,1.0,10.0,235.0,scikit-learn wrappers for Python fastText.,9.0,16,False,2022-02-14 13:45:54.000,0.0.23,18.0,skift,,,,['sklearn'],17.0,17.0,https://pypi.org/project/skift,2018-03-15 09:05:47.000,,700.0,700.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +859,ipyexperiments,stas00/ipyexperiments,gpu-utilities,,https://github.com/stas00/ipyexperiments,https://github.com/stas00/ipyexperiments,Apache-2.0,2018-11-15 01:19:40.000,2023-12-15 03:22:24.000000,2023-12-15 03:22:22,207.0,,14.0,8.0,2.0,,5.0,215.0,"Automatic GPU+CPU memory profiling, re-use and memory leaks detection using jupyter/ipython experiment containers.",3.0,16,False,2023-12-15 03:21:06.000,0.1.29,25.0,ipyexperiments,,,,['jupyter'],12.0,10.0,https://pypi.org/project/ipyexperiments,2023-12-15 03:21:06.000,2.0,562.0,562.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +860,CometML,comet-ml/examples,ml-experiments,,,https://www.comet.com,MIT,,2025-04-17 20:01:14.000000,,,,,,,,,,Supercharging Machine Learning.,,16,True,2025-04-02 19:20:07.000,3.49.7,315.0,comet_ml,comet_ml,,,,94.0,,https://pypi.org/project/comet_ml,2025-04-17 20:01:14.000,94.0,520354.0,520354.0,https://anaconda.org/anaconda/comet_ml,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +861,ZhuSuan,thu-ml/zhusuan,probabilistics,,https://github.com/thu-ml/zhusuan,https://github.com/thu-ml/zhusuan,MIT,2016-07-18 13:31:38.000,2022-12-17 20:33:19.000000,2019-08-05 10:00:04,439.0,,420.0,143.0,72.0,12.0,53.0,2219.0,"A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow.",20.0,15,False,,,,,,,,['tensorflow'],,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +862,GraphVite,DeepGraphLearning/graphvite,graph,,https://github.com/DeepGraphLearning/graphvite,https://github.com/DeepGraphLearning/graphvite,Apache-2.0,2019-07-16 15:48:20.000,2025-03-25 16:27:49.968000,2024-06-14 21:18:09,16.0,,153.0,31.0,,53.0,60.0,1250.0,GraphVite: A General and High-performance Graph Embedding System.,1.0,15,True,,,4.0,,milagraph/graphvite,,,,,,,,,,74.0,https://anaconda.org/milagraph/graphvite,2025-03-25 16:27:49.968,5062.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +863,BLINK,facebookresearch/BLINK,nlp,,https://github.com/facebookresearch/BLINK,https://github.com/facebookresearch/BLINK,MIT,2019-09-25 21:27:44.000,2023-09-21 16:18:30.000000,2021-04-02 03:03:34,211.0,,232.0,38.0,40.0,73.0,34.0,1188.0,Entity Linker solution.,16.0,15,False,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +864,Skater,oracle/Skater,interpretability,,https://github.com/oracle/Skater,https://github.com/oracle/Skater,UPL-1.0,2017-01-26 05:45:42.000,2025-04-22 14:56:37.757000,,,,182.0,,,72.0,,1067.0,Python Library for Model Interpretation/Explanations.,7.0,15,False,2018-09-21 07:03:32.000,1.1.2,23.0,skater,conda-forge/skater,,,,1.0,,https://pypi.org/project/skater,2018-09-21 07:03:32.000,1.0,501.0,2160.0,https://anaconda.org/conda-forge/skater,2025-04-22 14:56:37.757,94599.0,,,,,3.0,,,,,,,,,,,,,,,,,,,, +865,MedicalTorch,perone/medicaltorch,medical-data,,https://github.com/perone/medicaltorch,https://github.com/perone/medicaltorch,Apache-2.0,2018-02-27 02:50:07.000,2024-04-26 17:46:05.000000,2021-04-16 18:50:54,57.0,,123.0,47.0,22.0,15.0,9.0,868.0,A medical imaging framework for Pytorch.,8.0,15,False,2018-11-24 00:33:11.000,0.2,2.0,medicaltorch,,,,['pytorch'],18.0,18.0,https://pypi.org/project/medicaltorch,2018-11-24 00:29:36.000,,132.0,132.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +866,TensorFrames,databricks/tensorframes,distributed-ml,,https://github.com/databricks/tensorframes,https://github.com/databricks/tensorframes,Apache-2.0,2016-03-04 19:25:19.000,2018-12-28 23:37:03.000000,,,,150.0,,,51.0,,718.0,Tensorflow wrapper for DataFrames on Apache Spark.,9.0,15,False,2018-05-16 14:20:28.000,0.2.9,2.0,tensorframes,,,,"['tensorflow', 'spark']",1.0,,https://pypi.org/project/tensorframes,2018-05-16 14:20:28.000,1.0,6048.0,6048.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +867,NeuralCompression,facebookresearch/NeuralCompression,others,,https://github.com/facebookresearch/NeuralCompression,https://github.com/facebookresearch/NeuralCompression,MIT,2021-07-09 15:14:13.000,2024-09-20 14:21:23.000000,2024-09-20 14:21:18,142.0,,45.0,18.0,171.0,5.0,66.0,548.0,A collection of tools for neural compression enthusiasts.,10.0,15,True,2023-10-03 14:26:28.000,0.3.1,6.0,neuralcompression,,,,,,,https://pypi.org/project/neuralcompression,2023-10-03 14:26:28.000,,311.0,311.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +868,interpret-text,interpretml/interpret-text,interpretability,,https://github.com/interpretml/interpret-text,https://github.com/interpretml/interpret-text,MIT,2019-09-04 16:39:48.000,2024-02-05 16:37:11.000000,2024-02-05 16:37:10,152.0,,69.0,18.0,177.0,87.0,16.0,423.0,A library that incorporates state-of-the-art explainers for text-based machine learning models and visualizes the..,18.0,15,False,2021-12-07 15:12:02.000,0.1.3,5.0,interpret-text,,,,['jupyter'],,,https://pypi.org/project/interpret-text,2021-12-07 01:57:31.000,,244.0,244.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +869,ptgnn,microsoft/ptgnn,graph,,https://github.com/microsoft/ptgnn,https://github.com/microsoft/ptgnn,MIT,2020-05-12 08:42:30.000,2022-02-01 17:31:29.000000,2022-02-01 17:31:29,99.0,,39.0,10.0,17.0,2.0,5.0,375.0,A PyTorch Graph Neural Network Library.,8.0,15,False,2021-10-21 21:43:04.000,0.10.4,18.0,ptgnn,,,,['pytorch'],5.0,5.0,https://pypi.org/project/ptgnn,2021-10-21 21:43:04.000,,633.0,633.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +870,TorchDrift,torchdrift/torchdrift,pytorch-utils,,https://github.com/TorchDrift/TorchDrift,https://github.com/TorchDrift/TorchDrift,Apache-2.0,2021-02-10 09:27:48.000,2022-08-26 08:15:45.000000,2022-08-26 08:15:45,38.0,,15.0,10.0,6.0,9.0,6.0,316.0,Drift Detection for your PyTorch Models.,4.0,15,False,2021-03-08 12:21:48.000,0.1.0,3.0,torchdrift,,,,['pytorch'],29.0,29.0,https://pypi.org/project/torchdrift,2021-03-08 12:51:05.000,,238.0,238.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +871,data-describe,data-describe/data-describe,data-viz,,https://github.com/data-describe/data-describe,https://github.com/data-describe/data-describe,Apache-2.0,2020-05-04 17:58:14.000,2023-02-22 05:20:46.000000,2021-11-19 06:05:15,700.0,,18.0,11.0,271.0,64.0,181.0,300.0,datadescribe: Pythonic EDA Accelerator for Data Science.,13.0,15,False,,,5.0,data-describe,,,,,,,https://pypi.org/project/data-describe,2020-12-03 23:07:43.000,,916.0,916.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +872,ONNX-T5,abelriboulot/onnxt5,nlp,,https://github.com/abelriboulot/onnxt5,https://github.com/abelriboulot/onnxt5,Apache-2.0,2020-08-01 09:38:35.000,2022-11-02 18:43:57.000000,2021-01-28 09:24:52,74.0,,29.0,7.0,6.0,8.0,8.0,253.0,"Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version..",4.0,15,False,2021-01-28 09:26:15.000,0.1.8,11.0,onnxt5,,,,,4.0,4.0,https://pypi.org/project/onnxt5,2021-01-28 09:26:15.000,,240.0,240.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +873,backprop,backprop-ai/backprop,model-serialisation,,https://github.com/backprop-ai/backprop,https://github.com/backprop-ai/backprop,Apache-2.0,2020-10-30 15:25:14.000,2024-07-31 15:16:51.000000,2021-05-03 09:15:21,219.0,,12.0,15.0,14.0,5.0,4.0,243.0,"Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.",8.0,15,False,2021-04-20 13:53:12.000,0.1.2,16.0,backprop,,,,,5.0,5.0,https://pypi.org/project/backprop,2024-07-31 15:16:51.000,,719.0,719.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +874,NeuralQA,victordibia/neuralqa,nlp,,https://github.com/victordibia/neuralqa,https://github.com/victordibia/neuralqa,MIT,2020-05-19 03:55:56.000,2023-06-07 20:12:03.000000,2020-12-16 17:41:37,312.0,,31.0,6.0,72.0,31.0,8.0,231.0,NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT.,3.0,15,False,,,27.0,neuralqa,,,,,6.0,6.0,https://pypi.org/project/neuralqa,2020-09-18 17:54:50.000,,411.0,411.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +875,Headliner,as-ideas/headliner,nlp,,https://github.com/spring-media/headliner,https://github.com/spring-media/headliner,MIT,2019-09-30 11:33:28.000,2021-03-26 07:19:57.000000,2020-02-14 09:03:27,276.0,,40.0,15.0,7.0,2.0,13.0,228.0,Easy training and deployment of seq2seq models.,2.0,15,False,2020-01-24 09:06:29.000,1.0.2,30.0,headliner,,,,,8.0,7.0,https://pypi.org/project/headliner,2020-01-24 09:06:29.000,1.0,1069.0,1069.0,,,,,,,,3.0,,,,,,,spring-media/headliner,,,,,,,,,,,,, +876,nx-altair,Zsailer/nx_altair,data-viz,,https://github.com/Zsailer/nx_altair,https://github.com/Zsailer/nx_altair,MIT,2018-05-13 00:10:12.000,2023-09-27 23:13:07.000000,2020-06-02 21:10:26,51.0,,26.0,10.0,15.0,9.0,4.0,224.0,Draw interactive NetworkX graphs with Altair.,3.0,15,False,2020-06-02 21:11:12.000,0.1.6,8.0,nx-altair,,,,['jupyter'],9.0,,https://pypi.org/project/nx-altair,2020-06-02 21:11:12.000,9.0,892.0,892.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +877,Parfit,jmcarpenter2/parfit,hyperopt,,https://github.com/jmcarpenter2/parfit,https://github.com/jmcarpenter2/parfit,MIT,2017-11-22 20:17:51.000,2024-02-13 04:16:38.000000,2020-04-04 19:26:37,127.0,,28.0,5.0,5.0,6.0,5.0,199.0,"A package for parallelizing the fit and flexibly scoring of sklearn machine learning models, with visualization..",4.0,15,False,,,23.0,parfit,,,,['sklearn'],29.0,29.0,https://pypi.org/project/parfit,2018-10-11 22:03:16.000,,927.0,927.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +878,HugsVision,qanastek/HugsVision,image,,https://github.com/qanastek/HugsVision,https://github.com/qanastek/HugsVision,MIT,2021-08-12 21:46:08.000,2023-08-13 00:37:26.000000,2023-01-22 01:25:39,75.0,,19.0,2.0,3.0,17.0,23.0,196.0,HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision.,2.0,15,False,2023-01-22 01:21:35.467,0.75.5,78.0,hugsvision,,,,['huggingface'],15.0,15.0,https://pypi.org/project/hugsvision,2023-01-22 01:21:35.467,,1514.0,1514.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +879,DeepNeuro,QTIM-Lab/DeepNeuro,medical-data,,https://github.com/QTIM-Lab/DeepNeuro,https://github.com/QTIM-Lab/DeepNeuro,MIT,2017-06-01 19:36:34.000,2020-06-24 13:00:15.000000,2020-06-24 13:00:14,285.0,,37.0,13.0,18.0,27.0,18.0,126.0,A deep learning python package for neuroimaging data. Made by:.,6.0,15,False,2019-06-10 21:04:04.000,0.2.3,6.0,deepneuro,,,,,3.0,3.0,https://pypi.org/project/deepneuro,2019-06-10 21:04:04.000,,176.0,176.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +880,LazyCluster,ml-tooling/lazycluster,distributed-ml,,https://github.com/ml-tooling/lazycluster,https://github.com/ml-tooling/lazycluster,Apache-2.0,2019-08-07 08:05:13.000,2023-02-16 02:23:02.000000,2021-08-19 13:59:11,444.0,,11.0,6.0,20.0,3.0,,49.0,Distributed machine learning made simple.,2.0,15,False,2020-12-14 15:25:59.000,0.2.4,5.0,lazycluster,,,,,49.0,49.0,https://pypi.org/project/lazycluster,2020-12-14 14:49:33.000,,299.0,299.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +881,GraphEmbedding,shenweichen/GraphEmbedding,graph,,https://github.com/shenweichen/GraphEmbedding,https://github.com/shenweichen/GraphEmbedding,MIT,2019-02-11 16:27:20.000,2024-03-14 09:28:18.000000,2022-06-21 18:24:09,30.0,,999.0,62.0,13.0,45.0,26.0,3797.0,Implementation and experiments of graph embedding algorithms.,9.0,14,False,,,,,,,,['sklearn'],,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +882,GraphSAGE,williamleif/GraphSAGE,graph,,https://github.com/williamleif/GraphSAGE,https://github.com/williamleif/GraphSAGE,MIT,2017-05-29 15:36:22.000,2024-08-04 16:33:52.000000,2018-09-19 19:27:00,59.0,,843.0,76.0,35.0,120.0,59.0,3510.0,Representation learning on large graphs using stochastic graph convolutions.,9.0,14,False,,,,,,,,['tensorflow'],,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +883,pytorchviz,szagoruyko/pytorchviz,pytorch-utils,,https://github.com/szagoruyko/pytorchviz,https://github.com/szagoruyko/pytorchviz,MIT,2018-01-30 15:37:55.000,2024-12-30 21:14:55.000000,2024-12-30 20:51:08,23.0,,279.0,30.0,24.0,34.0,38.0,3342.0,A small package to create visualizations of PyTorch execution graphs.,6.0,14,True,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,-5.0,,,,,,,,,,, +884,OpenNE,thunlp/OpenNE,graph,,https://github.com/thunlp/OpenNE,https://github.com/thunlp/OpenNE,MIT,2017-10-08 04:58:20.000,2024-01-10 11:53:25.000000,2024-01-10 11:53:25,104.0,,488.0,65.0,26.0,10.0,97.0,1699.0,An Open-Source Package for Network Embedding (NE).,12.0,14,False,,,,,,,,['tensorflow'],,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +885,Medical Detection Toolkit,MIC-DKFZ/medicaldetectiontoolkit,medical-data,,https://github.com/MIC-DKFZ/medicaldetectiontoolkit,https://github.com/MIC-DKFZ/medicaldetectiontoolkit,Apache-2.0,2018-10-12 12:34:57.000,2024-06-17 22:47:46.000000,2022-04-04 08:29:54,41.0,,294.0,52.0,23.0,42.0,85.0,1323.0,"The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN,..",3.0,14,False,,,,,,,,['pytorch'],,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +886,rliable,google-research/rliable,reinforcement-learning,,https://github.com/google-research/rliable,https://github.com/google-research/rliable,Apache-2.0,2021-08-20 00:41:06.000,2024-08-12 20:48:27.000000,2024-08-12 20:48:27,72.0,,49.0,9.0,11.0,3.0,17.0,827.0,"[NeurIPS21 Outstanding Paper] Library for reliable evaluation on RL and ML benchmarks, even with only a handful of..",10.0,14,True,,,,rliable`,,,,,203.0,203.0,https://pypi.org/project/rliable`,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +887,atspy,firmai/atspy,time-series-data,,https://github.com/firmai/atspy,https://github.com/firmai/atspy,MIT,2020-01-28 05:00:10.000,2022-11-21 21:55:23.000000,2021-12-18 09:26:18,99.0,,89.0,20.0,18.0,22.0,2.0,515.0,AtsPy: Automated Time Series Models in Python (by @firmai).,5.0,14,False,2020-11-12 16:10:48.000,zen,39.0,atspy,,,,,14.0,14.0,https://pypi.org/project/atspy,2020-04-24 18:16:15.000,,603.0,603.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +888,tsaug,arundo/tsaug,time-series-data,,https://github.com/arundo/tsaug,https://github.com/arundo/tsaug,Apache-2.0,2019-09-27 00:38:05.000,2023-01-11 11:16:16.000000,2020-04-17 02:46:38,10.0,,37.0,10.0,8.0,10.0,3.0,352.0,A Python package for time series augmentation.,4.0,14,False,2020-04-17 02:50:25.000,0.2.1,4.0,tsaug,,,,,2.0,,https://pypi.org/project/tsaug,2020-04-17 02:50:25.000,2.0,3065.0,3065.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +889,TransferNLP,feedly/transfer-nlp,nlp,,https://github.com/feedly/transfer-nlp,https://github.com/feedly/transfer-nlp,MIT,2019-03-12 20:00:31.000,2024-07-25 10:16:22.000000,2020-05-28 17:31:53,465.0,,16.0,10.0,58.0,4.0,20.0,294.0,NLP library designed for reproducible experimentation management.,7.0,14,False,2020-05-28 19:00:02.000,0.1.6,8.0,transfer-nlp,,,,['pytorch'],,,https://pypi.org/project/transfer-nlp,2020-05-28 19:00:02.000,,243.0,243.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +890,nanodl,HMUNACHI/nanodl,ml-frameworks,,https://github.com/HMUNACHI/NanoDL,https://github.com/HMUNACHI/NanoDL,MIT,2023-08-22 13:22:24.000,2024-08-28 21:24:22.000000,2024-08-28 21:24:19,158.0,,11.0,8.0,15.0,2.0,7.0,286.0,A Jax-based library for designing and training small transformers.,3.0,14,False,2024-08-28 20:41:08.000,0.0.0,8.0,nanodl,,,,['jax'],2.0,2.0,https://pypi.org/project/nanodl,2024-08-28 20:41:08.000,,294.0,294.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +891,nylon,Palashio/nylon,others,,https://github.com/Palashio/nylon,https://github.com/Palashio/nylon,MIT,2021-06-04 17:33:49.000,2021-07-29 20:34:04.000000,2021-07-23 19:37:10,185.0,,8.0,6.0,4.0,14.0,18.0,83.0,"An intelligent, flexible grammar of machine learning.",3.0,14,False,2021-06-25 14:27:32.000,0.0.7,8.0,nylon-ai,,,,,3.0,3.0,https://pypi.org/project/nylon-ai,2021-06-25 14:27:32.000,,372.0,372.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +892,OpenKE,thunlp/OpenKE,graph,,https://github.com/thunlp/OpenKE,https://github.com/thunlp/OpenKE,,2017-10-08 11:20:23.000,2024-01-10 11:51:05.000000,2024-01-10 11:51:05,143.0,,984.0,102.0,28.0,28.0,357.0,3935.0,An Open-Source Package for Knowledge Embedding (KE).,14.0,13,False,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +893,ENAS,carpedm20/ENAS-pytorch,hyperopt,,https://github.com/carpedm20/ENAS-pytorch,https://github.com/carpedm20/ENAS-pytorch,Apache-2.0,2018-02-15 04:54:37.000,2023-07-06 21:33:33.000000,2020-06-16 07:23:32,53.0,,483.0,107.0,12.0,39.0,8.0,2717.0,PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing.,6.0,13,False,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +894,ml-ane-transformers,apple/ml-ane-transformers,model-serialisation,,https://github.com/apple/ml-ane-transformers,https://github.com/apple/ml-ane-transformers,,2022-06-03 16:36:06.000,2023-04-25 09:24:38.000000,2022-08-09 04:03:14,5.0,,89.0,47.0,4.0,3.0,,2614.0,Reference implementation of the Transformer architecture optimized for Apple Neural Engine (ANE).,1.0,13,False,2022-08-09 04:22:55.000,0.1.3,4.0,ane-transformers,,,,['pytorch'],1.0,,https://pypi.org/project/ane-transformers,2022-08-09 04:22:00.465,1.0,3269.0,3271.0,,,,,,,,3.0,80.0,,,,,,,,,,,,,,,,,,, +895,traingenerator,jrieke/traingenerator,others,,https://github.com/jrieke/traingenerator,https://github.com/jrieke/traingenerator,MIT,2020-12-03 16:47:16.000,2023-08-23 08:35:09.000000,2022-06-30 14:05:23,118.0,,177.0,36.0,10.0,13.0,3.0,1371.0,A web app to generate template code for machine learning.,3.0,13,False,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +896,deltapy,firmai/deltapy,tabular,,https://github.com/firmai/deltapy,https://github.com/firmai/deltapy,MIT,2020-04-08 05:27:53.000,2023-09-19 11:11:53.000000,2022-03-01 16:13:48,42.0,,55.0,16.0,3.0,2.0,1.0,543.0,DeltaPy - Tabular Data Augmentation (by @firmai).,4.0,13,False,2020-11-12 16:13:21.000,zen,11.0,deltapy,,,,,6.0,6.0,https://pypi.org/project/deltapy,2020-04-09 01:48:32.000,,260.0,260.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +897,Maze,enlite-ai/maze,reinforcement-learning,,https://github.com/enlite-ai/maze,https://github.com/enlite-ai/maze,Custom,2021-02-11 08:26:37.000,2025-04-08 07:00:37.000000,2022-11-21 12:12:41,1044.0,,12.0,8.0,26.0,1.0,2.0,275.0,Maze Applied Reinforcement Learning Framework.,3.0,13,False,2022-11-21 12:23:00.858,0.2.0,21.0,maze-rl,,enliteai/maze,,['pytorch'],,,https://pypi.org/project/maze-rl,2021-12-13 16:04:42.000,,380.0,385.0,,,,https://hub.docker.com/r/enliteai/maze,2021-06-24 21:00:27.801118,,288.0,3.0,11.0,,,,,,,,,,,,,,,,,,, +898,Auptimizer,LGE-ARC-AdvancedAI/auptimizer,hyperopt,,https://github.com/LGE-ARC-AdvancedAI/auptimizer,https://github.com/LGE-ARC-AdvancedAI/auptimizer,GPL-3.0,2019-09-12 01:08:37.000,2023-01-27 02:15:43.000000,2021-03-03 01:30:06,79.0,,28.0,21.0,44.0,1.0,5.0,200.0,An automatic ML model optimization tool.,11.0,13,False,2021-03-03 02:00:23.000,2.0,7.0,auptimizer,,,,,,,https://pypi.org/project/auptimizer,2021-03-02 02:40:32.000,,522.0,522.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +899,textvec,textvec/textvec,nlp,,https://github.com/textvec/textvec,https://github.com/textvec/textvec,MIT,2018-04-12 14:03:53.000,2024-06-17 22:44:04.000000,2024-01-09 14:26:42,74.0,,26.0,7.0,17.0,4.0,6.0,194.0,Text vectorization tool to outperform TFIDF for classification tasks.,11.0,13,False,2019-09-12 07:41:04.000,2.0,4.0,textvec,,,,['sklearn'],7.0,7.0,https://pypi.org/project/textvec,2020-12-03 14:17:09.000,,125.0,125.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +900,ModelChimp,ModelChimp/modelchimp,ml-experiments,,https://github.com/ModelChimp/modelchimp,https://github.com/ModelChimp/modelchimp,BSD-2-Clause,2018-11-05 08:39:03.000,2023-11-14 18:32:58.000000,2021-08-01 07:11:57,363.0,,12.0,3.0,1238.0,4.0,10.0,127.0,Experiment tracking for machine and deep learning projects.,3.0,13,False,2019-04-09 10:43:15.000,0.4.0,37.0,modelchimp,,modelchimp/modelchimp-server,,,,,https://pypi.org/project/modelchimp,2019-04-09 10:41:20.000,,381.0,390.0,,,,https://hub.docker.com/r/modelchimp/modelchimp-server,2019-04-09 10:15:09.532793,,705.0,3.0,,,,,,,,,,,,,,,,,,,, +901,Attribution Priors,suinleelab/attributionpriors,interpretability,,https://github.com/suinleelab/attributionpriors,https://github.com/suinleelab/attributionpriors,MIT,2019-06-24 23:54:24.000,2021-03-19 19:43:58.000000,2021-03-19 19:43:51,72.0,,9.0,5.0,,2.0,4.0,124.0,Tools for training explainable models using attribution priors.,6.0,13,False,2021-03-16 17:47:18.000,1.0.0,4.0,attributionpriors,,,,"['tensorflow', 'pytorch']",7.0,7.0,https://pypi.org/project/attributionpriors,2019-10-31 18:03:05.000,,199.0,199.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +902,Hypermax,electricbrainio/hypermax,hyperopt,,https://github.com/genixpro/hypermax,https://github.com/genixpro/hypermax,BSD-3-Clause,2018-07-27 18:43:01.000,2024-01-03 19:06:45.000000,2024-01-03 19:06:45,209.0,,13.0,11.0,5.0,3.0,2.0,113.0,"Better, faster hyper-parameter optimization.",8.0,13,False,2019-10-23 15:40:12.000,0.5.1,11.0,hypermax,,,,,6.0,6.0,https://pypi.org/project/hypermax,2019-10-23 15:40:12.000,,256.0,256.0,,,,,,,,3.0,,,,,,,genixpro/hypermax,,,,,,,,,,,,, +903,contextual-ai,SAP/contextual-ai,interpretability,,https://github.com/SAP-archive/contextual-ai,https://github.com/SAP-archive/contextual-ai,Apache-2.0,2020-05-12 07:15:56.000,2023-07-23 16:23:34.000000,2021-11-11 10:53:33,630.0,,12.0,12.0,26.0,4.0,13.0,87.0,"Contextual AI adds explainability to different stages of machine learning pipelines - data, training, and inference -..",12.0,13,False,2021-01-25 04:56:57.000,0.0.2,2.0,contextual-ai,,,,,,,https://pypi.org/project/contextual-ai,2021-01-25 04:56:57.000,,183.0,183.0,,,,,,,,3.0,,,,,,,SAP-archive/contextual-ai,,,,,,,,,,,,, +904,bias-detector,intuit/bias-detector,interpretability,,https://github.com/intuit/bias-detector,https://github.com/intuit/bias-detector,MIT,2021-02-02 16:58:52.000,2024-02-04 11:31:27.000000,2024-02-04 11:28:34,124.0,,12.0,10.0,17.0,,,43.0,Bias Detector is a python package for detecting bias in machine learning models.,4.0,13,False,2024-02-04 11:31:27.000,0.0.13,12.0,bias-detector,,,,,4.0,4.0,https://pypi.org/project/bias-detector,2024-02-04 11:31:27.000,,574.0,574.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +905,nptsne,biovault/nptsne,data-viz,,https://github.com/biovault/nptsne,https://github.com/biovault/nptsne,Apache-2.0,2019-06-28 08:40:25.000,2025-04-22 15:44:55.000000,2021-02-03 08:52:27,857.0,,2.0,2.0,3.0,7.0,6.0,33.0,nptsne is a numpy compatible python binary package that offers a number of APIs for fast tSNE calculation.,3.0,13,False,2021-12-23 15:53:08.000,1.2.0,3.0,nptsne,,,,,8.0,8.0,https://pypi.org/project/nptsne,2021-12-23 15:53:08.000,,500.0,500.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +906,MedicalNet,Tencent/MedicalNet,medical-data,,https://github.com/Tencent/MedicalNet,https://github.com/Tencent/MedicalNet,MIT,2019-07-17 09:53:10.000,2023-07-06 21:26:54.000000,2020-08-27 13:37:26,26.0,,424.0,62.0,7.0,72.0,17.0,2022.0,Many studies have shown that the performance on deep learning is significantly affected by volume of training data...,1.0,12,False,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +907,surpriver,tradytics/surpriver,financial-data,,https://github.com/tradytics/surpriver,https://github.com/tradytics/surpriver,GPL-3.0,2020-08-30 07:56:22.000,2021-08-13 08:02:31.000000,2020-09-21 04:32:05,64.0,,331.0,89.0,11.0,12.0,6.0,1803.0,Find big moving stocks before they move using machine learning and anomaly detection.,6.0,12,False,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +908,autodist,petuum/autodist,distributed-ml,,https://github.com/petuum/autodist,https://github.com/petuum/autodist,Apache-2.0,2020-06-29 19:45:38.000,2022-09-23 22:45:06.000000,2021-01-28 00:04:40,208.0,,26.0,15.0,51.0,11.0,1.0,134.0,Simple Distributed Deep Learning on TensorFlow.,11.0,12,False,,,2.0,autodist,,,,['tensorflow'],4.0,4.0,https://pypi.org/project/autodist,2020-07-16 05:36:19.000,,105.0,105.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +909,spacy-dbpedia-spotlight,MartinoMensio/spacy-dbpedia-spotlight,nlp,,https://github.com/MartinoMensio/spacy-dbpedia-spotlight,https://github.com/MartinoMensio/spacy-dbpedia-spotlight,MIT,2020-04-29 19:35:04.000,2023-03-24 11:33:01.000000,2023-03-24 11:32:56,55.0,,11.0,7.0,4.0,6.0,14.0,109.0,A spaCy wrapper for DBpedia Spotlight.,5.0,12,False,2023-03-08 10:33:19.000,0.2.6,11.0,spacy-dbpedia-spotlight,,,,['spacy'],,,https://pypi.org/project/spacy-dbpedia-spotlight,2022-10-07 09:58:11.751,,374.0,374.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +910,model_search,google/model_search,hyperopt,,https://github.com/google/model_search,https://github.com/google/model_search,Apache-2.0,2021-01-19 18:26:34.000,2024-07-30 21:36:15.000000,2022-02-09 22:20:11,9.0,,525.0,90.0,22.0,52.0,15.0,3263.0,AutoML algorithms for model architecture search at scale.,1.0,11,False,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +911,Devol,joeddav/devol,hyperopt,,https://github.com/joeddav/devol,https://github.com/joeddav/devol,MIT,2017-02-10 03:07:54.000,2023-05-25 14:45:47.000000,2020-07-05 21:56:58,116.0,,116.0,43.0,13.0,7.0,20.0,950.0,Genetic neural architecture search with Keras.,18.0,11,False,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +912,PySparNN,facebookresearch/pysparnn,nn-search,,https://github.com/facebookresearch/pysparnn,https://github.com/facebookresearch/pysparnn,BSD-3-Clause,2016-03-28 20:43:42.000,2020-10-02 06:01:01.000000,2018-01-31 16:50:23,147.0,,146.0,38.0,7.0,19.0,14.0,919.0,Approximate Nearest Neighbor Search for Sparse Data in Python!.,5.0,11,False,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +913,moolib,facebookresearch/moolib,distributed-ml,,https://github.com/facebookresearch/moolib,https://github.com/facebookresearch/moolib,MIT,2021-08-26 09:15:58.000,2022-12-12 15:07:44.000000,2022-12-12 15:07:38,41.0,,21.0,12.0,41.0,7.0,12.0,366.0,A library for distributed ML training with PyTorch.,6.0,11,False,2022-02-10 16:56:22.000,0.0.9c,1.0,,,,,['pytorch'],5.0,5.0,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +914,jaxdf,ucl-bug/jaxdf,jax-utils,,https://github.com/ucl-bug/jaxdf,https://github.com/ucl-bug/jaxdf,LGPL-3.0,2021-09-08 16:38:46.000,2024-09-17 10:38:04.000000,2024-09-17 10:34:46,319.0,,8.0,7.0,127.0,9.0,9.0,125.0,A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations.,4.0,11,False,2024-09-17 10:36:38.000,0.2.8,10.0,,,,,['jax'],9.0,9.0,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +915,Mozart,aashrafh/Mozart,ocr,,https://github.com/aashrafh/Mozart,https://github.com/aashrafh/Mozart,Apache-2.0,2020-12-14 11:49:14.000,2022-08-24 18:18:43.000000,2022-08-24 18:18:43,62.0,,92.0,17.0,5.0,4.0,12.0,659.0,An optical music recognition (OMR) system. Converts sheet music to a machine-readable version.,6.0,10,False,,,,,,,,['sklearn'],,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +916,textlesslib,facebookresearch/textlesslib,audio,,https://github.com/facebookresearch/textlesslib,https://github.com/facebookresearch/textlesslib,MIT,2022-02-09 16:28:00.000,2023-08-29 14:47:49.000000,2023-08-29 14:47:44,37.0,,54.0,17.0,13.0,14.0,11.0,540.0,Library for Textless Spoken Language Processing.,8.0,10,False,,,,,,,,['pytorch'],,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +917,pyrtfolio,alvarobartt/pyrtfolio,financial-data,,https://github.com/alvarobartt/pyrtfolio,https://github.com/alvarobartt/pyrtfolio,GPL-3.0,2019-10-06 20:22:12.000,2022-05-14 21:32:20.000000,2020-11-20 09:58:41,19.0,,25.0,7.0,2.0,2.0,6.0,151.0,Python package to generate stock portfolios.,4.0,10,False,2020-03-13 20:04:08.000,0.2,3.0,pyrtfolio,,,,,2.0,2.0,https://pypi.org/project/pyrtfolio,2020-03-13 20:31:47.000,,33.0,33.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +918,Hypertunity,gdikov/hypertunity,hyperopt,,https://github.com/gdikov/hypertunity,https://github.com/gdikov/hypertunity,Apache-2.0,2019-06-02 12:04:55.000,2020-01-26 23:14:49.000000,2020-01-26 22:53:29,64.0,,10.0,8.0,44.0,,2.0,136.0,A toolset for black-box hyperparameter optimisation.,2.0,10,False,2020-01-26 23:08:16.000,1.0.1,7.0,hypertunity,,,,,4.0,4.0,https://pypi.org/project/hypertunity,2020-01-26 23:08:16.000,,117.0,117.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +919,traintool,jrieke/traintool,ml-experiments,,https://github.com/jrieke/traintool,https://github.com/jrieke/traintool,Apache-2.0,2020-09-30 22:23:05.000,2021-03-12 01:44:04.000000,2021-03-12 01:43:14,122.0,,1.0,3.0,,,,12.0,Train off-the-shelf machine learning models in one line of code.,,10,False,2020-11-02 02:25:32.000,0.0.3,3.0,traintool,,,,"['pytorch', 'tensorflow', 'sklearn']",2.0,2.0,https://pypi.org/project/traintool,2020-11-02 02:25:32.000,,155.0,155.0,,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, +920,pyclugen,clugen/pyclugen,data-pipelines,,https://github.com/clugen/pyclugen,https://github.com/clugen/pyclugen,MIT,2020-08-22 19:52:09.000,2024-10-11 10:48:22.000000,2024-10-11 10:48:17,268.0,,,1.0,,,1.0,8.0,Multidimensional cluster generation in Python.,,10,False,2024-07-21 19:47:53.000,1.1.3,11.0,pyclugen,,,,,5.0,5.0,https://pypi.org/project/pyclugen,2024-07-21 19:47:53.000,,449.0,449.0,,,,,,,,1.0,,,,,,,,,,,,,,,,,,,, +921,tslumen,hsbc/tslumen,time-series-data,,https://github.com/hsbc/tslumen,https://github.com/hsbc/tslumen,Apache-2.0,2022-11-09 14:06:09.000,2024-08-11 23:52:21.000000,2022-11-22 16:44:39,2.0,,8.0,8.0,2.0,1.0,,69.0,A library for Time Series EDA (exploratory data analysis).,2.0,8,False,2022-11-22 17:50:34.944,0.0.1,1.0,tslumen,conda-forge/tslumen,,,,1.0,,https://pypi.org/project/tslumen,2022-11-22 17:50:34.944,1.0,66.0,66.0,https://anaconda.org/conda-forge/tslumen,,,,,,,3.0,,,,,,,,,,,,,,,,,,,, diff --git a/latest-changes.md b/latest-changes.md index 5e6e598..aba03c9 100644 --- a/latest-changes.md +++ b/latest-changes.md @@ -2,29 +2,29 @@ _Projects that have a higher project-quality score compared to the last update. There might be a variety of reasons, such as increased downloads or code activity._ -- transformers (πŸ₯‡54 Β· ⭐ 140K Β· πŸ“ˆ) - Transformers: State-of-the-art Machine Learning for.. Apache-2 -- sentence-transformers (πŸ₯‡44 Β· ⭐ 16K Β· πŸ“ˆ) - State-of-the-Art Text Embeddings. Apache-2 -- Optuna (πŸ₯‡43 Β· ⭐ 12K Β· πŸ“ˆ) - A hyperparameter optimization framework. MIT -- Catboost (πŸ₯ˆ42 Β· ⭐ 8.4K Β· πŸ“ˆ) - A fast, scalable, high performance Gradient Boosting on.. Apache-2 -- Ignite (πŸ₯ˆ37 Β· ⭐ 4.6K Β· πŸ“ˆ) - High-level library to help with training and evaluating neural.. BSD-3 -- auto-sklearn (πŸ₯ˆ31 Β· ⭐ 7.8K Β· πŸ’€) - Automated Machine Learning with scikit-learn. BSD-3 -- Neptune.ai (πŸ₯ˆ30 Β· ⭐ 610 Β· πŸ“ˆ) - The experiment tracker for foundation model training. Apache-2 -- rrcf (πŸ₯‰20 Β· ⭐ 510 Β· πŸ’€) - Implementation of the Robust Random Cut Forest algorithm for anomaly.. MIT -- solt (πŸ₯‰20 Β· ⭐ 260 Β· πŸ“ˆ) - Streaming over lightweight data transformations. MIT -- pytorchviz (πŸ₯‰19 Β· ⭐ 3.3K Β· πŸ“ˆ) - A small package to create visualizations of PyTorch execution.. MIT +- OpenAI Gym (πŸ₯‡42 Β· ⭐ 36K Β· πŸ’€) - A toolkit for developing and comparing reinforcement learning.. MIT +- Fastai (πŸ₯ˆ42 Β· ⭐ 27K Β· πŸ“ˆ) - The fastai deep learning library. Apache-2 +- OCRmyPDF (πŸ₯‡38 Β· ⭐ 28K Β· πŸ“ˆ) - OCRmyPDF adds an OCR text layer to scanned PDF files, allowing.. MPL-2.0 +- Autograd (πŸ₯‡36 Β· ⭐ 7.2K Β· πŸ“ˆ) - Efficiently computes derivatives of NumPy code. MIT +- VisPy (πŸ₯ˆ35 Β· ⭐ 3.4K Β· πŸ“ˆ) - High-performance interactive 2D/3D data visualization library. BSD-3 +- Hivemind (πŸ₯‰27 Β· ⭐ 2.2K Β· πŸ“ˆ) - Decentralized deep learning in PyTorch. Built to train models on.. MIT +- scikit-lego (πŸ₯ˆ27 Β· ⭐ 1.3K Β· πŸ“ˆ) - Extra blocks for scikit-learn pipelines. MIT +- greykite (πŸ₯‰23 Β· ⭐ 1.8K Β· πŸ“ˆ) - A flexible, intuitive and fast forecasting library. BSD-2 +- vecstack (πŸ₯‰23 Β· ⭐ 690 Β· πŸ’€) - Python package for stacking (machine learning technique). MIT +- mlens (πŸ₯‰22 Β· ⭐ 850 Β· πŸ’€) - ML-Ensemble high performance ensemble learning. MIT ## πŸ“‰ Trending Down _Projects that have a lower project-quality score compared to the last update. There might be a variety of reasons such as decreased downloads or code activity._ -- jax (πŸ₯‡45 Β· ⭐ 32K Β· πŸ“‰) - Composable transformations of Python+NumPy programs: differentiate,.. Apache-2 -- MoviePy (πŸ₯‡41 Β· ⭐ 13K Β· πŸ“‰) - Video editing with Python. MIT -- dgl (πŸ₯‡36 Β· ⭐ 14K Β· πŸ“‰) - Python package built to ease deep learning on graph, on top of.. Apache-2 -- ivy (πŸ₯ˆ35 Β· ⭐ 14K Β· πŸ“‰) - Convert Machine Learning Code Between Frameworks. Apache-2 -- librosa (πŸ₯ˆ35 Β· ⭐ 7.6K Β· πŸ“‰) - Python library for audio and music analysis. ISC -- opencv-python (πŸ₯ˆ35 Β· ⭐ 4.8K Β· πŸ“‰) - Automated CI toolchain to produce precompiled opencv-python,.. MIT -- NIPYPE (πŸ₯ˆ35 Β· ⭐ 780 Β· πŸ“‰) - Workflows and interfaces for neuroimaging packages. Apache-2 -- Autograd (πŸ₯ˆ33 Β· ⭐ 7.2K Β· πŸ“‰) - Efficiently computes derivatives of NumPy code. MIT -- vecstack (πŸ₯‰20 Β· ⭐ 690 Β· πŸ’€) - Python package for stacking (machine learning technique). MIT -- mlens (πŸ₯‰19 Β· ⭐ 850 Β· πŸ’€) - ML-Ensemble high performance ensemble learning. MIT +- PySpark (πŸ₯ˆ44 Β· ⭐ 41K Β· πŸ“‰) - Apache Spark Python API. Apache-2 +- litellm (πŸ₯‡43 Β· ⭐ 21K Β· πŸ“‰) - Python SDK, Proxy Server (LLM Gateway) to call 100+.. MIT o t h e r s +- sentence-transformers (πŸ₯‡43 Β· ⭐ 17K Β· πŸ“‰) - State-of-the-Art Text Embeddings. Apache-2 +- PyTorch Image Models (πŸ₯‡41 Β· ⭐ 34K Β· πŸ“‰) - The largest collection of PyTorch image encoders /.. Apache-2 +- TensorFlow Datasets (πŸ₯‡38 Β· ⭐ 4.4K Β· πŸ“‰) - TFDS is a collection of datasets ready to use with.. Apache-2 +- HoloViews (πŸ₯ˆ38 Β· ⭐ 2.8K Β· πŸ“‰) - With Holoviews, your data visualizes itself. BSD-3 +- Nilearn (πŸ₯‡38 Β· ⭐ 1.3K Β· πŸ“‰) - Machine learning for NeuroImaging in Python. BSD-3 +- pytorch-summary (πŸ₯‰24 Β· ⭐ 4K Β· πŸ’€) - Model summary in PyTorch similar to `model.summary()` in.. MIT +- PyAlgoTrade (πŸ₯‰20 Β· ⭐ 4.5K Β· πŸ’€) - Python Algorithmic Trading Library. Apache-2 +- pytorchviz (πŸ₯‰14 Β· ⭐ 3.3K Β· πŸ“‰) - A small package to create visualizations of PyTorch execution.. MIT