-
-
Notifications
You must be signed in to change notification settings - Fork 31.4k
/
Copy pathtokens.cc
304 lines (261 loc) Β· 9.96 KB
/
tokens.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#if HAVE_OPENSSL && NODE_OPENSSL_HAS_QUIC
#include "tokens.h"
#include <crypto/crypto_util.h>
#include <ngtcp2/ngtcp2_crypto.h>
#include <node_sockaddr-inl.h>
#include <string_bytes.h>
#include <util-inl.h>
#include <algorithm>
#include "nbytes.h"
#include "ncrypto.h"
namespace node::quic {
// ============================================================================
// TokenSecret
TokenSecret::TokenSecret() : buf_() {
// As a performance optimization later, we could consider creating an entropy
// cache here similar to what we use for random CIDs so that we do not have
// to engage CSPRNG on every call. That, however, is suboptimal for secrets.
// If someone manages to get visibility into that cache then they would know
// the secrets for a larger number of tokens, which could be bad. For now,
// generating on each call is safer, even if less performant.
CHECK(ncrypto::CSPRNG(buf_, QUIC_TOKENSECRET_LEN));
}
TokenSecret::TokenSecret(const uint8_t* secret) : buf_() {
CHECK_NOT_NULL(secret);
memcpy(buf_, secret, QUIC_TOKENSECRET_LEN);
}
TokenSecret::~TokenSecret() {
memset(buf_, 0, QUIC_TOKENSECRET_LEN);
}
TokenSecret::operator const uint8_t*() const {
return buf_;
}
uint8_t TokenSecret::operator[](int pos) const {
CHECK_GE(pos, 0);
CHECK_LT(pos, QUIC_TOKENSECRET_LEN);
return buf_[pos];
}
TokenSecret::operator const char*() const {
return reinterpret_cast<const char*>(buf_);
}
std::string TokenSecret::ToString() const {
char dest[QUIC_TOKENSECRET_LEN * 2];
size_t written =
nbytes::HexEncode(*this, QUIC_TOKENSECRET_LEN, dest, arraysize(dest));
DCHECK_EQ(written, arraysize(dest));
return std::string(dest, written);
}
// ============================================================================
// StatelessResetToken
StatelessResetToken::StatelessResetToken() : ptr_(nullptr), buf_() {}
StatelessResetToken::StatelessResetToken(const uint8_t* token) : ptr_(token) {}
StatelessResetToken::StatelessResetToken(const TokenSecret& secret,
const CID& cid)
: ptr_(buf_) {
CHECK_EQ(ngtcp2_crypto_generate_stateless_reset_token(
buf_, secret, kStatelessTokenLen, cid),
0);
}
StatelessResetToken::StatelessResetToken(uint8_t* token,
const TokenSecret& secret,
const CID& cid)
: ptr_(token) {
CHECK_EQ(ngtcp2_crypto_generate_stateless_reset_token(
token, secret, kStatelessTokenLen, cid),
0);
}
StatelessResetToken::StatelessResetToken(const StatelessResetToken& other)
: ptr_(buf_) {
if (other) {
memcpy(buf_, other.ptr_, kStatelessTokenLen);
} else {
ptr_ = nullptr;
}
}
StatelessResetToken::operator const uint8_t*() const {
return ptr_ != nullptr ? ptr_ : buf_;
}
StatelessResetToken::operator const char*() const {
return reinterpret_cast<const char*>(ptr_ != nullptr ? ptr_ : buf_);
}
StatelessResetToken::operator bool() const {
return ptr_ != nullptr;
}
bool StatelessResetToken::operator==(const StatelessResetToken& other) const {
if (ptr_ == other.ptr_) return true;
if ((ptr_ == nullptr && other.ptr_ != nullptr) ||
(ptr_ != nullptr && other.ptr_ == nullptr)) {
return false;
}
return memcmp(ptr_, other.ptr_, kStatelessTokenLen) == 0;
}
bool StatelessResetToken::operator!=(const StatelessResetToken& other) const {
return !(*this == other);
}
std::string StatelessResetToken::ToString() const {
if (ptr_ == nullptr) return std::string();
char dest[kStatelessTokenLen * 2];
size_t written =
nbytes::HexEncode(*this, kStatelessTokenLen, dest, arraysize(dest));
DCHECK_EQ(written, arraysize(dest));
return std::string(dest, written);
}
size_t StatelessResetToken::Hash::operator()(
const StatelessResetToken& token) const {
size_t hash = 0;
if (token.ptr_ == nullptr) return hash;
for (size_t n = 0; n < kStatelessTokenLen; n++)
hash ^= std::hash<uint8_t>{}(token.ptr_[n]) + 0x9e3779b9 + (hash << 6) +
(hash >> 2);
return hash;
}
StatelessResetToken StatelessResetToken::kInvalid;
// ============================================================================
// RetryToken and RegularToken
namespace {
ngtcp2_vec GenerateRetryToken(uint8_t* buffer,
uint32_t version,
const SocketAddress& address,
const CID& retry_cid,
const CID& odcid,
const TokenSecret& token_secret) {
ssize_t ret =
ngtcp2_crypto_generate_retry_token(buffer,
token_secret,
TokenSecret::QUIC_TOKENSECRET_LEN,
version,
address.data(),
address.length(),
retry_cid,
odcid,
uv_hrtime());
DCHECK_GE(ret, 0);
DCHECK_LE(ret, RetryToken::kRetryTokenLen);
DCHECK_EQ(buffer[0], RetryToken::kTokenMagic);
// This shouldn't be possible but we handle it anyway just to be safe.
if (ret == 0) return {nullptr, 0};
return {buffer, static_cast<size_t>(ret)};
}
ngtcp2_vec GenerateRegularToken(uint8_t* buffer,
uint32_t version,
const SocketAddress& address,
const TokenSecret& token_secret) {
ssize_t ret =
ngtcp2_crypto_generate_regular_token(buffer,
token_secret,
TokenSecret::QUIC_TOKENSECRET_LEN,
address.data(),
address.length(),
uv_hrtime());
DCHECK_GE(ret, 0);
DCHECK_LE(ret, RegularToken::kRegularTokenLen);
DCHECK_EQ(buffer[0], RegularToken::kTokenMagic);
// This shouldn't be possible but we handle it anyway just to be safe.
if (ret == 0) return {nullptr, 0};
return {buffer, static_cast<size_t>(ret)};
}
} // namespace
RetryToken::RetryToken(uint32_t version,
const SocketAddress& address,
const CID& retry_cid,
const CID& odcid,
const TokenSecret& token_secret)
: buf_(),
ptr_(GenerateRetryToken(
buf_, version, address, retry_cid, odcid, token_secret)) {}
RetryToken::RetryToken(const uint8_t* token, size_t size)
: ptr_(ngtcp2_vec{const_cast<uint8_t*>(token), size}) {
DCHECK_LE(size, RetryToken::kRetryTokenLen);
DCHECK_IMPLIES(token == nullptr, size = 0);
}
std::optional<CID> RetryToken::Validate(uint32_t version,
const SocketAddress& addr,
const CID& dcid,
const TokenSecret& token_secret,
uint64_t verification_expiration) {
if (ptr_.base == nullptr || ptr_.len == 0) return std::nullopt;
ngtcp2_cid ocid;
int ret = ngtcp2_crypto_verify_retry_token(
&ocid,
ptr_.base,
ptr_.len,
token_secret,
TokenSecret::QUIC_TOKENSECRET_LEN,
version,
addr.data(),
addr.length(),
dcid,
std::min(verification_expiration, QUIC_MIN_RETRYTOKEN_EXPIRATION),
uv_hrtime());
if (ret != 0) return std::nullopt;
return std::optional<CID>(ocid);
}
RetryToken::operator const ngtcp2_vec&() const {
return ptr_;
}
RetryToken::operator const ngtcp2_vec*() const {
return &ptr_;
}
std::string RetryToken::ToString() const {
if (ptr_.base == nullptr) return std::string();
MaybeStackBuffer<char, 32> dest(ptr_.len * 2);
size_t written =
nbytes::HexEncode(*this, ptr_.len, dest.out(), dest.length());
DCHECK_EQ(written, dest.length());
return std::string(dest.out(), written);
}
RetryToken::operator const char*() const {
return reinterpret_cast<const char*>(ptr_.base);
}
RetryToken::operator bool() const {
return ptr_.base != nullptr && ptr_.len > 0;
}
RegularToken::RegularToken() : buf_(), ptr_(ngtcp2_vec{nullptr, 0}) {}
RegularToken::RegularToken(uint32_t version,
const SocketAddress& address,
const TokenSecret& token_secret)
: buf_(),
ptr_(GenerateRegularToken(buf_, version, address, token_secret)) {}
RegularToken::RegularToken(const uint8_t* token, size_t size)
: ptr_(ngtcp2_vec{const_cast<uint8_t*>(token), size}) {
DCHECK_LE(size, RegularToken::kRegularTokenLen);
DCHECK_IMPLIES(token == nullptr, size = 0);
}
RegularToken::operator bool() const {
return ptr_.base != nullptr && ptr_.len > 0;
}
bool RegularToken::Validate(uint32_t version,
const SocketAddress& addr,
const TokenSecret& token_secret,
uint64_t verification_expiration) {
if (ptr_.base == nullptr || ptr_.len == 0) return false;
return ngtcp2_crypto_verify_regular_token(
ptr_.base,
ptr_.len,
token_secret,
TokenSecret::QUIC_TOKENSECRET_LEN,
addr.data(),
addr.length(),
std::min(verification_expiration,
QUIC_MIN_REGULARTOKEN_EXPIRATION),
uv_hrtime()) == 0;
}
RegularToken::operator const ngtcp2_vec&() const {
return ptr_;
}
RegularToken::operator const ngtcp2_vec*() const {
return &ptr_;
}
std::string RegularToken::ToString() const {
if (ptr_.base == nullptr) return std::string();
MaybeStackBuffer<char, 32> dest(ptr_.len * 2);
size_t written =
nbytes::HexEncode(*this, ptr_.len, dest.out(), dest.length());
DCHECK_EQ(written, dest.length());
return std::string(dest.out(), written);
}
RegularToken::operator const char*() const {
return reinterpret_cast<const char*>(ptr_.base);
}
} // namespace node::quic
#endif // HAVE_OPENSSL && NODE_OPENSSL_HAS_QUIC