1
+ {
2
+ "nbformat" : 4 ,
3
+ "nbformat_minor" : 0 ,
4
+ "metadata" : {
5
+ "colab" : {
6
+ "name" : " ARIMA & SARIMA.ipynb" ,
7
+ "provenance" : [],
8
+ "mount_file_id" : " 1h0-Hypu0AntwTzJgUU1aW4y0SWIsinUC" ,
9
+ "authorship_tag" : " ABX9TyMTf7bGAILd6nKrxNRhZPIC" ,
10
+ "include_colab_link" : true
11
+ },
12
+ "kernelspec" : {
13
+ "name" : " python3" ,
14
+ "display_name" : " Python 3"
15
+ },
16
+ "language_info" : {
17
+ "name" : " python"
18
+ }
19
+ },
20
+ "cells" : [
21
+ {
22
+ "cell_type" : " markdown" ,
23
+ "metadata" : {
24
+ "id" : " view-in-github" ,
25
+ "colab_type" : " text"
26
+ },
27
+ "source" : [
28
+ " <a href=\" https://colab.research.google.com/github/noobcoder2/demo-repo/blob/main/ARIMA_%26_SARIMA.ipynb\" target=\" _parent\" ><img src=\" https://colab.research.google.com/assets/colab-badge.svg\" alt=\" Open In Colab\" /></a>"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type" : " markdown" ,
33
+ "source" : [
34
+ " \n " ,
35
+ " ARIMA and Seasonal ARIMA\n " ,
36
+ " Autoregressive Integrated Moving Averages\n " ,
37
+ " The general process for ARIMA models is the following:\n " ,
38
+ " \n " ,
39
+ " Visualize the Time Series Data\n " ,
40
+ " Make the time series data stationary\n " ,
41
+ " Plot the Correlation and AutoCorrelation Charts\n " ,
42
+ " Construct the ARIMA Model or Seasonal ARIMA based on the data\n " ,
43
+ " Use the model to make predictions\n " ,
44
+ " \n " ,
45
+ " \n "
46
+ ],
47
+ "metadata" : {
48
+ "id" : " CjJ4wkcghkSx"
49
+ }
50
+ },
51
+ {
52
+ "cell_type" : " code" ,
53
+ "source" : [
54
+ " import pandas as pd\n " ,
55
+ " import numpy as np\n " ,
56
+ " import seaborn as sns\n " ,
57
+ " import matplotlib.pyplot as plt\n " ,
58
+ " %matplotlib inline"
59
+ ],
60
+ "metadata" : {
61
+ "id" : " 82o_BC4-XPOz"
62
+ },
63
+ "execution_count" : null ,
64
+ "outputs" : []
65
+ },
66
+ {
67
+ "cell_type" : " code" ,
68
+ "execution_count" : 12 ,
69
+ "metadata" : {
70
+ "id" : " xkPuoTAhVnNM"
71
+ },
72
+ "outputs" : [],
73
+ "source" : [
74
+ " CS_hs = pd.read_csv('CS_hs.csv');\n " ,
75
+ " CS_m_all = pd.read_csv('CS_m_all.csv')\n " ,
76
+ " CS_mor = pd.read_csv('CS_mor.csv')\n " ,
77
+ " CS_pr = pd.read_csv('CS_pr.csv')\n " ,
78
+ " CS_q_all = pd.read_csv('CS_q_all.csv')\n " ,
79
+ " CS_wa = pd.read_csv('CS_wa.csv')\n " ,
80
+ " FH_hs = pd.read_csv('FH_hs.csv')\n " ,
81
+ " FH_m_all = pd.read_csv('FH_m_all.csv')\n " ,
82
+ " FH_mor = pd.read_csv('FH_mor.csv')\n " ,
83
+ " FH_pr = pd.read_csv('FH_pr.csv')\n " ,
84
+ " FH_q_all = pd.read_csv('FH_q_all.csv')\n " ,
85
+ " FH_wa = pd.read_csv('FH_wa.csv')\n " ,
86
+ " ZI_m_all = pd.read_csv('Zi_m_all.csv')\n " ,
87
+ " ZI_mor = pd.read_csv('Zi_mor.csv')\n " ,
88
+ " ZI_pr = pd.read_csv('Zi_prfi.csv')\n " ,
89
+ " ZI_q_all = pd.read_csv('Zi_q_all.csv')\n " ,
90
+ " ZI_wa = pd.read_csv('Zi_Wa.csv')"
91
+ ]
92
+ },
93
+ {
94
+ "cell_type" : " code" ,
95
+ "source" : [
96
+ " Zi_hs = pd.read_csv('Zi_hs.csv')"
97
+ ],
98
+ "metadata" : {
99
+ "id" : " SzAUMvQXmTM_"
100
+ },
101
+ "execution_count" : 18 ,
102
+ "outputs" : []
103
+ },
104
+ {
105
+ "cell_type" : " code" ,
106
+ "source" : [
107
+ " # Convert Month into Datetime\n " ,
108
+ " CS_hs['Date']=pd.to_datetime(CS_hs['Date'])\n " ,
109
+ " CS_mor['Date']=pd.to_datetime(CS_mor['Date'])\n " ,
110
+ " CS_pr['Date']=pd.to_datetime(CS_pr['Date'])\n " ,
111
+ " CS_wa['Date']=pd.to_datetime(CS_wa['Date'])\n " ,
112
+ " CS_q_all['Date']=pd.to_datetime(CS_q_all['Date'])\n " ,
113
+ " CS_m_all['Date']=pd.to_datetime(CS_m_all['Date'])\n "
114
+ ],
115
+ "metadata" : {
116
+ "id" : " NMrrkyvnidMA"
117
+ },
118
+ "execution_count" : 13 ,
119
+ "outputs" : []
120
+ },
121
+ {
122
+ "cell_type" : " code" ,
123
+ "source" : [
124
+ " FH_hs['Date']=pd.to_datetime(FH_hs['Date'])\n " ,
125
+ " FH_mor['Date']=pd.to_datetime(FH_mor['Date'])\n " ,
126
+ " FH_pr['Date']=pd.to_datetime(FH_pr['Date'])\n " ,
127
+ " FH_wa['Date']=pd.to_datetime(FH_wa['Date'])\n " ,
128
+ " FH_q_all['Date']=pd.to_datetime(FH_q_all['Date'])\n " ,
129
+ " FH_m_all['Date']=pd.to_datetime(FH_m_all['Date'])"
130
+ ],
131
+ "metadata" : {
132
+ "id" : " _eO1HxE0jPne"
133
+ },
134
+ "execution_count" : 14 ,
135
+ "outputs" : []
136
+ },
137
+ {
138
+ "cell_type" : " code" ,
139
+ "source" : [
140
+ " ZI_hs['Date']=pd.to_datetime(ZI_hs['Date'])\n " ,
141
+ " ZI_mor['Date']=pd.to_datetime(ZI_mor['Date'])\n " ,
142
+ " ZI_pr['Date']=pd.to_datetime(ZI_pr['Date'])\n " ,
143
+ " ZI_wa['Date']=pd.to_datetime(ZI_wa['Date'])\n " ,
144
+ " ZI_q_all['Date']=pd.to_datetime(ZI_q_all['Date'])\n " ,
145
+ " ZI_m_all['Date']=pd.to_datetime(ZI_m_all['Date'])"
146
+ ],
147
+ "metadata" : {
148
+ "id" : " Kl6Lb_RUje0O"
149
+ },
150
+ "execution_count" : 20 ,
151
+ "outputs" : []
152
+ },
153
+ {
154
+ "cell_type" : " code" ,
155
+ "source" : [
156
+ " df.set_index('Month',inplace=True)"
157
+ ],
158
+ "metadata" : {
159
+ "id" : " 9fnag4Osipmc"
160
+ },
161
+ "execution_count" : null ,
162
+ "outputs" : []
163
+ },
164
+ {
165
+ "cell_type" : " code" ,
166
+ "source" : [
167
+ " df.describe()"
168
+ ],
169
+ "metadata" : {
170
+ "id" : " 5RMvQw9vipu0"
171
+ },
172
+ "execution_count" : null ,
173
+ "outputs" : []
174
+ },
175
+ {
176
+ "cell_type" : " markdown" ,
177
+ "source" : [
178
+ " ARIMA TESTING"
179
+ ],
180
+ "metadata" : {
181
+ "id" : " y30Ph_rBmpxn"
182
+ }
183
+ },
184
+ {
185
+ "cell_type" : " code" ,
186
+ "source" : [
187
+ " "
188
+ ],
189
+ "metadata" : {
190
+ "id" : " S9FanlKDmtXi"
191
+ },
192
+ "execution_count" : null ,
193
+ "outputs" : []
194
+ }
195
+ ]
196
+ }
0 commit comments