It is possible to solve an optimization problem with batches using a Flux.Data.DataLoader
, which is passed to Optimization.solve
with ncycles
. All data for the batches need to be passed as a tuple of vectors.
!!! note
This example uses the OptimizationOptimisers.jl package. See the
[Optimisers.jl page](@ref optimisers) for details on the installation and usage.
using Flux, Optimization, OptimizationOptimisers, OrdinaryDiffEq, SciMLSensitivity
function newtons_cooling(du, u, p, t)
temp = u[1]
k, temp_m = p
du[1] = dT = -k * (temp - temp_m)
end
function true_sol(du, u, p, t)
true_p = [log(2) / 8.0, 100.0]
newtons_cooling(du, u, true_p, t)
end
ann = Chain(Dense(1, 8, tanh), Dense(8, 1, tanh))
pp, re = Flux.destructure(ann)
function dudt_(u, p, t)
re(p)(u) .* u
end
callback = function (p, l, pred; doplot = false) #callback function to observe training
display(l)
# plot current prediction against data
if doplot
pl = scatter(t, ode_data[1, :], label = "data")
scatter!(pl, t, pred[1, :], label = "prediction")
display(plot(pl))
end
return false
end
u0 = Float32[200.0]
datasize = 30
tspan = (0.0f0, 1.5f0)
t = range(tspan[1], tspan[2], length = datasize)
true_prob = ODEProblem(true_sol, u0, tspan)
ode_data = Array(solve(true_prob, Tsit5(), saveat = t))
prob = ODEProblem{false}(dudt_, u0, tspan, pp)
function predict_adjoint(fullp, time_batch)
Array(solve(prob, Tsit5(), p = fullp, saveat = time_batch))
end
function loss_adjoint(fullp, batch, time_batch)
pred = predict_adjoint(fullp, time_batch)
sum(abs2, batch .- pred), pred
end
k = 10
# Pass the data for the batches as separate vectors wrapped in a tuple
train_loader = Flux.Data.DataLoader((ode_data, t), batchsize = k)
numEpochs = 300
l1 = loss_adjoint(pp, train_loader.data[1], train_loader.data[2])[1]
optfun = OptimizationFunction((θ, p, batch, time_batch) -> loss_adjoint(θ, batch,
time_batch),
Optimization.AutoZygote())
optprob = OptimizationProblem(optfun, pp)
using IterTools: ncycle
res1 = Optimization.solve(optprob, Optimisers.ADAM(0.05), ncycle(train_loader, numEpochs),
callback = callback)