-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathutils.py
427 lines (362 loc) · 15.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import numpy as np
import pyrender
import torch
import trimesh
from pyrender.trackball import Trackball
from rlbench.backend.const import DEPTH_SCALE
from scipy.spatial.transform import Rotation
from rlbench.backend.observation import Observation
from rlbench import CameraConfig, ObservationConfig
from pyrep.const import RenderMode
from typing import List
REMOVE_KEYS = ['joint_velocities', 'joint_positions', 'joint_forces',
'gripper_open', 'gripper_pose',
'gripper_joint_positions', 'gripper_touch_forces',
'task_low_dim_state', 'misc']
SCALE_FACTOR = DEPTH_SCALE
DEFAULT_SCENE_SCALE = 2.0
def loss_weights(replay_sample, beta=1.0):
loss_weights = 1.0
if 'sampling_probabilities' in replay_sample:
probs = replay_sample['sampling_probabilities']
loss_weights = 1.0 / torch.sqrt(probs + 1e-10)
loss_weights = (loss_weights / torch.max(loss_weights)) ** beta
return loss_weights
def soft_updates(net, target_net, tau):
for param, target_param in zip(net.parameters(), target_net.parameters()):
target_param.data.copy_(
tau * param.data + (1 - tau) * target_param.data
)
def stack_on_channel(x):
# expect (B, T, C, ...)
return torch.cat(torch.split(x, 1, dim=1), dim=2).squeeze(1)
def normalize_quaternion(quat):
return np.array(quat) / np.linalg.norm(quat, axis=-1, keepdims=True)
def correct_rotation_instability(disc, resolution):
# q1 = discrete_euler_to_quaternion(disc, resolution)
# q2 = discrete_euler_to_quaternion(quaternion_to_discrete_euler(q1, resolution), resolution)
#
# d2 = quaternion_to_discrete_euler(q2, resolution)
#
# # choose the smallest change
# if np.any(disc != d2):
# if np.sum(disc) < np.sum(d2):
# return disc
# else:
# return d2
return disc
def check_gimbal_lock(pred_rot_and_grip, gt_rot_and_grip, resolution):
pred_rot_and_grip_np = pred_rot_and_grip.detach().cpu().numpy()
gt_rot_and_grip_np = gt_rot_and_grip.detach().cpu().numpy()
pred_rot = discrete_euler_to_quaternion(pred_rot_and_grip_np[:,:3], resolution)
gt_rot = discrete_euler_to_quaternion(gt_rot_and_grip_np[:,:3], resolution)
gimbal_lock_matches = [np.all(np.abs(pred_rot[i] - gt_rot[i]) < 1e-10) and
np.any(pred_rot_and_grip_np[i,:3] != gt_rot_and_grip_np[i, :3])
for i in range(pred_rot.shape[0])]
return 0
def quaternion_to_discrete_euler(quaternion, resolution):
euler = Rotation.from_quat(quaternion).as_euler('xyz', degrees=True) + 180
assert np.min(euler) >= 0 and np.max(euler) <= 360
disc = np.around((euler / resolution)).astype(int)
disc[disc == int(360 / resolution)] = 0
return disc
def discrete_euler_to_quaternion(discrete_euler, resolution):
euluer = (discrete_euler * resolution) - 180
return Rotation.from_euler('xyz', euluer, degrees=True).as_quat()
def point_to_voxel_index(
point: np.ndarray,
voxel_size: np.ndarray,
coord_bounds: np.ndarray):
bb_mins = np.array(coord_bounds[0:3])
bb_maxs = np.array(coord_bounds[3:])
dims_m_one = np.array([voxel_size] * 3) - 1
bb_ranges = bb_maxs - bb_mins
res = bb_ranges / (np.array([voxel_size] * 3) + 1e-12)
voxel_indicy = np.minimum(
np.floor((point - bb_mins) / (res + 1e-12)).astype(
np.int32), dims_m_one)
return voxel_indicy
def voxel_index_to_point(
voxel_index: torch.Tensor,
voxel_size: int,
coord_bounds: np.ndarray):
res = (coord_bounds[:, 3:] - coord_bounds[:, :3]) / voxel_size
points = (voxel_index * res) + coord_bounds[:, :3]
return points
def point_to_pixel_index(
point: np.ndarray,
extrinsics: np.ndarray,
intrinsics: np.ndarray):
point = np.array([point[0], point[1], point[2], 1])
world_to_cam = np.linalg.inv(extrinsics)
point_in_cam_frame = world_to_cam.dot(point)
px, py, pz = point_in_cam_frame[:3]
px = 2 * intrinsics[0, 2] - int(-intrinsics[0, 0] * (px / pz) + intrinsics[0, 2])
py = 2 * intrinsics[1, 2] - int(-intrinsics[1, 1] * (py / pz) + intrinsics[1, 2])
return px, py
def _compute_initial_camera_pose(scene):
# Adapted from:
# https://github.com/mmatl/pyrender/blob/master/pyrender/viewer.py#L1032
centroid = scene.centroid
scale = scene.scale
if scale == 0.0:
scale = DEFAULT_SCENE_SCALE
s2 = 1.0 / np.sqrt(2.0)
cp = np.eye(4)
cp[:3, :3] = np.array([[0.0, -s2, s2], [1.0, 0.0, 0.0], [0.0, s2, s2]])
hfov = np.pi / 6.0
dist = scale / (2.0 * np.tan(hfov))
cp[:3, 3] = dist * np.array([1.0, 0.0, 1.0]) + centroid
return cp
def _from_trimesh_scene(
trimesh_scene, bg_color=None, ambient_light=None):
# convert trimesh geometries to pyrender geometries
geometries = {name: pyrender.Mesh.from_trimesh(geom, smooth=False)
for name, geom in trimesh_scene.geometry.items()}
# create the pyrender scene object
scene_pr = pyrender.Scene(bg_color=bg_color, ambient_light=ambient_light)
# add every node with geometry to the pyrender scene
for node in trimesh_scene.graph.nodes_geometry:
pose, geom_name = trimesh_scene.graph[node]
scene_pr.add(geometries[geom_name], pose=pose)
return scene_pr
def _create_bounding_box(scene, voxel_size, res):
l = voxel_size * res
T = np.eye(4)
w = 0.01
for trans in [[0, 0, l / 2], [0, l, l / 2], [l, l, l / 2], [l, 0, l / 2]]:
T[:3, 3] = np.array(trans) - voxel_size / 2
scene.add_geometry(trimesh.creation.box(
[w, w, l], T, face_colors=[0, 0, 0, 255]))
for trans in [[l / 2, 0, 0], [l / 2, 0, l], [l / 2, l, 0], [l / 2, l, l]]:
T[:3, 3] = np.array(trans) - voxel_size / 2
scene.add_geometry(trimesh.creation.box(
[l, w, w], T, face_colors=[0, 0, 0, 255]))
for trans in [[0, l / 2, 0], [0, l / 2, l], [l, l / 2, 0], [l, l / 2, l]]:
T[:3, 3] = np.array(trans) - voxel_size / 2
scene.add_geometry(trimesh.creation.box(
[w, l, w], T, face_colors=[0, 0, 0, 255]))
def create_voxel_scene(
voxel_grid: np.ndarray,
q_attention: np.ndarray = None,
highlight_coordinate: np.ndarray = None,
highlight_gt_coordinate: np.ndarray = None,
highlight_alpha: float = 1.0,
voxel_size: float = 0.1,
show_bb: bool = False,
alpha: float = 0.5):
_, d, h, w = voxel_grid.shape
v = voxel_grid.transpose((1, 2, 3, 0))
occupancy = v[:, :, :, -1] != 0
alpha = np.expand_dims(np.full_like(occupancy, alpha, dtype=np.float32), -1)
rgb = np.concatenate([(v[:, :, :, 3:6] + 1)/ 2.0, alpha], axis=-1)
if q_attention is not None:
q = np.max(q_attention, 0)
q = q / np.max(q)
show_q = (q > 0.75)
occupancy = (show_q + occupancy).astype(bool)
q = np.expand_dims(q - 0.5, -1) # Max q can be is 0.9
q_rgb = np.concatenate([
q, np.zeros_like(q), np.zeros_like(q),
np.clip(q, 0, 1)], axis=-1)
rgb = np.where(np.expand_dims(show_q, -1), q_rgb, rgb)
if highlight_coordinate is not None:
x, y, z = highlight_coordinate
occupancy[x, y, z] = True
rgb[x, y, z] = [1.0, 0.0, 0.0, highlight_alpha]
if highlight_gt_coordinate is not None:
x, y, z = highlight_gt_coordinate
occupancy[x, y, z] = True
rgb[x, y, z] = [0.0, 0.0, 1.0, highlight_alpha]
transform = trimesh.transformations.scale_and_translate(
scale=voxel_size, translate=(0.0, 0.0, 0.0))
trimesh_voxel_grid = trimesh.voxel.VoxelGrid(
encoding=occupancy, transform=transform)
geometry = trimesh_voxel_grid.as_boxes(colors=rgb)
scene = trimesh.Scene()
scene.add_geometry(geometry)
if show_bb:
assert d == h == w
_create_bounding_box(scene, voxel_size, d)
return scene
def visualise_voxel(voxel_grid: np.ndarray,
q_attention: np.ndarray = None,
highlight_coordinate: np.ndarray = None,
highlight_gt_coordinate: np.ndarray = None,
highlight_alpha: float = 1.0,
rotation_amount: float = 0.0,
show: bool = False,
voxel_size: float = 0.1,
offscreen_renderer: pyrender.OffscreenRenderer = None,
show_bb: bool = False,
alpha: float = 0.5):
scene = create_voxel_scene(
voxel_grid, q_attention, highlight_coordinate, highlight_gt_coordinate,
highlight_alpha, voxel_size,
show_bb, alpha)
if show:
scene.show()
else:
r = offscreen_renderer or pyrender.OffscreenRenderer(
viewport_width=640, viewport_height=480, point_size=1.0)
s = _from_trimesh_scene(
scene, ambient_light=[0.8, 0.8, 0.8],
bg_color=[1.0, 1.0, 1.0])
cam = pyrender.PerspectiveCamera(
yfov=np.pi / 4.0, aspectRatio=r.viewport_width/r.viewport_height)
p = _compute_initial_camera_pose(s)
t = Trackball(p, (r.viewport_width, r.viewport_height), s.scale, s.centroid)
t.rotate(rotation_amount, np.array([0.0, 0.0, 1.0]))
s.add(cam, pose=t.pose)
color, depth = r.render(s)
return color.copy()
def preprocess(img, dist='transporter'):
"""Pre-process input (subtract mean, divide by std)."""
transporter_color_mean = [0.18877631, 0.18877631, 0.18877631]
transporter_color_std = [0.07276466, 0.07276466, 0.07276466]
transporter_depth_mean = 0.00509261
transporter_depth_std = 0.00903967
franka_color_mean = [0.622291933, 0.628313992, 0.623031488]
franka_color_std = [0.168154213, 0.17626014, 0.184527364]
franka_depth_mean = 0.872146842
franka_depth_std = 0.195743116
clip_color_mean = [0.48145466, 0.4578275, 0.40821073]
clip_color_std = [0.26862954, 0.26130258, 0.27577711]
# choose distribution
if dist == 'clip':
color_mean = clip_color_mean
color_std = clip_color_std
elif dist == 'franka':
color_mean = franka_color_mean
color_std = franka_color_std
else:
color_mean = transporter_color_mean
color_std = transporter_color_std
if dist == 'franka':
depth_mean = franka_depth_mean
depth_std = franka_depth_std
else:
depth_mean = transporter_depth_mean
depth_std = transporter_depth_std
# convert to pytorch tensor (if required)
if type(img) == torch.Tensor:
def cast_shape(stat, img):
tensor = torch.from_numpy(np.array(stat)).to(device=img.device, dtype=img.dtype)
tensor = tensor.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
tensor = tensor.repeat(img.shape[0], 1, img.shape[-2], img.shape[-1])
return tensor
color_mean = cast_shape(color_mean, img)
color_std = cast_shape(color_std, img)
depth_mean = cast_shape(depth_mean, img)
depth_std = cast_shape(depth_std, img)
# normalize
img = img.clone()
img[:, :3, :, :] = ((img[:, :3, :, :] / 255 - color_mean) / color_std)
img[:, 3:, :, :] = ((img[:, 3:, :, :] - depth_mean) / depth_std)
else:
# normalize
img[:, :, :3] = (img[:, :, :3] / 255 - color_mean) / color_std
img[:, :, 3:] = (img[:, :, 3:] - depth_mean) / depth_std
return img
def rand_dist(size, min=-1.0, max=1.0):
return (max-min) * torch.rand(size) + min
def rand_discrete(size, min=0, max=1):
if min == max:
return torch.zeros(size)
return torch.randint(min, max+1, size)
def split_list(lst, n):
for i in range(0, len(lst), n):
yield lst[i:i + n]
def extract_obs(obs: Observation,
cameras,
t: int = 0,
prev_action=None,
channels_last: bool = False,
episode_length: int = 10):
obs.joint_velocities = None
grip_mat = obs.gripper_matrix
grip_pose = obs.gripper_pose
joint_pos = obs.joint_positions
obs.gripper_pose = None
obs.gripper_matrix = None
obs.wrist_camera_matrix = None
obs.joint_positions = None
if obs.gripper_joint_positions is not None:
obs.gripper_joint_positions = np.clip(
obs.gripper_joint_positions, 0., 0.04)
obs_dict = vars(obs)
obs_dict = {k: v for k, v in obs_dict.items() if v is not None}
robot_state = np.array([
obs.gripper_open,
*obs.gripper_joint_positions])
# remove low-level proprioception variables that are not needed
obs_dict = {k: v for k, v in obs_dict.items()
if k not in REMOVE_KEYS}
if not channels_last:
# swap channels from last dim to 1st dim
obs_dict = {k: np.transpose(
v, [2, 0, 1]) if v.ndim == 3 else np.expand_dims(v, 0)
for k, v in obs_dict.items() if type(v) == np.ndarray or type(v) == list}
else:
# add extra dim to depth data
obs_dict = {k: v if v.ndim == 3 else np.expand_dims(v, -1)
for k, v in obs_dict.items()}
obs_dict['low_dim_state'] = np.array(robot_state, dtype=np.float32)
# binary variable indicating if collisions are allowed or not while planning paths to reach poses
obs_dict['ignore_collisions'] = np.array([obs.ignore_collisions], dtype=np.float32)
for (k, v) in [(k, v) for k, v in obs_dict.items() if 'point_cloud' in k]:
obs_dict[k] = v.astype(np.float32)
for camera_name in cameras:
obs_dict['%s_camera_extrinsics' % camera_name] = obs.misc['%s_camera_extrinsics' % camera_name]
obs_dict['%s_camera_intrinsics' % camera_name] = obs.misc['%s_camera_intrinsics' % camera_name]
# add timestep to low_dim_state
time = (1. - (t / float(episode_length - 1))) * 2. - 1.
obs_dict['low_dim_state'] = np.concatenate(
[obs_dict['low_dim_state'], [time]]).astype(np.float32)
obs.gripper_matrix = grip_mat
obs.joint_positions = joint_pos
obs.gripper_pose = grip_pose
return obs_dict
def create_obs_config(camera_names: List[str],
camera_resolution: List[int],
method_name: str):
unused_cams = CameraConfig()
unused_cams.set_all(False)
used_cams = CameraConfig(
rgb=True,
point_cloud=True,
mask=False,
depth=False,
image_size=camera_resolution,
render_mode=RenderMode.OPENGL)
cam_obs = []
kwargs = {}
for n in camera_names:
kwargs[n] = used_cams
cam_obs.append('%s_rgb' % n)
cam_obs.append('%s_pointcloud' % n)
# Some of these obs are only used for keypoint detection.
obs_config = ObservationConfig(
front_camera=kwargs.get('front', unused_cams),
left_shoulder_camera=kwargs.get('left_shoulder', unused_cams),
right_shoulder_camera=kwargs.get('right_shoulder', unused_cams),
wrist_camera=kwargs.get('wrist', unused_cams),
overhead_camera=kwargs.get('overhead', unused_cams),
joint_forces=False,
joint_positions=True,
joint_velocities=True,
task_low_dim_state=False,
gripper_touch_forces=False,
gripper_pose=True,
gripper_open=True,
gripper_matrix=True,
gripper_joint_positions=True,
)
return obs_config
def get_device(gpu):
if gpu is not None and gpu >= 0 and torch.cuda.is_available():
device = torch.device("cuda:%d" % gpu)
torch.backends.cudnn.enabled = torch.backends.cudnn.benchmark = True
else:
device = torch.device("cpu")
return device