1
1
---
2
2
jupyter :
3
3
jupytext :
4
+ notebook_metadata_filter : all
4
5
text_representation :
5
6
extension : .md
6
7
format_name : markdown
@@ -10,6 +11,16 @@ jupyter:
10
11
display_name : Python 3
11
12
language : python
12
13
name : python3
14
+ language_info :
15
+ codemirror_mode :
16
+ name : ipython
17
+ version : 3
18
+ file_extension : .py
19
+ mimetype : text/x-python
20
+ name : python
21
+ nbconvert_exporter : python
22
+ pygments_lexer : ipython3
23
+ version : 3.6.7
13
24
plotly :
14
25
description : How to plot date and time in python.
15
26
display_as : financial
@@ -62,9 +73,8 @@ import datetime
62
73
x = [datetime.datetime(year = 2013 , month = 10 , day = 4 ),
63
74
datetime.datetime(year = 2013 , month = 11 , day = 5 ),
64
75
datetime.datetime(year = 2013 , month = 12 , day = 6 )]
65
- data = [go.Scatter(x = x, y = [1 , 3 , 6 ])]
66
76
67
- fig = go.Figure(data = data )
77
+ fig = go.Figure(data = [go.Scatter( x = x, y = [ 1 , 3 , 6 ])] )
68
78
# Use datetime objects to set xaxis range
69
79
fig.update(layout_xaxis_range = [datetime.datetime(2013 , 10 , 17 ),
70
80
datetime.datetime(2013 , 11 , 20 )])
@@ -105,17 +115,11 @@ import pandas as pd
105
115
106
116
df = pd.read_csv(" https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv" )
107
117
108
- trace_high = go.Scatter(
109
- x = df.Date,
110
- y = df[' AAPL.High' ],
111
- name = " AAPL High" ,
112
- line_color = ' deepskyblue' )
118
+ trace_high = go.Scatter(x = df.Date, y = df[' AAPL.High' ], name = " AAPL High" ,
119
+ line_color = ' deepskyblue' )
113
120
114
- trace_low = go.Scatter(
115
- x = df.Date,
116
- y = df[' AAPL.Low' ],
117
- name = " AAPL Low" ,
118
- line_color = ' dimgray' )
121
+ trace_low = go.Scatter(x = df.Date, y = df[' AAPL.Low' ], name = " AAPL Low" ,
122
+ line_color = ' dimgray' )
119
123
120
124
fig = go.Figure(data = [trace_high, trace_low])
121
125
fig.update(layout_title_text = ' Time Series with Rangeslider' ,
0 commit comments