Skip to content

Commit 53015b9

Browse files
fix internal links and add troubleshooting guide
1 parent d7c2b9f commit 53015b9

17 files changed

+139
-52
lines changed

python/3d-volume.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -32,10 +32,10 @@ jupyter:
3232
page_type: u-guide
3333
permalink: python/3d-volume-plots/
3434
thumbnail: thumbnail/3d-volume-plots.jpg
35-
35+
3636
---
3737

38-
A volume plot with `go.Volume` shows several partially transparent isosurfaces for volume rendering. The API of `go.Volume` is close to the one of `go.Isosurface`. However, whereas [isosurface plots](./3d-isosurface-plots/) show all surfaces with the same opacity, tweaking the `opacityscale` parameter of `go.Volume` results in a depth effect and better volume rendering.
38+
A volume plot with `go.Volume` shows several partially transparent isosurfaces for volume rendering. The API of `go.Volume` is close to the one of `go.Isosurface`. However, whereas [isosurface plots](/python/3d-isosurface-plots/) show all surfaces with the same opacity, tweaking the `opacityscale` parameter of `go.Volume` results in a depth effect and better volume rendering.
3939

4040
## Simple volume plot with go.Volume
4141

@@ -95,7 +95,7 @@ vol = ndimage.gaussian_filter(vol, 4)
9595
vol /= vol.max()
9696

9797
fig = go.Figure(data=go.Volume(
98-
x=X.flatten(), y=Y.flatten(), z=Z.flatten(),
98+
x=X.flatten(), y=Y.flatten(), z=Z.flatten(),
9999
value=vol.flatten(),
100100
isomin=0.2,
101101
isomax=0.7,
@@ -162,7 +162,7 @@ fig = go.Figure(data=go.Volume(
162162
isomax=0.5,
163163
opacity=0.1, # max opacity
164164
opacityscale=[[-0.5, 1], [-0.2, 0], [0.2, 0], [0.5, 1]],
165-
surface_count=21,
165+
surface_count=21,
166166
colorscale='RdBu'
167167
))
168168
fig.show()
@@ -182,7 +182,7 @@ vol = (X - 1)**2 + (Y - 1)**2 + Z**2
182182

183183

184184
fig = go.Figure(data=go.Volume(
185-
x=X.flatten(), y=Y.flatten(), z=Z.flatten(),
185+
x=X.flatten(), y=Y.flatten(), z=Z.flatten(),
186186
value=vol.flatten(),
187187
isomin=0.2,
188188
isomax=0.7,
@@ -211,7 +211,7 @@ vol = (X - 1)**2 + (Y - 1)**2 + Z**2
211211

212212

213213
fig = go.Figure(data=go.Volume(
214-
x=X.flatten(), y=Y.flatten(), z=Z.flatten(),
214+
x=X.flatten(), y=Y.flatten(), z=Z.flatten(),
215215
value=vol.flatten(),
216216
isomin=0.2,
217217
isomax=0.7,
@@ -241,7 +241,7 @@ vol = (X - 1)**2 + (Y - 1)**2 + Z**2
241241

242242

243243
fig = go.Figure(data=go.Volume(
244-
x=X.flatten(), y=Y.flatten(), z=Z.flatten(),
244+
x=X.flatten(), y=Y.flatten(), z=Z.flatten(),
245245
value=vol.flatten(),
246246
isomin=0.2,
247247
isomax=0.7,
@@ -259,4 +259,4 @@ fig.show()
259259
See https://plot.ly/python/reference/#volume for more information and chart attribute options!
260260

261261
#### See also
262-
[3D isosurface documentation](./3d-isosurface-plots/)
262+
[3D isosurface documentation](/python/3d-isosurface-plots/)

python/annotated_heatmap.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -33,13 +33,13 @@ jupyter:
3333
page_type: u-guide
3434
permalink: python/annotated_heatmap/
3535
thumbnail: thumbnail/ann_heat.jpg
36-
36+
3737
v4upgrade: true
3838
---
3939

4040
#### Simple Annotated Heatmap
4141

42-
For more examples with Heatmaps, see [this page](../heatmaps/).
42+
For more examples with Heatmaps, see [this page](/python/heatmaps/).
4343

4444
```python
4545
import plotly.figure_factory as ff

python/choropleth-maps.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -23,11 +23,11 @@ jupyter:
2323
page_type: u-guide
2424
permalink: python/choropleth-maps/
2525
thumbnail: thumbnail/choropleth.jpg
26-
26+
2727
v4upgrade: true
2828
---
2929

30-
A [Choropleth Map](https://en.wikipedia.org/wiki/Choropleth_map) is a heatmap using geographical boundaries. It is used to represent spatial variations of a quantity. See also the [index of other geographical charts](../maps/).
30+
A [Choropleth Map](https://en.wikipedia.org/wiki/Choropleth_map) is a heatmap using geographical boundaries. It is used to represent spatial variations of a quantity. See also the [index of other geographical charts](/python/maps/).
3131

3232
Below we show how to create Choropleth Maps using either Plotly Express' `px.choropleth` or the lower-level `go.Choropleth`.
3333

python/cone-plot.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -34,10 +34,10 @@ jupyter:
3434
permalink: python/cone-plot/
3535
redirect_from: python/3d-cone/
3636
thumbnail: thumbnail/3dcone.png
37-
37+
3838
---
3939

40-
A cone plot is the 3D equivalent of a 2D [quiver plot](./quiver-plots/), i.e., it represents a 3D vector field using cones to represent the direction and norm of the vectors. 3-D coordinates are given by `x`, `y` and `z`, and the coordinates of the vector field by `u`, `v` and `w`.
40+
A cone plot is the 3D equivalent of a 2D [quiver plot](/python/quiver-plots/), i.e., it represents a 3D vector field using cones to represent the direction and norm of the vectors. 3-D coordinates are given by `x`, `y` and `z`, and the coordinates of the vector field by `u`, `v` and `w`.
4141

4242
### Basic 3D Cone
4343

@@ -48,7 +48,7 @@ import plotly.graph_objects as go
4848
fig = go.Figure(data=go.Cone(x=[1], y=[1], z=[1], u=[1], v=[1], w=[0]))
4949

5050
fig.update_layout(scene_camera_eye=dict(x=-0.76, y=1.8, z=0.92))
51-
51+
5252
fig.show()
5353
```
5454

@@ -91,7 +91,7 @@ fig.add_trace(go.Cone(x=[7,] * 3, lighting_fresnel=2, name="lighting.fresnel:2")
9191
fig.add_trace(go.Cone(x=[8,] * 3, lightposition=dict(x=0, y=0, z=1e5),
9292
name="lighting.position x:0,y:0,z:1e5"))
9393

94-
fig.update_traces(y=[1, 2, 3], z=[1, 1, 1],
94+
fig.update_traces(y=[1, 2, 3], z=[1, 1, 1],
9595
u=[1, 2, 3], v=[1, 1, 2], w=[4, 4, 1],
9696
hoverinfo="u+v+w+name",
9797
showscale=False)

python/dot-plots.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -33,13 +33,13 @@ jupyter:
3333
page_type: u-guide
3434
permalink: python/dot-plots/
3535
thumbnail: thumbnail/dot-plot.jpg
36-
36+
3737
v4upgrade: true
3838
---
3939

4040
#### Basic Dot Plot
4141

42-
Dot plots (also known as [Cleveland dot plots](https://en.wikipedia.org/wiki/Dot_plot_(statistics))) show changes between two (or more) points in time or between two (or more) conditions. Compared to a [bar chart](../bar-charts/), dot plots can be less cluttered and allow for an easier comparison between conditions.
42+
Dot plots (also known as [Cleveland dot plots](https://en.wikipedia.org/wiki/Dot_plot_(statistics))) show changes between two (or more) points in time or between two (or more) conditions. Compared to a [bar chart](/python/bar-charts/), dot plots can be less cluttered and allow for an easier comparison between conditions.
4343

4444
For the same data, we show below how to create a dot plot using either `px.scatter` (for a tidy pandas DataFrame) or `go.Scatter`.
4545

python/getting-started.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ jupyter:
3131
page_type: u-guide
3232
permalink: python/getting-started/
3333
redirect_from: python/getting_started/
34-
34+
3535
v4upgrade: true
3636
---
3737

@@ -103,7 +103,7 @@ fig
103103
```
104104

105105
<!-- #region -->
106-
See [*Displaying Figures in Python*](../renderers/) for more information on the renderers framework, and see [*Plotly FigureWidget Overview*](../figurewidget/) for more information on using `FigureWidget`.
106+
See [*Displaying Figures in Python*](/python/renderers/) for more information on the renderers framework, and see [*Plotly FigureWidget Overview*](/python/figurewidget/) for more information on using `FigureWidget`.
107107

108108
#### JupyterLab Support (Python 3.5+)
109109
For use in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/), install the `jupyterlab` and `ipywidgets`
@@ -169,7 +169,7 @@ fig
169169
```
170170

171171
<!-- #region -->
172-
See [*Displaying Figures in Python*](../renderers/) for more information on the renderers framework, and see [*Plotly FigureWidget Overview*](../figurewidget/) for more information on using `FigureWidget`.
172+
See [*Displaying Figures in Python*](/python/renderers/) for more information on the renderers framework, and see [*Plotly FigureWidget Overview*](/python/figurewidget/) for more information on using `FigureWidget`.
173173

174174
#### Static Image Export Support
175175
plotly.py supports static image export using the `to_image` and `write_image`
@@ -202,7 +202,7 @@ fig = go.FigureWidget(data=go.Bar(y=[2, 3, 1]))
202202
fig.write_image('figure.png')
203203
```
204204
<!-- #region -->
205-
See [*Static Image Export in Python*](../static-image-export/) for more information on static image export.
205+
See [*Static Image Export in Python*](/python/static-image-export/) for more information on static image export.
206206

207207
#### Extended Geo Support
208208
Some plotly.py features rely on fairly large geographic shape files. The county
@@ -238,15 +238,15 @@ $ conda install -c plotly chart-studio=1.0.0
238238
> **Note:** This package is optional, and if it is not installed it is not possible for figures to be uploaded to the Chart Studio cloud service.
239239
240240
### Where to next?
241-
Now that you have everything installed, you are ready to start reading and running examples of [basic charts](../basic-charts/), [statistical charts](../statistical-charts/), [scientific charts](../scientific-charts/), [financial charts](../#financial-charts), [geographic charts](../maps/), and [3-dimensional charts](../3d-charts/).
241+
Now that you have everything installed, you are ready to start reading and running examples of [basic charts](/python/basic-charts/), [statistical charts](/python/statistical-charts/), [scientific charts](/python/scientific-charts/), [financial charts](/python/#financial-charts), [geographic charts](/python/maps/), and [3-dimensional charts](/python/3d-charts/).
242242

243-
For a complete overview of all of the ways that figures can be created and updated, see the [*Plotly User Guide for Python*](../user-guide/).
243+
For a complete overview of all of the ways that figures can be created and updated, see the [*Plotly User Guide for Python*](/python/user-guide/).
244244

245-
For information on configuring figure layout options (e.g. axes, titles, legends, etc) and styling figures (e.g. colors, fonts, annotations, images, shapes, etc.), see [*Plotly Fundamentals*](../plotly-fundamentals).
245+
For information on configuring figure layout options (e.g. axes, titles, legends, etc) and styling figures (e.g. colors, fonts, annotations, images, shapes, etc.), see [*Plotly Fundamentals*](/python/plotly-fundamentals).
246246

247-
For information on theming plotly figures, see [*Theming and templates with plotly for Python*](../templates/).
247+
For information on theming plotly figures, see [*Theming and templates with plotly for Python*](/python/templates/).
248248

249-
For information on all of the ways that plotly figures can be displayed, see [*Displaying plotly figures with plotly for Python*](../renderers/).
249+
For information on all of the ways that plotly figures can be displayed, see [*Displaying plotly figures with plotly for Python*](/python/renderers/).
250250

251251
For the full searchable reference of every figure property, see the [*Python figure reference*](https://plot.ly/python/reference/).
252252

python/lines-on-maps.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -33,11 +33,11 @@ jupyter:
3333
page_type: example_index
3434
permalink: python/lines-on-maps/
3535
thumbnail: thumbnail/flight-paths.jpg
36-
36+
3737
v4upgrade: true
3838
---
3939

40-
For other geographical and map charts see [the maps index page](../maps/).
40+
For other geographical and map charts see [the maps index page](/python/maps/).
4141

4242
Below we show how to create geographical line plots using either Plotly Express with `px.line_geo` or the lower-level `go.Scattergeo`.
4343

python/multiple-axes.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@ jupyter:
3232
order: 14
3333
permalink: python/multiple-axes/
3434
thumbnail: thumbnail/multiple-axes.jpg
35-
35+
3636
v4upgrade: true
3737
---
3838

@@ -229,4 +229,4 @@ fig.show()
229229
```
230230

231231
#### Reference
232-
All of the y-axis properties are found here: https://plot.ly/python/reference/#YAxis. For more information on creating subplots see the [Subplots in Python](../subplots/) section.
232+
All of the y-axis properties are found here: https://plot.ly/python/reference/#YAxis. For more information on creating subplots see the [Subplots in Python](/python/subplots/) section.

python/orca-management.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -33,12 +33,12 @@ jupyter:
3333
order: 1.5
3434
permalink: python/orca-management/
3535
thumbnail: thumbnail/orca-management.png
36-
36+
3737
v4upgrade: true
3838
---
3939

4040
### Overview
41-
This section covers the lower-level details of how plotly.py uses orca to perform static image generation. Please refer to the [Static Image Export](../static-image-export/) section for general information on creating static images from plotly.py figures.
41+
This section covers the lower-level details of how plotly.py uses orca to perform static image generation. Please refer to the [Static Image Export](/python/static-image-export/) section for general information on creating static images from plotly.py figures.
4242

4343
### What is Orca?
4444
Orca is an [Electron](https://electronjs.org/) application that inputs plotly figure specifications and converts them into static images. Orca can run as a command-line utility or as a long-running server process. In order to provide the fastest possible image export experience, plotly.py launches orca in server mode, and communicates with it over a local port. See https://github.com/plotly/orca for more information.

python/parallel-coordinates-plot.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -35,13 +35,13 @@ jupyter:
3535
page_type: u-guide
3636
permalink: python/parallel-coordinates-plot/
3737
thumbnail: thumbnail/parcoords.jpg
38-
38+
3939
v4upgrade: true
4040
---
4141

4242
## Parallel Coordinates plot with Plotly Express
4343

44-
[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/). In a parallel coordinates plot with `px.parallel_coordinates`, each row of the DataFrame is represented by a polyline mark which traverses a set of parallel axes, one for each of the dimensions. For other representations of multivariate data, also see [radar charts](../radar-chart/) and [scatterplot matrix (SPLOM)](../splom/).
44+
[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/). In a parallel coordinates plot with `px.parallel_coordinates`, each row of the DataFrame is represented by a polyline mark which traverses a set of parallel axes, one for each of the dimensions. For other representations of multivariate data, also see [radar charts](/python/radar-chart/) and [scatterplot matrix (SPLOM)](/python/splom/).
4545

4646
```python
4747
import plotly.express as px

python/plotly-express.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ jupyter:
3434
page_type: example_index
3535
permalink: python/plotly-express/
3636
thumbnail: thumbnail/plotly-express.png
37-
37+
3838
v4upgrade: true
3939
---
4040

@@ -44,7 +44,7 @@ Plotly Express is a terse, consistent, high-level wrapper around `plotly.graph_o
4444

4545
**Note**: Plotly Express was previously its own separately-installed `plotly_express` package but is now part of `plotly`!
4646

47-
This notebook demonstrates various `plotly.express` features. [Reference documentation](https://plotly.github.io/plotly_express/plotly_express/) is also available, as well as a [tutorial on input argument types](./px-arguments).
47+
This notebook demonstrates various `plotly.express` features. [Reference documentation](https://plotly.github.io/plotly_express/plotly_express/) is also available, as well as a [tutorial on input argument types](/python/px-arguments).
4848

4949
You can also read our original [Medium announcement article](https://medium.com/@plotlygraphs/introducing-plotly-express-808df010143d) for more information on this library.
5050

python/quiver-plots.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@ jupyter:
3333
order: 12
3434
permalink: python/quiver-plots/
3535
thumbnail: thumbnail/quiver-plot.jpg
36-
36+
3737
---
3838

3939
#### Basic Quiver Plot
@@ -82,7 +82,7 @@ fig.show()
8282

8383
#### See also
8484

85-
[Cone plots](./cone-plot) for the 3D equivalent of quiver plots.
85+
[Cone plot](/python/cone-plot) for the 3D equivalent of quiver plots.
8686

8787
#### Reference
8888

python/radar-chart.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -33,13 +33,13 @@ jupyter:
3333
page_type: u-guide
3434
permalink: python/radar-chart/
3535
thumbnail: thumbnail/radar.gif
36-
36+
3737
v4upgrade: true
3838
---
3939

40-
A [Radar Chart](https://en.wikipedia.org/wiki/Radar_chart) (also known as a spider plot or star plot) displays multivariate data in the form of a two-dimensional chart of quantitative variables represented on axes originating from the center. The relative position and angle of the axes is typically uninformative. It is equivalent to a [parallel coordinates plot](../parallel-coordinates-plot/) with the axes arranged radially.
40+
A [Radar Chart](https://en.wikipedia.org/wiki/Radar_chart) (also known as a spider plot or star plot) displays multivariate data in the form of a two-dimensional chart of quantitative variables represented on axes originating from the center. The relative position and angle of the axes is typically uninformative. It is equivalent to a [parallel coordinates plot](/python/parallel-coordinates-plot/) with the axes arranged radially.
4141

42-
For a Radar Chart, use a [polar chart](../polar-chart/) with categorical angular variables, with `px.line_polar` for data available as a tidy pandas DataFrame, or with `go.Scatterpolar` in the general case. See more examples of [polar charts here](../polar-chart/).
42+
For a Radar Chart, use a [polar chart](/python/polar-chart/) with categorical angular variables, with `px.line_polar` for data available as a tidy pandas DataFrame, or with `go.Scatterpolar` in the general case. See more examples of [polar charts here](/python/polar-chart/).
4343

4444
#### Radar Chart with Plotly Express
4545

python/static-image-export.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ jupyter:
3535
page_type: u-guide
3636
permalink: python/static-image-export/
3737
thumbnail: thumbnail/static-image-export.png
38-
38+
3939
v4upgrade: true
4040
---
4141

@@ -194,4 +194,4 @@ Image(img_bytes)
194194
### Summary
195195
In summary, to export high-quality static images from plotly.py, all you need to do is install orca, psutil, and requests and then use the `plotly.io.write_image` and `plotly.io.to_image` functions (or the `.write_image` and `.to_image` graph object figure methods).
196196

197-
If you want to know more about how the orca integration works, or if you need to troubleshoot an issue, please check out the [Orca Management](../orca-management/) section.
197+
If you want to know more about how the orca integration works, or if you need to troubleshoot an issue, please check out the [Orca Management](/python/orca-management/) section.

python/streamline-plots.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@ jupyter:
3333
order: 13
3434
permalink: python/streamline-plots/
3535
thumbnail: thumbnail/streamline.jpg
36-
36+
3737
---
3838

3939
A Streamline plot is a representation based on a 2-D vector field interpreted as a velocity field, consisting of closed curves tangent to the velocity field. In the case of a stationary velocity field, streamlines coincide with trajectories (see also the [Wikipedia page on streamlines, streaklines and pathlines](https://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines)).
@@ -42,7 +42,7 @@ For the streamline figure factory, one needs to provide
4242
- uniformly spaced ranges of `x` and `y` values (1D)
4343
- 2-D velocity values `u` and `v` defined on the cross-product (`np.meshgrid(x, y)`) of `x` and `y`.
4444

45-
Velocity values are interpolated when determining the streamlines. Streamlines are initialized on the boundary of the `x-y` domain.
45+
Velocity values are interpolated when determining the streamlines. Streamlines are initialized on the boundary of the `x-y` domain.
4646

4747
#### Basic Streamline Plot
4848

@@ -100,9 +100,9 @@ fig.show()
100100

101101
#### See also
102102

103-
For a 3D version of streamlines, use the trace `go.Streamtube` documented [here](./streamtube-plot/).
103+
For a 3D version of streamlines, use the trace `go.Streamtube` documented [here](/python/streamtube-plot/).
104104

105-
For representing the 2-D vector field as arrows, see the [quiver plot tutorial](./quiver-plots/).
105+
For representing the 2-D vector field as arrows, see the [quiver plot tutorial](/python/quiver-plots/).
106106

107107

108108
#### Reference

0 commit comments

Comments
 (0)