@@ -8870,7 +8870,7 @@ div_var_fast(const NumericVar *var1, const NumericVar *var2,
8870
8870
if (qdigit != 0 )
8871
8871
{
8872
8872
/* Do we need to normalize now? */
8873
- maxdiv += Abs (qdigit );
8873
+ maxdiv += abs (qdigit );
8874
8874
if (maxdiv > (INT_MAX - INT_MAX / NBASE - 1 ) / (NBASE - 1 ))
8875
8875
{
8876
8876
/*
@@ -8923,7 +8923,7 @@ div_var_fast(const NumericVar *var1, const NumericVar *var2,
8923
8923
fquotient = fdividend * fdivisorinverse ;
8924
8924
qdigit = (fquotient >= 0.0 ) ? ((int ) fquotient ) :
8925
8925
(((int ) fquotient ) - 1 ); /* truncate towards -infinity */
8926
- maxdiv += Abs (qdigit );
8926
+ maxdiv += abs (qdigit );
8927
8927
}
8928
8928
8929
8929
/*
@@ -9107,7 +9107,7 @@ div_var_int(const NumericVar *var, int ival, int ival_weight,
9107
9107
* become as large as divisor * NBASE - 1, and so it requires a 64-bit
9108
9108
* integer if this exceeds UINT_MAX.
9109
9109
*/
9110
- divisor = Abs (ival );
9110
+ divisor = abs (ival );
9111
9111
9112
9112
if (divisor <= UINT_MAX / NBASE )
9113
9113
{
@@ -9948,7 +9948,7 @@ exp_var(const NumericVar *arg, NumericVar *result, int rscale)
9948
9948
9949
9949
/* Guard against overflow/underflow */
9950
9950
/* If you change this limit, see also power_var()'s limit */
9951
- if (Abs (val ) >= NUMERIC_MAX_RESULT_SCALE * 3 )
9951
+ if (fabs (val ) >= NUMERIC_MAX_RESULT_SCALE * 3 )
9952
9952
{
9953
9953
if (val > 0 )
9954
9954
ereport (ERROR ,
@@ -9966,15 +9966,15 @@ exp_var(const NumericVar *arg, NumericVar *result, int rscale)
9966
9966
* Reduce x to the range -0.01 <= x <= 0.01 (approximately) by dividing by
9967
9967
* 2^ndiv2, to improve the convergence rate of the Taylor series.
9968
9968
*
9969
- * Note that the overflow check above ensures that Abs (x) < 6000, which
9969
+ * Note that the overflow check above ensures that fabs (x) < 6000, which
9970
9970
* means that ndiv2 <= 20 here.
9971
9971
*/
9972
- if (Abs (val ) > 0.01 )
9972
+ if (fabs (val ) > 0.01 )
9973
9973
{
9974
9974
ndiv2 = 1 ;
9975
9975
val /= 2 ;
9976
9976
9977
- while (Abs (val ) > 0.01 )
9977
+ while (fabs (val ) > 0.01 )
9978
9978
{
9979
9979
ndiv2 ++ ;
9980
9980
val /= 2 ;
@@ -10116,7 +10116,7 @@ estimate_ln_dweight(const NumericVar *var)
10116
10116
*----------
10117
10117
*/
10118
10118
ln_var = log ((double ) digits ) + dweight * 2.302585092994046 ;
10119
- ln_dweight = (int ) log10 (Abs (ln_var ));
10119
+ ln_dweight = (int ) log10 (fabs (ln_var ));
10120
10120
}
10121
10121
else
10122
10122
{
@@ -10427,7 +10427,7 @@ power_var(const NumericVar *base, const NumericVar *exp, NumericVar *result)
10427
10427
val = numericvar_to_double_no_overflow (& ln_num );
10428
10428
10429
10429
/* initial overflow/underflow test with fuzz factor */
10430
- if (Abs (val ) > NUMERIC_MAX_RESULT_SCALE * 3.01 )
10430
+ if (fabs (val ) > NUMERIC_MAX_RESULT_SCALE * 3.01 )
10431
10431
{
10432
10432
if (val > 0 )
10433
10433
ereport (ERROR ,
@@ -10583,7 +10583,7 @@ power_var_int(const NumericVar *base, int exp, NumericVar *result, int rscale)
10583
10583
* Now we can proceed with the multiplications.
10584
10584
*/
10585
10585
neg = (exp < 0 );
10586
- mask = Abs (exp );
10586
+ mask = abs (exp );
10587
10587
10588
10588
init_var (& base_prod );
10589
10589
set_var_from_var (base , & base_prod );
0 commit comments