|
1 | 1 | class Solution {
|
2 |
| - public int countComponents(int n, int[][] edges) { |
3 |
| - DisjointSet disjointSet = new DisjointSet(n); |
4 |
| - for (int[] edge : edges) { |
5 |
| - disjointSet.union(edge[0], edge[1]); |
6 |
| - } |
7 |
| - Set<Integer> rootSet = new HashSet<>(); |
8 |
| - for (int i = 0; i < n; i++) { |
9 |
| - rootSet.add(disjointSet.find(i)); |
10 |
| - } |
11 |
| - return rootSet.size(); |
12 |
| - } |
13 |
| - |
14 |
| - private static class DisjointSet { |
15 |
| - |
16 |
| - private final int[] root; |
17 |
| - private final int[] rank; |
18 |
| - |
19 |
| - public DisjointSet(int size) { |
20 |
| - this.root = new int[size]; |
21 |
| - this.rank = new int[size]; |
22 |
| - for (int i = 0; i < size; i++) { |
23 |
| - this.root[i] = i; |
24 |
| - this.rank[i] = 1; |
25 |
| - } |
26 |
| - } |
27 |
| - |
28 |
| - public void union(int nodeOne, int nodeTwo) { |
29 |
| - int rootOne = find(nodeOne); |
30 |
| - int rootTwo = find(nodeTwo); |
31 |
| - if (rootOne != rootTwo) { |
32 |
| - if (this.rank[rootOne] > this.rank[rootTwo]) { |
33 |
| - this.root[rootTwo] = rootOne; |
34 |
| - } else if (this.rank[rootOne] < this.rank[rootTwo]) { |
35 |
| - this.root[rootOne] = rootTwo; |
36 |
| - } else { |
37 |
| - this.root[rootTwo] = rootOne; |
38 |
| - this.rank[rootOne]++; |
| 2 | + public int countComponents(int n, int[][] edges) { |
| 3 | + Map<Integer, Set<Integer>> graph = new HashMap<>(); |
| 4 | + for (int[] edge : edges) { |
| 5 | + graph.computeIfAbsent(edge[0], k -> new HashSet<>()).add(edge[1]); |
| 6 | + graph.computeIfAbsent(edge[1], k -> new HashSet<>()).add(edge[0]); |
39 | 7 | }
|
40 |
| - } |
41 |
| - } |
42 |
| - |
43 |
| - |
44 |
| - public int find(int node) { |
45 |
| - if (node == root[node]) { |
46 |
| - return node; |
47 |
| - } |
48 |
| - return root[node] = find(root[node]); |
| 8 | + int connectedComponentCount = 0; |
| 9 | + Set<Integer> visited = new HashSet<>(); |
| 10 | + for (int i = 0; i < n; i++) { |
| 11 | + if (!visited.contains(i)) { |
| 12 | + Queue<Integer> queue = new LinkedList<>(); |
| 13 | + visited.add(i); |
| 14 | + queue.add(i); |
| 15 | + while (!queue.isEmpty()) { |
| 16 | + int removed = queue.remove(); |
| 17 | + for (Integer neighbor : graph.getOrDefault(removed, new HashSet<>())) { |
| 18 | + if (!visited.contains(neighbor)) { |
| 19 | + queue.add(neighbor); |
| 20 | + visited.add(neighbor); |
| 21 | + } |
| 22 | + } |
| 23 | + } |
| 24 | + connectedComponentCount++; |
| 25 | + } |
| 26 | + } |
| 27 | + return connectedComponentCount; |
49 | 28 | }
|
50 |
| - } |
51 | 29 | }
|
0 commit comments