@@ -8,7 +8,7 @@ msgstr ""
8
8
"Project-Id-Version : Python 3.7\n "
9
9
"Report-Msgid-Bugs-To : \n "
10
10
"POT-Creation-Date : 2018-06-26 18:54+0800\n "
11
- "PO-Revision-Date : 2018-10-13 20:21 +0800\n "
11
+ "PO-Revision-Date : 2018-10-16 15:41 +0800\n "
12
12
"Last-Translator : Liang-Bo Wang <me@liang2.tw>\n "
13
13
"Language-Team : Chinese - TAIWAN (https://github.com/python/python-docs-zh- "
14
14
"tw)\n "
@@ -27,20 +27,26 @@ msgstr "浮點數運算:問題與限制"
27
27
msgid ""
28
28
"Floating-point numbers are represented in computer hardware as base 2 "
29
29
"(binary) fractions. For example, the decimal fraction ::"
30
- msgstr "在計算機架構中,浮點數透過二進位小數表示。 例如說,在十進位小數中 ::"
30
+ msgstr ""
31
+ "在計算機架構中,浮點數透過二進位小數表示。例如說,在十進位小數中:\n"
32
+ "\n"
33
+ " ::"
31
34
32
35
#: ../../tutorial/floatingpoint.rst:19
33
36
msgid ""
34
37
"has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction ::"
35
- msgstr "可被分為 1/10 + 2/100 + 5/1000 ,同樣的道理,二進位小數 ::"
38
+ msgstr ""
39
+ "可被分為 1/10 + 2/100 + 5/1000,同樣的道理,二進位小數 :\n"
40
+ "\n"
41
+ "::"
36
42
37
43
#: ../../tutorial/floatingpoint.rst:23
38
44
msgid ""
39
45
"has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the "
40
46
"only real difference being that the first is written in base 10 fractional "
41
47
"notation, and the second in base 2."
42
48
msgstr ""
43
- "可被分為 0/2 + 0/4 + 1/8 。這兩個小數有相同的數值,而唯一真正的不同在於前者以"
49
+ "可被分為 0/2 + 0/4 + 1/8。這兩個小數有相同的數值,而唯一真正的不同在於前者以"
44
50
"十進位表示,後者以二進位表示。"
45
51
46
52
#: ../../tutorial/floatingpoint.rst:27
@@ -50,29 +56,34 @@ msgid ""
50
56
"point numbers you enter are only approximated by the binary floating-point "
51
57
"numbers actually stored in the machine."
52
58
msgstr ""
53
- "不幸的是,大多數十進位小數無法精準地以二進位小數表示 。一般的結果為,您輸入的"
59
+ "不幸的是,大多數十進位小數無法精準的以二進位小數表示 。一般的結果為,您輸入的"
54
60
"十進位浮點數由實際存在計算機中的二進位浮點數近似。"
55
61
56
62
#: ../../tutorial/floatingpoint.rst:32
57
63
msgid ""
58
64
"The problem is easier to understand at first in base 10. Consider the "
59
65
"fraction 1/3. You can approximate that as a base 10 fraction::"
60
66
msgstr ""
61
- "在十進位中,這個問題更容易首先被理解。考慮分數 1/3 ,您可以將其近似為十進位小"
62
- "數 ::"
67
+ "在十進位中,這個問題更容易被理解。以分數 1/3 為例,您可以將其近似為十進位小"
68
+ "數:\n"
69
+ "\n"
70
+ " ::"
63
71
64
72
#: ../../tutorial/floatingpoint.rst:37 ../../tutorial/floatingpoint.rst:41
65
73
msgid "or, better, ::"
66
- msgstr "或者,更好的近似::"
74
+ msgstr ""
75
+ "或者,更好的近似:\n"
76
+ "\n"
77
+ "::"
67
78
68
79
#: ../../tutorial/floatingpoint.rst:45
69
80
msgid ""
70
81
"and so on. No matter how many digits you're willing to write down, the "
71
82
"result will never be exactly 1/3, but will be an increasingly better "
72
83
"approximation of 1/3."
73
84
msgstr ""
74
- "依此類推,不論你願意以多少位數表示小數,最後的結果都無法精準地表示 1/3 ,但你 "
75
- "還是能越來越精準的表示 1/3 。"
85
+ "依此類推,不論你使用多少位數表示小數,最後的結果都無法精準的表示 1/3,但你還 "
86
+ "是能越來越精準的表示 1/3。"
76
87
77
88
#: ../../tutorial/floatingpoint.rst:49
78
89
msgid ""
@@ -81,7 +92,9 @@ msgid ""
81
92
"base 2, 1/10 is the infinitely repeating fraction ::"
82
93
msgstr ""
83
94
"同樣的道理,不論你願意以多少位數表示二進位小數,十進位小數 0.1 都無法被二進位"
84
- "小數精準的表達。在二進位小數中, 1/10 會是一個無限循環小數 ::"
95
+ "小數精準的表達。在二進位小數中, 1/10 會是一個無限循環小數:\n"
96
+ "\n"
97
+ "::"
85
98
86
99
#: ../../tutorial/floatingpoint.rst:55
87
100
msgid ""
0 commit comments