@@ -9,7 +9,7 @@ msgstr ""
9
9
"Project-Id-Version : Python 3.11\n "
10
10
"Report-Msgid-Bugs-To : \n "
11
11
"POT-Creation-Date : 2023-05-03 00:17+0000\n "
12
- "PO-Revision-Date : 2023-07-09 21:14 +0800\n "
12
+ "PO-Revision-Date : 2023-07-10 23:56 +0800\n "
13
13
"Last-Translator : Adrian Liaw <adrianliaw2000@gmail.com>\n "
14
14
"Language-Team : Chinese - TAIWAN (https://github.com/python/python-docs-zh- "
15
15
"tw)\n "
@@ -251,7 +251,7 @@ msgstr ":func:`linear_regression`"
251
251
252
252
#: ../../library/statistics.rst:108
253
253
msgid "Slope and intercept for simple linear regression."
254
- msgstr "簡單線性回歸的斜率和截距 。"
254
+ msgstr "簡單線性迴歸的斜率和截距 。"
255
255
256
256
#: ../../library/statistics.rst:113
257
257
msgid "Function details"
@@ -864,8 +864,8 @@ msgid ""
864
864
"them and assigns the following percentiles: 10%, 20%, 30%, 40%, 50%, 60%, "
865
865
"70%, 80%, 90%."
866
866
msgstr ""
867
- "預設的 *method* 是 \" exclusive\" ,用於從可能找到比樣本更極端的值的母體中抽樣的 "
868
- "樣本資料 。對於 *m* 個已排序的資料點,計算出低於 *i-th* 的部分為 ``i / (m + "
867
+ "預設的 *method* 是 \" exclusive\" ,用於從可能找到比樣本更極端的值的母體中抽樣 "
868
+ "的樣本資料 。對於 *m* 個已排序的資料點,計算出低於 *i-th* 的部分為 ``i / (m + "
869
869
"1)``。給定九個樣本資料,此方法將對資料排序且計算下列百分位數:10%、20%、30%、"
870
870
"40%、50%、60%、70%、80%、90%。"
871
871
@@ -880,23 +880,26 @@ msgid ""
880
880
"assigns the following percentiles: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, "
881
881
"80%, 90%, 100%."
882
882
msgstr ""
883
- "若將 *method* 設為 \" inclusive\" ,則用於描述母體或者已知包含母體中最極端值的樣 "
884
- "本資料 。在 *data* 中的最小值被視為第 0 百分位數,最大值為第 100 百分位數。對 "
885
- "於 *m* 個已排序的資料點,計算出低於 *i-th* 的部分為 ``(i - 1) / (m - 1)``。給 "
886
- "定十一個個樣本資料 ,此方法將對資料排序且計算下列百分位數:0%、10%、20%、30 %、"
887
- "40%、50%、60%、70%、80%、90%、100%。"
883
+ "若將 *method* 設為 \" inclusive\" ,則用於描述母體或者已知包含母體中最極端值的 "
884
+ "樣本資料 。在 *data* 中的最小值被視為第 0 百分位數,最大值為第 100 百分位數。"
885
+ "對於 *m* 個已排序的資料點,計算出低於 *i-th* 的部分為 ``(i - 1) / (m - 1)``。"
886
+ "給定十一個個樣本資料 ,此方法將對資料排序且計算下列百分位數:0%、10%、20%、"
887
+ "30%、 40%、50%、60%、70%、80%、90%、100%。"
888
888
889
889
#: ../../library/statistics.rst:629
890
890
msgid ""
891
891
"Return the sample covariance of two inputs *x* and *y*. Covariance is a "
892
892
"measure of the joint variability of two inputs."
893
893
msgstr ""
894
+ "回傳兩輸入 *x* 與 *y* 的樣本共變異數 (sample covariance)。共變異數是衡量兩輸"
895
+ "入的聯合變異性 (joint variability) 的指標。"
894
896
895
897
#: ../../library/statistics.rst:632
896
898
msgid ""
897
899
"Both inputs must be of the same length (no less than two), otherwise :exc:"
898
900
"`StatisticsError` is raised."
899
901
msgstr ""
902
+ "兩輸入必須具有相同長度(至少兩個),否則會引發 :exc:`StatisticsError`。"
900
903
901
904
#: ../../library/statistics.rst:653
902
905
msgid ""
@@ -907,12 +910,18 @@ msgid ""
907
910
"linear relationship, -1 very strong, negative linear relationship, and 0 no "
908
911
"linear relationship."
909
912
msgstr ""
913
+ "回傳兩輸入的 `Pearson 相關係數 (Pearson’s correlation coefficient) <https://"
914
+ "en.wikipedia.org/wiki/Pearson_correlation_coefficient>`。Pearson 相關係數 "
915
+ "*r* 的值介於 -1 與 +1 之間。它衡量線性關係的強度與方向,其中 +1 表示強烈正線"
916
+ "性相關,-1 表示強烈負線性相關,而 0 表示無線性關係。"
910
917
911
918
#: ../../library/statistics.rst:660
912
919
msgid ""
913
920
"Both inputs must be of the same length (no less than two), and need not to "
914
921
"be constant, otherwise :exc:`StatisticsError` is raised."
915
922
msgstr ""
923
+ "兩輸入必須具有相同長度(至少兩個),且不須為常數,否則會引發 :exc:"
924
+ "`StatisticsError`。"
916
925
917
926
#: ../../library/statistics.rst:678
918
927
msgid ""
@@ -922,6 +931,11 @@ msgid ""
922
931
"between an independent variable *x* and a dependent variable *y* in terms of "
923
932
"this linear function:"
924
933
msgstr ""
934
+ "回傳使用普通最小平方法 (ordinary least square) 估計出的\\ `簡單線性迴歸 "
935
+ "(simple linear regression) <https://en.wikipedia.org/wiki/"
936
+ "Simple_linear_regression>`_ 參數中的斜率 (slope) 與截距 (intercept)。簡單線性"
937
+ "迴歸描述自變數 (independent variable) *x* 與應變數 (dependent variable) *y* "
938
+ "之間的關係,用以下的線性函式表示:"
925
939
926
940
#: ../../library/statistics.rst:684
927
941
msgid "*y = slope \\ * x + intercept + noise*"
@@ -934,13 +948,17 @@ msgid ""
934
948
"explained by the linear regression (it is equal to the difference between "
935
949
"predicted and actual values of the dependent variable)."
936
950
msgstr ""
951
+ "其中 ``slope`` 和 ``intercept`` 是被估計的迴歸參數,而 ``noise`` 表示由線性迴"
952
+ "歸未解釋的資料變異性(它等於應變數的預測值與實際值之差)。"
937
953
938
954
#: ../../library/statistics.rst:692
939
955
msgid ""
940
956
"Both inputs must be of the same length (no less than two), and the "
941
957
"independent variable *x* cannot be constant; otherwise a :exc:"
942
958
"`StatisticsError` is raised."
943
959
msgstr ""
960
+ "兩輸入必須具有相同長度(至少兩個),且自變數 *x* 不得為常數,否則會引發 :exc:"
961
+ "`StatisticsError`。"
944
962
945
963
#: ../../library/statistics.rst:696
946
964
msgid ""
@@ -949,6 +967,9 @@ msgid ""
949
967
"cumulative number of Monty Python films that would have been produced by "
950
968
"2019 assuming that they had kept the pace."
951
969
msgstr ""
970
+ "舉例來說,我們可以使用 `Monty Python 系列電影的上映日期 <https://en."
971
+ "wikipedia.org/wiki/Monty_Python#Films>`_\\ 來預測至 2019 年為止,假設他們保持固"
972
+ "定的製作速度,應該會產生的 Monty Python 電影的累計數量。"
952
973
953
974
#: ../../library/statistics.rst:710
954
975
msgid ""
@@ -957,6 +978,9 @@ msgid ""
957
978
"line passing through the origin. Since the *intercept* will always be 0.0, "
958
979
"the underlying linear function simplifies to:"
959
980
msgstr ""
981
+ "若將 *proportional* 設為 True,則假設自變數 *x* 與應變數"
982
+ " *y* 是直接成比例的,資料座落在通過原點的一直線上。由於 *intercept* "
983
+ "始終為 0.0,因此線性函式可簡化如下:"
960
984
961
985
#: ../../library/statistics.rst:716
962
986
msgid "*y = slope \\ * x + noise*"
0 commit comments