Skip to content

Commit fdf906d

Browse files
Add translations of library/statistics.po (#465)
* Add translations of covariance, correlation and linear_regression * Update library/statistics.po Co-authored-by: Wei-Hsiang (Matt) Wang <mattwang44@gmail.com> * Update library/statistics.po Co-authored-by: Wei-Hsiang (Matt) Wang <mattwang44@gmail.com> * Update library/statistics.po Co-authored-by: Wei-Hsiang (Matt) Wang <mattwang44@gmail.com> --------- Co-authored-by: Wei-Hsiang (Matt) Wang <mattwang44@gmail.com>
1 parent baa27cc commit fdf906d

File tree

1 file changed

+33
-9
lines changed

1 file changed

+33
-9
lines changed

library/statistics.po

+33-9
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ msgstr ""
99
"Project-Id-Version: Python 3.11\n"
1010
"Report-Msgid-Bugs-To: \n"
1111
"POT-Creation-Date: 2023-05-03 00:17+0000\n"
12-
"PO-Revision-Date: 2023-07-09 21:14+0800\n"
12+
"PO-Revision-Date: 2023-07-10 23:56+0800\n"
1313
"Last-Translator: Adrian Liaw <adrianliaw2000@gmail.com>\n"
1414
"Language-Team: Chinese - TAIWAN (https://github.com/python/python-docs-zh-"
1515
"tw)\n"
@@ -251,7 +251,7 @@ msgstr ":func:`linear_regression`"
251251

252252
#: ../../library/statistics.rst:108
253253
msgid "Slope and intercept for simple linear regression."
254-
msgstr "簡單線性回歸的斜率和截距。"
254+
msgstr "簡單線性迴歸的斜率和截距。"
255255

256256
#: ../../library/statistics.rst:113
257257
msgid "Function details"
@@ -864,8 +864,8 @@ msgid ""
864864
"them and assigns the following percentiles: 10%, 20%, 30%, 40%, 50%, 60%, "
865865
"70%, 80%, 90%."
866866
msgstr ""
867-
"預設的 *method* 是 \"exclusive\"用於從可能找到比樣本更極端的值的母體中抽樣的"
868-
"樣本資料。對於 *m* 個已排序的資料點,計算出低於 *i-th* 的部分為 ``i / (m + "
867+
"預設的 *method* 是 \"exclusive\"用於從可能找到比樣本更極端的值的母體中抽樣"
868+
"的樣本資料。對於 *m* 個已排序的資料點,計算出低於 *i-th* 的部分為 ``i / (m + "
869869
"1)``。給定九個樣本資料,此方法將對資料排序且計算下列百分位數:10%、20%、30%、"
870870
"40%、50%、60%、70%、80%、90%。"
871871

@@ -880,23 +880,26 @@ msgid ""
880880
"assigns the following percentiles: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, "
881881
"80%, 90%, 100%."
882882
msgstr ""
883-
"若將 *method* 設為 \"inclusive\"則用於描述母體或者已知包含母體中最極端值的樣"
884-
"本資料。在 *data* 中的最小值被視為第 0 百分位數,最大值為第 100 百分位數。"
885-
" *m* 個已排序的資料點,計算出低於 *i-th* 的部分為 ``(i - 1) / (m - 1)``。"
886-
"定十一個個樣本資料,此方法將對資料排序且計算下列百分位數:0%、10%、20%、30%、"
887-
"40%、50%、60%、70%、80%、90%、100%。"
883+
"若將 *method* 設為 \"inclusive\"則用於描述母體或者已知包含母體中最極端值的"
884+
"樣本資料。在 *data* 中的最小值被視為第 0 百分位數,最大值為第 100 百分位數。"
885+
"對於 *m* 個已排序的資料點,計算出低於 *i-th* 的部分為 ``(i - 1) / (m - 1)``。"
886+
"給定十一個個樣本資料,此方法將對資料排序且計算下列百分位數:0%、10%、20%、"
887+
"30%、40%、50%、60%、70%、80%、90%、100%。"
888888

889889
#: ../../library/statistics.rst:629
890890
msgid ""
891891
"Return the sample covariance of two inputs *x* and *y*. Covariance is a "
892892
"measure of the joint variability of two inputs."
893893
msgstr ""
894+
"回傳兩輸入 *x* 與 *y* 的樣本共變異數 (sample covariance)。共變異數是衡量兩輸"
895+
"入的聯合變異性 (joint variability) 的指標。"
894896

895897
#: ../../library/statistics.rst:632
896898
msgid ""
897899
"Both inputs must be of the same length (no less than two), otherwise :exc:"
898900
"`StatisticsError` is raised."
899901
msgstr ""
902+
"兩輸入必須具有相同長度(至少兩個),否則會引發 :exc:`StatisticsError`。"
900903

901904
#: ../../library/statistics.rst:653
902905
msgid ""
@@ -907,12 +910,18 @@ msgid ""
907910
"linear relationship, -1 very strong, negative linear relationship, and 0 no "
908911
"linear relationship."
909912
msgstr ""
913+
"回傳兩輸入的 `Pearson 相關係數 (Pearson’s correlation coefficient) <https://"
914+
"en.wikipedia.org/wiki/Pearson_correlation_coefficient>`。Pearson 相關係數 "
915+
"*r* 的值介於 -1 與 +1 之間。它衡量線性關係的強度與方向,其中 +1 表示強烈正線"
916+
"性相關,-1 表示強烈負線性相關,而 0 表示無線性關係。"
910917

911918
#: ../../library/statistics.rst:660
912919
msgid ""
913920
"Both inputs must be of the same length (no less than two), and need not to "
914921
"be constant, otherwise :exc:`StatisticsError` is raised."
915922
msgstr ""
923+
"兩輸入必須具有相同長度(至少兩個),且不須為常數,否則會引發 :exc:"
924+
"`StatisticsError`。"
916925

917926
#: ../../library/statistics.rst:678
918927
msgid ""
@@ -922,6 +931,11 @@ msgid ""
922931
"between an independent variable *x* and a dependent variable *y* in terms of "
923932
"this linear function:"
924933
msgstr ""
934+
"回傳使用普通最小平方法 (ordinary least square) 估計出的\\ `簡單線性迴歸 "
935+
"(simple linear regression) <https://en.wikipedia.org/wiki/"
936+
"Simple_linear_regression>`_ 參數中的斜率 (slope) 與截距 (intercept)。簡單線性"
937+
"迴歸描述自變數 (independent variable) *x* 與應變數 (dependent variable) *y* "
938+
"之間的關係,用以下的線性函式表示:"
925939

926940
#: ../../library/statistics.rst:684
927941
msgid "*y = slope \\* x + intercept + noise*"
@@ -934,13 +948,17 @@ msgid ""
934948
"explained by the linear regression (it is equal to the difference between "
935949
"predicted and actual values of the dependent variable)."
936950
msgstr ""
951+
"其中 ``slope`` 和 ``intercept`` 是被估計的迴歸參數,而 ``noise`` 表示由線性迴"
952+
"歸未解釋的資料變異性(它等於應變數的預測值與實際值之差)。"
937953

938954
#: ../../library/statistics.rst:692
939955
msgid ""
940956
"Both inputs must be of the same length (no less than two), and the "
941957
"independent variable *x* cannot be constant; otherwise a :exc:"
942958
"`StatisticsError` is raised."
943959
msgstr ""
960+
"兩輸入必須具有相同長度(至少兩個),且自變數 *x* 不得為常數,否則會引發 :exc:"
961+
"`StatisticsError`。"
944962

945963
#: ../../library/statistics.rst:696
946964
msgid ""
@@ -949,6 +967,9 @@ msgid ""
949967
"cumulative number of Monty Python films that would have been produced by "
950968
"2019 assuming that they had kept the pace."
951969
msgstr ""
970+
"舉例來說,我們可以使用 `Monty Python 系列電影的上映日期 <https://en."
971+
"wikipedia.org/wiki/Monty_Python#Films>`_\\ 來預測至 2019 年為止,假設他們保持固"
972+
"定的製作速度,應該會產生的 Monty Python 電影的累計數量。"
952973

953974
#: ../../library/statistics.rst:710
954975
msgid ""
@@ -957,6 +978,9 @@ msgid ""
957978
"line passing through the origin. Since the *intercept* will always be 0.0, "
958979
"the underlying linear function simplifies to:"
959980
msgstr ""
981+
"若將 *proportional* 設為 True,則假設自變數 *x* 與應變數"
982+
" *y* 是直接成比例的,資料座落在通過原點的一直線上。由於 *intercept* "
983+
"始終為 0.0,因此線性函式可簡化如下:"
960984

961985
#: ../../library/statistics.rst:716
962986
msgid "*y = slope \\* x + noise*"

0 commit comments

Comments
 (0)