diff --git a/library/statistics.po b/library/statistics.po index 8f6d9b5062..375ba27f0f 100644 --- a/library/statistics.po +++ b/library/statistics.po @@ -9,7 +9,7 @@ msgstr "" "Project-Id-Version: Python 3.11\n" "Report-Msgid-Bugs-To: \n" "POT-Creation-Date: 2023-05-03 00:17+0000\n" -"PO-Revision-Date: 2023-07-14 00:44+0800\n" +"PO-Revision-Date: 2023-07-17 18:00+0800\n" "Last-Translator: Adrian Liaw \n" "Language-Team: Chinese - TAIWAN (https://github.com/python/python-docs-zh-" "tw)\n" @@ -1224,6 +1224,7 @@ msgid "" "Dividing a constant by an instance of :class:`NormalDist` is not supported " "because the result wouldn't be normally distributed." msgstr "" +"不支援將常數除以 :class:`NormalDist` 的實例,因為結果將不符合常態分布。" #: ../../library/statistics.rst:877 msgid "" @@ -1233,6 +1234,10 @@ msgid "" "Sum_of_normally_distributed_random_variables>`_ represented as instances of :" "class:`NormalDist`. For example:" msgstr "" +"由於常態分布源自於自變數的加法效應 (additive effects),因此可以\\ `將兩個獨立" +"的常態分布隨機變數相加與相減 `_,並且表示為 :class:" +"`NormalDist` 的實例。例如:" #: ../../library/statistics.rst:897 msgid ":class:`NormalDist` Examples and Recipes" @@ -1250,6 +1255,9 @@ msgid "" "determine the percentage of students with test scores between 1100 and 1200, " "after rounding to the nearest whole number:" msgstr "" +"例如,給定 `SAT 測驗的歷史資料 `_,顯示成績為平均 1060、標準差 195 的常態分布。我們要" +"求出分數在 1100 與 1200 之間(四捨五入至最接近的整數)的學生的百分比:" #: ../../library/statistics.rst:914 msgid "" @@ -1265,6 +1273,9 @@ msgid "" "analytically, :class:`NormalDist` can generate input samples for a `Monte " "Carlo simulation `_:" msgstr "" +"欲估計一個不易透過解析方法求解的模型的分布,:class:`NormalDist` 可以產生輸入" +"樣本以進行 `Monte Carlo 模擬 `_:" #: ../../library/statistics.rst:940 msgid "" @@ -1272,6 +1283,9 @@ msgid "" "`_ when the sample " "size is large and when the probability of a successful trial is near 50%." msgstr "" +"當樣本數量夠大,且試驗成功的機率接近 50%,可以使用常態分布來近似\\ `二項分布 " +"(Binomial distributions) `_。" #: ../../library/statistics.rst:945 msgid "" @@ -1281,10 +1295,14 @@ msgid "" "talks. Assuming the population preferences haven't changed, what is the " "probability that the Python room will stay within its capacity limits?" msgstr "" +"例如,一場有 750 位參加者的開源研討會中,有兩間可容納 500 人的會議室。一場是" +"關於 Python 的講座,另一場則是關於 Ruby 的。在過去的會議中,有 65% 的參加者傾" +"向參與 Python 講座。假設參與者的偏好沒有改變,那麼 Python 會議室未超過自身容" +"量限制的機率是?" #: ../../library/statistics.rst:976 msgid "Normal distributions commonly arise in machine learning problems." -msgstr "" +msgstr "常態分布常在機器學習問題中出現。" #: ../../library/statistics.rst:978 msgid "" @@ -1293,6 +1311,9 @@ msgid "" "challenge is to predict a person's gender from measurements of normally " "distributed features including height, weight, and foot size." msgstr "" +"維基百科有個 `Naive Bayesian Classifier 的優良範例 `_。課題為從身高、體重與鞋" +"子尺寸等符合常態分布的特徵量測值中判斷一個人的性別。" #: ../../library/statistics.rst:983 msgid "" @@ -1300,12 +1321,14 @@ msgid "" "measurements are assumed to be normally distributed, so we summarize the " "data with :class:`NormalDist`:" msgstr "" +"給定一組包含八個人的量測值的訓練資料集。假設這些量測值服從常態分布,我們可以" +"利用 :class:`NormalDist` 來總結資料:" #: ../../library/statistics.rst:996 msgid "" "Next, we encounter a new person whose feature measurements are known but " "whose gender is unknown:" -msgstr "" +msgstr "接著,我們遇到一個新的人,他的特徵量測值已知,但性別未知:" #: ../../library/statistics.rst:1005 msgid "" @@ -1314,6 +1337,9 @@ msgid "" "the prior times the product of likelihoods for the feature measurements " "given the gender:" msgstr "" +"從可能為男性或女性的 50% `先驗機率 (prior probability) `_ 為開端,我們將後驗機率 (posterior probability) " +"計算為先驗機率乘以給定性別下,各特徵量測值的概度乘積:" #: ../../library/statistics.rst:1020 msgid "" @@ -1321,3 +1347,6 @@ msgid "" "`maximum a posteriori `_ or MAP:" msgstr "" +"最終的預測結果將取決於最大的後驗機率。這被稱為\\ `最大後驗機率 (maximum a " +"posteriori) `_ 或者 MAP:"