@@ -150,22 +150,18 @@ def place_varga(A, B, p, dtime=False, alpha=None):
150
150
"""Place closed loop eigenvalues.
151
151
K = place_varga(A, B, p, dtime=False, alpha=None)
152
152
153
- Required Parameters
153
+ Parameters
154
154
----------
155
155
A : 2D array_like
156
156
Dynamics matrix
157
157
B : 2D array_like
158
158
Input matrix
159
159
p : 1D array_like
160
160
Desired eigenvalue locations
161
-
162
- Optional Parameters
163
- ---------------
164
- dtime : bool
161
+ dtime : bool, optional
165
162
False for continuous time pole placement or True for discrete time.
166
163
The default is dtime=False.
167
-
168
- alpha : double scalar
164
+ alpha : float, optional
169
165
If `dtime` is false then place_varga will leave the eigenvalues with
170
166
real part less than alpha untouched. If `dtime` is true then
171
167
place_varga will leave eigenvalues with modulus less than alpha
@@ -179,26 +175,27 @@ def place_varga(A, B, p, dtime=False, alpha=None):
179
175
K : 2D array (or matrix)
180
176
Gain such that A - B K has eigenvalues given in p.
181
177
182
- Algorithm
183
- ---------
178
+ See Also
179
+ --------
180
+ place, acker
181
+
182
+ Notes
183
+ -----
184
184
This function is a wrapper for the slycot function sb01bd, which
185
- implements the pole placement algorithm of Varga [1]. In contrast to the
185
+ implements the pole placement algorithm of Varga [1]_ . In contrast to the
186
186
algorithm used by place(), the Varga algorithm can place multiple poles at
187
187
the same location. The placement, however, may not be as robust.
188
188
189
- [1] Varga A. "A Schur method for pole assignment." IEEE Trans. Automatic
190
- Control, Vol. AC-26, pp. 517-519, 1981.
189
+ References
190
+ ----------
191
+ .. [1] Varga A. "A Schur method for pole assignment." IEEE Trans. Automatic
192
+ Control, Vol. AC-26, pp. 517-519, 1981.
191
193
192
194
Examples
193
195
--------
194
196
>>> A = [[-1, -1], [0, 1]]
195
197
>>> B = [[0], [1]]
196
- >>> K = place_varga(A, B, [-2, -5])
197
-
198
- See Also
199
- --------
200
- place, acker
201
-
198
+ >>> K = ct.place_varga(A, B, [-2, -5])
202
199
"""
203
200
204
201
# Make sure that SLICOT is installed
@@ -269,6 +266,10 @@ def acker(A, B, poles):
269
266
-------
270
267
K : 2D array (or matrix)
271
268
Gains such that A - B K has given eigenvalues
269
+
270
+ See Also
271
+ --------
272
+ place, place_varga
272
273
273
274
"""
274
275
# Convert the inputs to matrices
0 commit comments